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Moravec’s Paradox

Rodney Brooks explains that, according to
early AI research, intelligence was “best
characterized as the things that highly
educated male scientists found challenging”,
such as chess, symbolic integration, proving
mathematical theorems and solving
complicated word algebra problems. “The
things that children of four or five years could
do effortlessly, such as visually distinguishing
between a coffee cup and a chair, or walking
around on two legs, or finding their way from
their bedroom to the living room were not
thought of as activities requiring intelligence.”
Moravec’s paradox. (2015, April 25). In Wikipedia, The Free
Encyclopedia. Retrieved 14:46, June 17, 2015, from https://en.
wikipedia.org/w/index.php?title=Moravec%27s_paradox&oldid=659139375 https://xkcd.com

John Ashburner Generative Models

https://en.wikipedia.org/w/index.php?title=Moravec%27s_paradox&oldid=659139375
https://en.wikipedia.org/w/index.php?title=Moravec%27s_paradox&oldid=659139375
https://xkcd.com


Introduction
Segmentation

Longitudinal Registration

Pipelines v Models
Probability Theory
Medical image computing

Why Image Processing Seems Easy

Neurons for visual processing take up
30% of the brain’s cortex (as opposed to
about 8% for touch and 3% for hearing).
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Pipelines

In software engineering, a pipeline consists of a chain of processing
elements (processes, threads, coroutines, functions, etc.), arranged

so that the output of each element is the input of the next
Pipeline (software). (2015, May 1). In Wikipedia, The Free Encyclopedia. Retrieved 16:50, June 17,
2015, from https://en.wikipedia.org/w/index.php?title=Pipeline_(software)&oldid=660291081
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Optimising two parameters
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Single pass

1st Optimisation
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Optimising two functions
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Generative Models

A generative model is a model for randomly generating observable
data, typically given some hidden parameters. It specifies a joint
probability distribution over observation and label sequences.

Generative models are used in machine learning for either modeling
data directly (i.e., modeling observations draws from a probability

density function), or as an intermediate step to forming a
conditional probability density function. A conditional distribution

can be formed from a generative model through Bayes’ rule.
Generative model. (2015, April 30). In Wikipedia, The Free Encyclopedia. Retrieved 16:46, June 17,

2015, from https://en.wikipedia.org/w/index.php?title=Generative_model&oldid=660109222
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Probaility Theory

“Probability theory is nothing but common
sense reduced to calculation.”

— Laplace

Desiderata of probability theory:
1 Representation of degree of plausibility by real

numbers.
2 Qualitative correspondence with common sense.
3 Consistency.

Jaynes, Edwin T. Probability theory: the logic of science. Cambridge university press, 2003.

John Ashburner Generative Models
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Product and Sum Rules

Product Rule

p(y, x) = p(y|x)p(x)
= p(x|y)p(y)

Sum Rule

p(y) =
∑
x

p(y, x)

or for continuous x

p(y) =
∫

x
p(y, x)dx

p(x) is the probability of x.
p(x, y) is the joint probability of
x and y.
p(x|y) is the probability of x
conditional on y.

John Ashburner Generative Models
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Bayes Rule

Combining the sum and product rules, gives Bayes rule:

p(θ|X) =
p(X|θ)p(θ)

p(X)
=

p(X|θ)p(θ)∫
θ p(X|θ)p(θ)dθ

In words:

Posterior =
Likelihood× Prior

Evidence

John Ashburner Generative Models
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Ignorance priors

Sometimes we don’t have previous observations
to formulate priors.
Jaynes suggests using a maximum entropy prior.
An ignorance prior is a prior probability
distribution where equal probability is assigned to
all possibilities.
Ignorance priors can be motivated via
invariance/symmetry (transformation groups).

Jaynes, Edwin T. Probability theory: the logic of science. Cambridge university press, 2003.
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Priors for positive values

Some things can not be less than
zero.

Counts of observed photons.
Multiplicative “bias” fields.
Lengths, areas, volumes, etc.

Formulate the model via
logarithms, and impose a prior on
these.

Jeffreys, Harold. “An invariant form for the prior probability in
estimation problems.” In Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences,
vol. 186, no. 1007, pp. 453-461. The Royal Society, 1946.
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Scientific process

MacKay, David JC.
“Bayesian interpolation.”
Neural computation 4,
no. 3 (1992): 415-447.
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Goldilocks and the three Bayesian models
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This model was too simple

This model is just right

This model was too complex

“Everything
should be made
as simple as
possible, but not
simpler.”

— Einstein (possibly)

p(x|M) =

∫
θ
p(x, θ|M)dθ
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General aim of medical image computing

Given an image or a set of images x∗, best predict y∗.
Here, y may be:

A diagnosis.
An optimal treatment decision.
Another image, for example:

A cleaned up version of the same image.
A map of where a neurosurgeon should best avoid.
A map of gamma ray absorption for attenuation correction in
MR/PET.

etc

John Ashburner Generative Models
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General aim of medical image computing

Often a collection of training data to work from (X and Y).
The aim becomes one of determining p(y∗|x∗,Y,X).

John Ashburner Generative Models
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General aim of medical image computing

Predictions are based on some model,M. Usually, a model has
parameters, θ:

p(y∗|x∗,Y,X,M) =

∫
θ
p(y∗, θ|x∗,Y,X,M)dθ

=

∫
θ
p(y∗|x∗,Y,X, θ,M)p(θ|M)dθ

Predictions may also be made by averaging over models.

p(y∗|x∗,Y,X) =
∑

i

p(y∗|x∗,Y,X,Mi )P(Mi )

John Ashburner Generative Models



Introduction
Segmentation

Longitudinal Registration

Pipelines v Models
Probability Theory
Medical image computing

Unfortunately...

“In theory, there is no difference between theory and
practice. But, in practice, there is.”

Many of the integrations needed to compute model evidence are
not computationally feasible in medical image computing
applications. Workarounds include:

Use maximum a posteriori (MAP) estimation, and approximate
probability distributions via a delta function.

θ̂ = argmax
θ

log p(X, θ)

Model selection via cross-validation.

John Ashburner Generative Models
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Useful Textbooks

The following books are suggested for all things
Bayesian...

MacKay, David JC. Information theory, inference
and learning algorithms. Cambridge University
Press, 2003.
http://www.inference.org.uk/itprnn/book.html

Bishop, Christopher M. Pattern recognition and
machine learning. Springer, 2006.
Murphy, Kevin P. Machine learning: a probabilistic
perspective. MIT Press, 2012.

John Ashburner Generative Models
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Mixture of Gausians

E = − log p(f|µ,σ,γ)

= −
∑I

i=1 log
(∑K

k=1
γk√
2πσ2k

exp
(
− (fi−µk)

2

2σ2k

))
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Incorporating “bias” correction

E = −
I∑

i=1

log

 K∑
k=1

γk√
2π σ2k

ρi (β)2

exp

−
(
fi − µk

ρi (β)

)2

2 σ2k
ρi (β)2




Original Corrected Original Corrected

John Ashburner Generative Models



Introduction
Segmentation

Longitudinal Registration

Mixture of Gausians
“Bias” correction
Deformable tissue priors

Incorporating “bias” correction

E = −
I∑

i=1

log

ρi (β)
K∑

k=1

γk√
2πσ2

k

exp
(
−(ρi (β)fi − µk)

2

2σ2
k

)

Original Corrected Field
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Incorporating deformable tissue priors

E = −
I∑

i=1

log

 ρi (β)∑K
k=1 γkbik(α)

K∑
k=1

γkbik(α)√
2πσ2

k

exp
(
−(ρi (β)fi − µk)

2

2σ2
k

)
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Incorporating deformable tissue priors

Registration achieved by optimising
objective function w.r.t. α.
bik(α) denotes tissue probability of class
k at voxel i , after warping by parameters
α.

John Ashburner Generative Models
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Latent variables

Optimisation done via EM.

Marginalised is with respect to
latent variables (z), which encode
expectations of tissue class
memberships.

p(f,θ) =
∫
z p(f, z,θ)dz

where
θ = {µ,σ,γ,β,α}

John Ashburner Generative Models
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Extensions

Intensity distributions of tissue classes are estimated afresh
each time.

Intensity priors can be used to inform their estimation, using
Variational Bayes.
These can be learned from a population of images.

Spatial tissue priors can be learned from a population of brain
scans.

Can introduce a semi-supervised learning scheme.

John Ashburner Generative Models
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Ashburner, John, and Karl J. Friston. “Unified segmentation.”
Neuroimage 26, no. 3 (2005): 839-851.

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/,
spm12/spm_preproc_run.m.

Blaiotta, Claudia, M. Jorge Cardoso, and John Ashburner. “Variational
inference for medical image segmentation.” Computer Vision and Image
Understanding 151 (2016): 14-28.

John Ashburner Generative Models
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Longitudinal data: OAS2_0002
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Longitudinal data: OAS2_0002
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Longitudinal data: OAS2_0048
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Longitudinal data: Averages

John Ashburner Generative Models
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Optimisation

Problem is treated as finding a maximum a posteriori (or
regularised maximum likelihood) solution.

θ̂ = argmin
θ
E(θ)

where

E(θ) ≡ − log p(θ,Data) = − log p(Data|θ)− log p(θ)

John Ashburner Generative Models
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Optimisation: Newton’s Method

An iterative local optimisation scheme:

θ(n+1) = θ(n) −
[
H
(
E(θ(n))

)]−1
∇E(θ(n))

where H
(
E(θ(n))

)
= Hessian matrix of 2nd derivatives

∇E(θ(n)) = vector of 1st derivatives

Note: may converge to a maximum, minimum or saddle point,
depending on whether or not the Hessian is positive definite.

John Ashburner Generative Models
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Optimisation: Gauss-Newton Algorithm

Gauss-Newton method can be used for least-squares minimisation,
where the objective function has the following form:

E(θ) =
∑

i

r2i (θ)

Ensures a positive definite approximation of the Hessian.
Converges (hopefully) to a local minimum.

θ(n+1) = θ(n) −
[
JTJ

]−1
JT r

where J =
∂ri
∂θj

(θ(n))

Can also motivate a positive definite approximation via a Fisher
information matrix (as in Fisher scoring).

John Ashburner Generative Models
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Differential Bias Fields: Generative Model

f (x) b(x)

λ

µ(x) Lb

N

f (x) – image
µ(x) – mean image
λ – noise precision
b(x) – bias field
Lb – bias regularisation
N – number of images

John Ashburner Generative Models
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Differential Bias Fields: Objective Function

Minimise the following:

E =
N∑

n=1

(
λn

2
‖fn − µebn‖2 + 1

2
‖Lbbn‖2

)

f – image

µ – mean image

λ – noise precision

b – bias field

Lb – bias regularisation

N – number of images

John Ashburner Generative Models
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Differential Bias Fields: Exponential Map

The “bias field” is really not a bias, as it is multiplicative rather
than additive.
Want the probability of re-scaling by (say) 2 to be the same as
that of scaling by 1

2 .
Parameterise by a field b(x), and generate bias from the
exponential.

exp(b) = lim
n→∞

(
1+

b
n

)n

John Ashburner Generative Models
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Differential Bias Fields: Regularisation

Penalise sum of squares of second derivatives:

‖Lbb‖2 = ω0

∫
x
‖∇2b(x)‖2dx

Differential operator
(L†bLb)

0

0
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2

−8

2

0

1

−8

20

−8

1

0

2

−8

2

0

0

0

1

0

0

Differential operator
(zoomed out)

Green’s function
(via FFTs)
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Rigid-Body: Generative Model

f (x)ξ(x)q

λ

µ(x)

N

f (x) – image
µ(x) – mean image
λ – noise precision
ξ(x) – rigid-body transform
q – rigid-body parameters
N – number of images

John Ashburner Generative Models
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Rigid-Body: Objective Function

E =
N∑

n=1

λn

2
‖fn − µ(ξ−1

qn )‖
2 =

N∑
n=1

λn

2

∫
x
|Dξqn(x)|(fn(ξqn(x))− µ(x))

2dx

f – image

µ – mean image

λ – noise precision

ξq – rigid-body transform

N – number of images

Note the change of variables.∫
x
g(x)dx =

∫
x
g(ϕ(x))|Dϕ(x)|dx

where |Dϕ(x)| means the
Jacobian determinant of ϕ at x.

John Ashburner Generative Models
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Rigid-Body: Exponential Map

A rigid-body transformation matrix (Rq ∈ SE (3)) is computed via a
matrix exponential:

Rq = exp


0 q4 −q5 q1
−q4 0 q6 q2
q5 −q6 0 q3
0 0 0 0

 , where expQ =
∞∑

n=0

1
n!

Qn.

A mapping from each voxel in the template, to the corresponing
voxel in the nth image is by:

ξqn(x) = I3,4M−1
n RqnMµ

[
x
1

]
, where I3,4 =

1 0 0 0
0 1 0 0
0 0 1 0

 .
Each M maps from voxels to corresponding mm coordinates.

John Ashburner Generative Models
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Rigid-Body: Exponential Map

Rotation in 2D (Rq ∈ SO(2)):

Rq = exp
[

0 q1
−q1 0

]
Computing a matrix exponential is
analagous to integrating a dynamical
system over unit time.

Rq = lim
n→∞

[
1 q1/n

−q1/n 1

]n

John Ashburner Generative Models
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Diffeomorphisms: Generative Model

v(x) φ(x) f (x)

λLv

µ(x)

N

f (x) – image
µ(x) – mean image
λ – noise precision
φ(x) – diffeomorphism
v(x) – initial velocity
Lv – velocity regularisation
N – number of images

John Ashburner Generative Models
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Diffeomorphisms: Objective Function

E =
N∑

n=1

(
λn

2
‖fn − µ ◦ φ−1

vn ‖
2 +

1
2
‖Lvnvn‖2

)

=
N∑

n=1

(
λn

2

∫
x
|Dφvn(x)|(fn(φvn(x))− µ(x))

2dx +
1
2
‖Lvnvn‖2

)

f – image

µ – mean image

λ – noise precision

φv – diffeomorphism

v – velocity field

Lv – velocity regularisation

N – number of images

Note: Diffeomorphic
deformations are computed via a
Riemannian exponential.

John Ashburner Generative Models
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Diffeomorphisms: Exponential Map

Riemannian exponantial is computed via geodesic shooting.
Initialise φv to the identity transform and compute
initial momentum from initial velocity via:

u = L†vLvv.

Then the following dynamical system is integrated
over unit time:

φ̇v =
(
Kv

(∣∣Dφ−1
v
∣∣ (Dφ−1

v )T
(
u ◦ φ−1

v
)))
◦ φv

Kv is the Green’s function of L†vLv, such that:

KvL†vLvv = v
L†vLvvKvu = u

John Ashburner Generative Models
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Diffeomorphisms: Exponential Map

µ f

µ ° θ f ° φ

φ

|J
φ
|

θ

|J
θ
|

Template and gradients Residuals Momentum (u) Velocity (v) θ |J
θ
| φ |J

φ
|

φ̇v =
(
Kv

(∣∣Dφ−1
v
∣∣ (Dφ−1

v )T
(
u ◦ φ−1

v
)))
◦ φv

John Ashburner Generative Models
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Diffeomorphisms: Regularisation

‖Lvv‖2 =

∫
x

(ω1

4
‖Dv + (Dv)T‖2F + ω2tr(Dv)2 + ω3‖∇2v‖2

)
dx

Three hyper-parameters are involved:
ω1 controls stretching and shearing (but not rotation).
ω2 controls the divergence, which in turn determines the
amount of volumetric expansion and contraction.
ω3 controls the bending energy. This ensures that the resulting
velocity fields have smooth spatial derivatives.

John Ashburner Generative Models
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Diffeomorphisms: Regularisation

Two
simulated
images

John Ashburner Generative Models
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Combined Model: Generative Model

v(x) φ(x) f (x) b(x)

q ξ(x) λ

Lv

µ(x) Lb

N

f (x) – image

µ – mean image

λ – noise precision

b(x) – “bias” field

Lb – bias field
regularisation

ξ(x) – rigid-body transform

q – rigid-body parameters

φv – diffeomorphism

v – velocity field

Lv – velocity regularisation

N – number of images

John Ashburner Generative Models
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Combined Model: Generative Model

Minimise the following objective function:

E =
∑N

n=1
1
2

∫
x λn |Dϕn(x)|

(
f ′n(x)− µ(x)eb′

n(x)
)2

dx

+
∑N

n=1
1
2 ‖Lvnvn‖2 +

∑N
n=1

1
2 ‖Lbbn‖2

where:

ϕn = ξqn ◦ φvn

f ′n = fn(ϕn)

b′n = bn(ϕn)

John Ashburner Generative Models
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“Everything is the way it is because it got that way”

D’Arcy Wentworth Thompson (1860–1948)

Ashburner, John, and Gerard R. Ridgway. “Symmetric diffeomorphic
modeling of longitudinal structural MRI.” Frontiers in neuroscience 6
(2012).

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/,
spm12/toolbox/Longitudinal.

John Ashburner Generative Models
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