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“The only relevant test of the validity
of a hypothesis is comparison of
prediction with experience.”

Milton Friedman
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Evidence-based Science

...also just known as “science”.

Researchers claim to find differences between groups. Do
those findings actually discriminate?

How can we most accurately diagnose a disorder from image
data?

Pharma wants biomarkers. How do we most effectively
identify them?

There are lots of potential imaging biomarkers. Which are
most (cost) effective?

Pattern recognition provides a framework to compare data (or
preprocessing strategy) to determine the most accurate approach.
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Inter-subject Variability

Why focus on anatomy?

Many medical applications involve understanding differences
among individuals/populations.

In image data, most of the differences we can see are
anatomical in nature.

Understanding growth and development requires us to look at
growth and development (anatomy).
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Bayesian approaches may be better for
clinical applications

Deals with different priors.
Consider a method with 90% sensitivity and specificity.
Consider using this to screen for a disease afflicting 1% of the
population.
On average, out of 100 people there would be 10 wrongly
assigned to the disease group.
A positive diagnosis suggests only about a 10% chance of
having the disease.

P(Disease|Pred+) = P(Pred+|Disease)P(Disease)
P(Pred+|Disease)P(Disease)+P(Pred+|Healthy)P(Healthy)

Better decision-making by accounting for utility functions.

Confidence may differ from subject to subject.
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Introduction
Morphometrics

Similarity between brains
Conclusion: What next?

Why apply pattern recognition to structural MRI?
Common ways to represent anatomical features
No Free Lunch and prior knowledge
Dimensionality reduction

Feature engineering

First-timers are often surprised by how little time in a machine
learning project is spent actually doing machine learning. But it
makes sense if you consider how time-consuming it is to gather data,
integrate it, clean it and pre-process it, and how much trial and error
can go into feature design. Also, machine learning is not a one-shot
process of building a data set and running a learner, but rather an
iterative process of running the learner, analyzing the results, modifying
the data and/or the learner, and repeating. Learning is often the quickest
part of this, but that’s because we’ve already mastered it pretty well!
Feature engineering is more difficult because it’s domain-specific,
while learners can be largely general-purpose. However, there is no
sharp frontier between the two, and this is another reason the most
useful learners are those that facilitate incorporating knowledge.

Domingos, Pedro. “A few useful things to know about machine learning.” Communications of the ACM 55, no. 10
(2012): 78-87.
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Region volumes

Label propagation or
other methods can be
used to subdivide
brain into regions.
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Pixel values

Raw pixel data could
be another option.
Data needs to be
“spatially normalised”
(and possibly
skull-stripped).
Results may not
generalise well to data
from other scanners.
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Tissue maps

Grey matter maps can
work fairly well.
Data needs to be
“spatially
normalised”.
Many neurological
problems show up as
grey matter atrophy.
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Other features

Other features
include:

Cortical
thickness.

Shape features.

PCA/ICA
weights.

Lesion maps.

etc
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No Free Ducklings

No Free Lunch theorem says that
learning is impossible without prior
knowledge.
http://en.wikipedia.org/wiki/No_free_lunch_in_search_and_

optimization

Ugly Duckling theorem says that
things are all equivalently similar to
each other without prior knowledge.
http://en.wikipedia.org/wiki/Ugly_duckling_theorem

By
Ryan Ebert from Portland, US (Flickr) [CC BY 2.0],
via Wikimedia Commons.
https://creativecommons.org/licenses/by/2.0/

What prior knowledge do we have about the variability among
people that can be measured using MRI?
How do we use this knowledge?
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Different ways of measuring distances
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Kernel Matrices

Linear kernel matrices are often computed from the raw features:

K = XXT

A simple spatial feature selection may be considered as the
following, where Σ0 is a (scaled) diagonal matrix of ones and zeros:

K = XΣ0XT

Σ0 may be more complicated, for example encoding spatial
smoothing, high-pass filtering or any number of other things.

John Ashburner Anatomical Neuroimaging
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Prior knowledge about brain regions involved

The best way would be to augment the training data with
data from previous studies.

Lack of data-sharing means this is generally not possible,
so we need to extract information from publications.

The neuroimaging literature is mostly blobs.

These give pointers about how best to weight the data
(Σ0 = diag(s), si ∈ R+).

John Ashburner Anatomical Neuroimaging
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Weighting suspected regions more heavily

Chu et al. “Does feature selection improve classification accuracy? Impact of sample size and feature selection on
classification using anatomical magnetic resonance images”. NeuroImage 60:59–70 (2012).
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Smoothing can help

If we know that
higher frequency
signal is more likely to
be noise.

K = XΣ0XT

Σ0 no longer
diagional.
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Dimensionality 6= number of voxels

Lots of effort on data-driven feature selection methods.

Involves estimating
Σ0 = diag(s), si ∈ {0,w}, where w ∈ R+.
Lots of parameters needed to achieve this.

Many papers claim excellent results.

Little evidence to suggest that most voxel-based feature
selection methods help.

Little or no increase in predictive accuracy.
Commonly perceived as being more “interpretable”.
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“Data-driven feature selection”

“In our evaluation, two methods included a feature
selection step: Voxel-STAND and Voxel-COMPARE.
Overall, these methods did not perform substantially
better than simpler ones... ... A more robust way to
decrease the dimensionality of the features way would be
to use more prior knowledge of the disease.”

Cuingnet et al. “Automatic classification of patients with Alzheimer’s disease from structural MRI: A comparison
of ten methods using the ADNI database”. NeuroImage 56(2):766–781 (2011).
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“Data-driven feature selection”

Chu et al. “Does feature selection improve classification accuracy? Impact of sample size and feature selection on
classification using anatomical magnetic resonance images”. NeuroImage 60:59–70 (2012).
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“Data-driven feature selection”

...did not help the winning entry.

http://www.lrdc.pitt.edu/ebc/2007/2007.html
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“Data-driven feature selection”

There was variability among entrants 

Life lessons…. 

• Very different 
methods gave 
similar scores 
(based on pre- 
and post-
processing)  

• Similar methods 
(e.g., support 
vector 
machines) gave 
very different 
results. 

Arousal 

Valence 

Hits 

SearchPeople 

SearchWeapons 

SearchFruit 

Instructions 

Dog 

Faces 

FruitsVegetables 

WeaponsTools 

InteriorExterior 

Velocity 

-.2 0 .2 .4 .6 .8 1 

1st place 

Max Correlation over the 3 

subjects for each entrant 

http://www.lrdc.pitt.edu/ebc/2007/2007.html
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Modelling the nonlinearities

Instead of using nonlinear pattern recognition methods...

Capture nonlinearities by appropriate preprocessing.

Allows nonlinear effects to be modelled by a linear classifier.

Gives more interpretable characterisations of differences.

May lead to more accurate predictions.

John Ashburner Anatomical Neuroimaging
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Transformed images fall on manifolds

Rotating an image leads to points on a manifold.
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Rigid-body motion leads to a 6-dimensional manifold (not shown).
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One mode of geometric variability

Simulated images Principal components

A suitable model would reduce this variability to a single dimension.

John Ashburner Anatomical Neuroimaging



Introduction
Morphometrics

Similarity between brains
Conclusion: What next?

Why apply pattern recognition to structural MRI?
Common ways to represent anatomical features
No Free Lunch and prior knowledge
Dimensionality reduction

Two modes of geometric variability

Simulated images Principal components

A suitable model would reduce this variability to two dimensions.
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“Traditional” morphometrics

Traditional morphometrics analyzes measurements of size (lengths,
widths, masses, angles, ratios and areas).
Early analysis methods were often univariate, performing statistical
analysis on each feature in isolation.

Wikipedia contributors, “Morphometrics,” Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/w/index.php?title=Morphometrics&oldid=641987541 (accessed March 26, 2015).
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Criticism of univariate approaches

“This unhappy result can be traced to the piecemeal
tests which have hitherto been used. A bone or a tooth is
a unit ; it is not a discrete assembly of independent
measurements.”

— Jacob Bronowski & W.M. Long (Nature, 1951)

“The right statistical method must treat the
set of variates as a single coherent matrix ; and
this is, in fact, the technique of multivariate
analysis.”

— Jacob Bronowski & W.M. Long (Nature, 1951)

John Ashburner Anatomical Neuroimaging
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Biological variability is multivariate
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Geometric morphometrics

“We are now in the midst of a revolution in
morphometric methodology. The new approaches are
more effective in capturing information about the shape
of an organism and result in more powerful statistical
procedures for testing for differences in shape. They are
also more effective in enabling a researcher to
visualize differences in shape and in suggesting simple
traditional measurements that could be used in future
studies.”

FJ Rohlf & LF Marcus. “A Revolution in Morphometrics”. Trends in Ecology & Evolution 8.4: 129-132 (1993).

John Ashburner Anatomical Neuroimaging
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D’Arcy Thompson’s approach

“...diverse and dissimilar fishes can be referred as a whole
to identical functions of very different co-ordinate
systems...”

Thompson, D’Arcy. “On Growth and Form.” Cambridge University Press 1917.
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Geometric morphometrics

1 Data are recorded to capture the geometry in the form of 2D
or 3D coordinates of landmark points.

2 Geometric relationships among landmarks are not inherent in
the raw coordinates themselves. The relationship among
points is captured by fitting an appropriate function to
them in 2 or 3D.

3 The analyses are designed to indicate directions of
maximum variation and hence may suggest which
conventional variables one should emphasize in verbal
descriptions of the results.

4 Displays of the results of the analyses are emphasized, using
differences or changes that can be shown on pictorial
representations of the organisms studied.

FJ Rohlf & LF Marcus. “A Revolution in Morphometrics”. Trends in Ecology & Evolution 8.4: 129-132 (1993).
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Geometric morphometrics

Classic multivariate statistical methods used:

Procrustes analysis

Principal Component Analysis (PCA)

Canonical Correlation Analysis (CCA)

Multivariate ANalysis of COVAriance (MANCOVA)

Discriminant functions

These appraches could be augmented by pattern recognition and
other machine learning techniques.

John Ashburner Anatomical Neuroimaging
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Encoding geometry

Manual definition of
landmarks is laborious,
subjective and not very
reproducible.

Relatively few landmarks in
the brain.

Image registration is easier.

Can apply the tools of
geometric morphometrics
(statistical shape analysis)
to automatically estimated
deformations.

John Ashburner Anatomical Neuroimaging
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Logarithmic relationships

Huxley. “Problems of relative
growth.” Methuen & co, London
(1932).

Julian Huxley demonstrated logarithmic
relationships between magnitude variables (eg
height, weight, length, area, volume).

log y = a log x + log k

“the logarithmic method of plotting brings into
true relief an important point which is entirely
obscured by the usual method of plotting on the
absolute scale – namely the fact that growth is
concerned essentially with the multiplication of
living substance.”

John Ashburner Anatomical Neuroimaging
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Logarithmic relationships

Zhang and Sejnowski. “A universal scaling law between gray matter and white matter of cerebral cortex.”
Proceedings of the National Academy of Sciences 97(10):5621–5626 (2000).
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Logarithmic relationships

Preprocess to obtain features that behave
more linearly.
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Exponentials

There are many types of exponentials and their inverses.
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Non-Euclidean geometry

Distances are not always measured along a
straight line.

Sometimes we want distances measured on a
manifold.

Shortest path on a manifold is along a geodesic.

Linear trajectory

Nonlinear trajectory

John Ashburner Anatomical Neuroimaging
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Metric distances

Distances should satisfy the properties of a metric:

1 d(x, y) ≥ 0 (non-negativity)

2 d(x, y) = 0 if and only if x = y (identity of indiscernibles)

3 d(x, y) = d(y, x) (symmetry)

4 d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Satisfying (3) requires inverse-consistent image registration.
Satisfying (4) requires a specific class of image registration models.

John Ashburner Anatomical Neuroimaging
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Computing a metric distance

φ
1

θ
1

Decompose a curved path into a series of short line
segments, and add the lengths of the segments
together.
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Computing large deformations

φ
1

θ
1

We can consider a large deformation as the composition of a series
of small deformations:

ϕ1 =
(
id +

vtN−1

N

)
◦
(
id +

vtN−2

N

)
◦ ... ◦

(
id +

vt1
N

)
◦
(
id + v0

N

)
The inverse of the deformation can be computed from:

ϑ1 =
(
id− v0

N

)
◦
(
id− vt1

N

)
◦ ... ◦

(
id− vtN−2

N

)
◦
(
id− vtN−1

N

)
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Metric distances from large deformations

By modelling trajectories as piecewise linear, distances can be
computed by adding the distances from the small deformations:

d =
1

N

N−1∑
n=0

||Lvtn ||

If N approaches infinity (and we use small deformations of
id + 1

N vt), the evolution of a deformation may be conceptualised
as integrating the following equation:

dϕ

dt
= vt(ϕ)

Geodesic distances (from zero) are then measured by:

d =

∫ 1

t=0
||Lvt ||dt

John Ashburner Anatomical Neuroimaging
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Metric distances from large deformations

Miller et al. “Collaborative computational anatomy: an MRI morphometry study of the human brain via
diffeomorphic metric mapping.” Human Brain Mapping 30(7):2132–2141 (2009).
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Metric distances from large deformations

Miller et al. “Collaborative computational anatomy: an MRI morphometry study of the human brain via
diffeomorphic metric mapping.” Human Brain Mapping 30(7):2132–2141 (2009).
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Image Registration

Image registration finds shortest distance
between images.

Often formulated to minimise the sum of
two terms:

Distance between the image intensities.
Distance of the deformation from the
identity.

The sum of these gives a distance.

µ ° θ f ° φ

φ

|J
φ
|

θ

|J
θ
|
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LDDMM

Large Deformation Diffeomorphic Metric Mapping is an image
registration algorithm that minimises the following:

E =
1

2

∫ 1

t=0
||Lvt ||2dt +

1

2σ2
||f − µ

(
ϕ−1

1

)
||2

where ϕ0 = id,
dϕ

dt
= vt (ϕt)

First term is a squared deformation distance measure.
Second term is the squared difference between images.
The objective is to estimate a series of velocity fields (vt).

Beg, MF, Miller, MI, Trouvé, A & Younes, L. Computing large deformation metric mappings via geodesic flows of
diffeomorphisms. International Journal of Computer Vision 61(2):139–157 (2005).
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Linear approximations to nonlinear problems
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Exponential map

“Azimuthal Equidistant N90” by RokerHRO - Own
work. Licensed under CC BY-SA 3.0 via Wikimedia
Commons -
http://commons.wikimedia.org/wiki/File:
Azimuthal_Equidistant_N90.jpg

John Ashburner Anatomical Neuroimaging
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LDDMM via “geodesic shooting”

In practice, we just need to estimate an
initial velocity (v0), from which we
compute the initial momentum by
u0 = L†Lv0.
We set the deformation at time 0 to an
identity transform (ϕ0 = id), and then
evolve the following dynamical system for
unit time:

ut = det |Dϕ−1
t |(Dϕ−1

t )T (u0 ◦ϕ−1
t )

vt =
(

L†L
)−1

ut

dϕ
dt = vt(ϕt)

Younes, L, Arrate, F & Miller, MI. Evolutions equations in computational anatomy. Neuroimage 45(1S1):40–50
(2009).
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LDDMM via “geodesic shooting”

The final deformation (ϕ1) is a type of
exponential of the initial velocity (v0).

Exponential map (Riemannian geometry). (2015, January 13). In
Wikipedia, The Free Encyclopedia. Retrieved 18:04, March 31, 2015, from
http://en.wikipedia.org/w/index.php?title=Exponential_map_

(Riemannian_geometry)&oldid=642372186

Younes, L, Arrate, F & Miller, MI. Evolutions equations in computational anatomy. Neuroimage 45(1S1):40–50
(2009).
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“Groupwise registration”

Minimising distortions by centering around the mean.

average
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“Groupwise registration”
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“Groupwise registration”

Ignoring the many
technical details, the
procedure involves
alternating between:

Create the mean of
aligned images.

Align all images to be
slightly closer to the
mean.

John Ashburner Anatomical Neuroimaging
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Kernel matrix

Construction of kernel matrix accounts for the regularisation used

by the image registration:

k(vi , vj) = 〈L†Lvi , vj〉
= 〈Lvi ,Lvj〉

Wang, Lei, et al. “Large deformation diffeomorphism and momentum based hippocampal shape discrimination in
dementia of the Alzheimer type.” Medical Imaging, IEEE Transactions on 26(4):462–470 (2007).
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“Scalar momentum”

At the solution, gradients of the LDDMM objective function
should vanish:

L†Lv0 +
1

σ2
det |Dϕ1|(f ◦ϕ1 − µ)(∇µ) = 0

Re-expressiong this, we see that the initial velocity (and
momentum) is given by:

L†Lv0 = u0 =
1

σ2
(∇µ)det |Dϕ1|(µ− f ◦ϕ1)
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“Scalar Momentum”

u0 =
1

σ2
(∇µ)det |Dϕ1|(µ− f ◦ϕ1)

If a population of subjects are all aligned with the same template
image, 1

σ2 (∇µ) will be the same for all subjects. Deviations from
the template are encoded by the “scalar momentum”,
det |Dϕ1|(µ− f ◦ϕ1). This is a scalar field, and in principle is all
that is needed (along with the template) to reconstruct the original
images.

Miller et al. “Collaborative computational anatomy: an MRI morphometry study of the human brain via
diffeomorphic metric mapping.” Human Brain Mapping 30(7):2132–2141 (2009).
Singh, Fletcher, Preston, Ha, King, Marron, Wiener & Joshi (2010). Multivariate Statistical Analysis of
Deformation Momenta Relating Anatomical Shape to Neuropsychological Measures. T. Jiang et al. (Eds.):
MICCAI 2010, Part III, LNCS 6363, pp. 529–537, 2010.
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Evolution

Template and gradients Residuals Momentum (u) Velocity (v) θ |J
θ
| φ |J

φ
|
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Example Images

Some example images.
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Scalar Momentum

Scalar momenta after aligning to a common template.
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Reconstructed Images

Images reconstructed from scalar momenta (and template).
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Real data

Used 550 T1w brain MRI from
IXI (Information eXtraction from
Images) dataset.
http://www.

brain-development.org/

Data from three different
hospitals in London:

Hammersmith Hospital
using a Philips 3T system

Guy’s Hospital using a
Philips 1.5T system

Institute of Psychiatry using
a GE 1.5T system
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Grey and White Matter

Segmented into
GM and WM.
Approximately
aligned via
rigid-body.

Ashburner, J & Friston, KJ. Unified segmentation. NeuroImage 26(3):839–851 (2005).
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Diffeomorphic Alignment

All GM and WM were diffeomorphically aligned to their common
average-shaped template.

Ashburner, J & Friston, KJ. Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation.
NeuroImage 55(3):954–967 (2011).
Ashburner, J & Friston, KJ. Computing average shaped tissue probability templates. NeuroImage 45(2):333–341
(2009).
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Volumetric Features

A number of features
were used for pattern
recognition.
Firstly, two features
relating to relative
volumes.
Initial velocity
divergence is similar
to logarithms of
Jacobian
determinants.

Jacobian
Determinants

Initial Velocity
Divergence
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Grey Matter Features

Rigidly Registered
GM

Nonlinearly
Registered GM

Registered and
Jacobian Scaled GM
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“Scalar Momentum” Features

“Scalar momentum”
actually has two
components because
GM was matched
with GM and WM
was matched with
WM.

First Momentum
Component

Second Momentum
Component
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Age Regression

Linear Gaussian Process Regression to predict subject ages.
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Rasmussen, CE & Williams, CKI. Gaussian processes for machine learning. Springer (2006).
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Sex Classification

Linear Gaussian Process Classification (EP) to predict sexes.
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Rasmussen, CE & Williams, CKI. Gaussian processes for machine learning. Springer (2006).
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Predictive Accuracies

Age
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Conclusions

Scalar momentum (with about 10mm smoothing) appears to
be a useful feature set.

Jacobian-scaled warped GM is surprisingly poor.

Amount of spatial smoothing makes a big difference.

Further dependencies on the details of the registration still
need exploring.
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Mining hospital data

High resolution in-plane. Very thick slices.
Multiple image contrasts/orientations.
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Data sharing

Increasing pressure from funding bodies to share data.

Push for reproducible research.

Allows more discovery science.

... conflicts with personal privacy.

http://www.wellcome.ac.uk/About-us/Policy/Spotlight-issues/Data-sharing/

http://grants.nih.gov/grants/policy/data_sharing/
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Bigger data

UK Biobank Imaging UK Biobank is a long-term prospective
epidemiological study that has already collected genetics, blood
samples, lifestyle information and other data from a cohort of
500,000 subjects, to be followed clinically over coming decades.
The UK Biobank Imaging Extension, which aims to bring back
100,000 of the cohort for multimodal neuroimaging and cardiac
MRI (amongst other measures), has just been given the go-ahead.
This will be by far the largest neuro/cardiac imaging study carried
out to date, and will add very rich phenotyping to the overall
Biobank project.
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Better use of diagnostic information

Information is lost when creating binary labels.

1 Normal subjects: MMSE scores between 24-30 (inclusive), a CDR of 0,
non-depressed, non MCI, and nondemented. The age range of normal
subjects will be roughly matched to that of MCI and AD subjects.
Therefore, there should be minimal enrollment of normals under the age
of 70.

2 MCI subjects: MMSE scores between 24-30 (inclusive), a memory
complaint, have objective memory loss measured by education adjusted
scores on Wechsler Memory Scale Logical Memory II, a CDR of 0.5,
absence of significant levels of impairment in other cognitive domains,
essentially preserved activities of daily living, and an absence of dementia.

3 Mild AD: MMSE scores between 20-26 (inclusive), CDR of 0.5 or 1.0,
and meets NINCDS/ADRDA criteria for probable AD.

http://www.adni-info.org/scientists/ADNIGrant/ProtocolSummary.aspx
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Uncertain labels

...all clinically diagnosed AD patients will not have AD
pathology, and up to 30% of cognitively normal subjects
will have a pathologic diagnosis of AD at autopsy.

Vemuri et al. “Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate with postmortem
Braak neurofibrillary tangle stage”. NeuroImage 42(2):559–567 (2008).
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Model-based dimensionality reduction

Nonlinear dimensionality reduction techniques related to PCA:

Principal geodesic analysis combines PCA with image
registration to maximise the amount of signal explained.
Zhang, Miaomiao, and P. Thomas Fletcher. “Bayesian Principal Geodesic Analysis in Diffeomorphic Image
Registration.” Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014. Springer
International Publishing, 2014. 121-128.

Non-negative matrix factorization decomposes data into
matrices that are non-negative.
Lee, Daniel D., and H. Sebastian Seung. “Learning the parts of objects by non-negative matrix
factorization.” Nature 401.6755 (1999): 788-791.
Sotiras, Aristeidis, Susan M. Resnick, and Christos Davatzikos. “Finding imaging patterns of structural
covariance via Non-Negative Matrix Factorization.” NeuroImage 108 (2015): 1-16.

Generalized principal components incorporates a link
function into principal component analysis.
Collins, Michael, Sanjoy Dasgupta, and Robert E. Schapire. “A generalization of principal components
analysis to the exponential family.” Advances in neural information processing systems. 2001.
Mohamed, Shakir, Zoubin Ghahramani, and Katherine A. Heller. “Bayesian exponential family PCA.”
Advances in Neural Information Processing Systems. 2009.
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Missing data

Brain images of different
individuals have different fields of
view.

Currently, if test subject has
smaller field of view than training
data, the pattern recognition
approch needs to be retrained.

Improved generative modelling
could be used to better deal with
missing data.
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Principled similarity measures

How do we best compute similarity from models used to
“pre-process” data?

Fisher kernels T. S. Jaakkola and D. Haussler. “Exploiting
generative models in discriminative classifiers.” In Kearns et
al. [26], pages 487–493.
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Visualising differences

Neuroimagers like blobs and summary tables.
How do we best understand whole-brain multivariate differences?
Here’s my attempt.....
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Exaggerated male brain
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Average brain
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Exaggerated female brain
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More information

These slides are available from
https://github.com/JohnAshburner/ISBI

For more information, see
Ashburner, John, and Stefan Klöppel. “Multivariate models of
inter-subject anatomical variability.” Neuroimage 56.2 (2011):
422-439.
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