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MORAVEC'S PARADOX

Rodney Brooks explains that, according to
early Al research, intelligence was “best
characterized as the things that highly
educated male scientists found challenging”,
such as chess, symbolic integration, proving
mathematical theorems and solving
complicated word algebra problems. “The
things that children of four or five years could
do effortlessly, such as visually distinguishing
between a coffee cup and a chair, or walking
around on two legs, or finding their way from
their bedroom to the living room were not
thought of as activities requiring intelligence.”

Moravec’s paradox. (2015, April 25). In Wikipedia, The Free Encyclopedia. Retrieved
14:46, June 17, 2015, from https://en.wikipedia.org/w/index.php?title=
Moravec’27s_paradox&oldid=659139375
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WHEN A USER TAKES A PHOTO,
THE APP SHOULD CHECK WHETHER
THEYRE IN ANATIONAL PRRK...
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INCS, IT AN BE HARD TO EXPLAIN
THE DIFFERENCE BETWEEN THE ERSY
AND THE VIRTUALLY IMPOSSIBLE.
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Way IMAGE PROCESSING SEEMS EASY

Neurons for visual processing take up
30% of the brain’s cortex (as opposed to
about 8 % for touch and 3 % for
hearing).
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PIPELINES

In software engineering, a pipeline consists of a chain of
processing elements (processes, threads, coroutines, functions, etc.),
arranged so that the output of each element is the input of the next

Pipeline (software). (2015, May 1). In Wikipedia, The Free Encyclopedia. Retrieved 16:50, June 17, 2015, from
https://en.wikipedia.org/w/index.php?title=Pipeline_(software)&oldid=660291081
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OPTIMISING TWO PARAMETERS
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BOTTOM-UP & TOP-DOWN PROCESSING IN THE BRAIN

@ Pipelines are a purely bottom up approach, with no top-down
control.

@ Data processing in the brain involves both top-down and
bottom-up processing.

@ Can not expect to achieve optimal understanding from a
purely bottom-up approach.
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GENERATIVE MODELS

A generative model is a model for randomly generating observable
data, typically given some hidden parameters. It specifies a joint
probability distribution over observation and label sequences.
Generative models are used in machine learning for either
modeling data directly (i.e, modeling observations draws from a
probability density function), or as an intermediate step to forming
a conditional probability density function. A conditional distribution
can be formed from a generative model through Bayes’ rule.

Generative model. (2015, April 30). In Wikipedia, The Free Encyclopedia. Retrieved 16:46, June 17, 2015, from
https://en.wikipedia.org/w/index.php?title=Generative_model&oldid=660109222
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ProsAILITY THEORY

“Probability theory is nothing buf common
sense reduced to calculation.”

— Laplace

Desiderata of probability theory:

@ Representation of degree of plausibility by real
numbers.

@ Qualitative correspondence with common sense.
@ Consistency.

Jaynes, Edwin T. Probability theory: the logic of science. Cambridge university press, 2003.
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Product Rule

ply, x) =

Sum Rule

ply) = > ply, x|
X
or for continuous x

ply) = / ply. x)dx

JOHN ASHBURNER

p(x) is the probability of x.

p(x,y) is the joint probability of x
and y.

p(x|y) is the probability of x
conditional on y.
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Baves RULE

Combining the sum and product rules, gives Bayes rule:

p(X[0)p(0) _ p(X|6)p(6)
p(X) o p(X]6)p(60)d0

p(OIX) =

In words:

Likelihood x Prior

Posterior = ,
Evidence
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IGNORANCE PRIORS

@ Sometimes we don’t have previous observations
to formulate priors.

@ Jaynes suggests using a maximum entropy prior.

@ An ignorance prior is a prior probability
distribution where equal probability is assigned
to all possibilities.

@ Ignorance priors can be motivated via
invariance/symmetry (transformation groups).

Jaynes, Edwin T. Probability theory: the logic of science. Cambridge university press, 2003.
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PRIORS EOR POSITIVE VALUES

Gaussian prior on log(x)

0.1
0.08
@ Some things can not be less than o0
7Z€ro. 3 "
T 0.04
o Counts of observed photons.
o Multiplicative “bias” fields. 002
o Lengths, areas, volumes, efc. % = 5 5
. log(x)
@ Formulate the model via
. . . Gaussian prior on log(x)
logarithms, and impose a prior on 02
these. 0.15
Jeffreys, Harold. “An invariant form for the prior probability in % 01
estimation problems.” In Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, vol. 186, no. 1007, pp. 0.05 exp(u)
453-461. The Royal Society, 1946.
0
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SCIENTIFIC PROCESS
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Gather alternative
DATA MODELS

U

Fit each MODEL

( to the DATA ]
Gather - Create new
more data Assign preferences to the models

alternative MODELS

Choose what
data to
gather next

/ l \ Decide whether

to create new
models

Choose future
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JOHN ASHBURNER GENERATIVE MODELS

MacKay, David JC. “Bayesian
interpolation.” Neural
computation 4, no. 3 (1992):
415-44T.
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Evidence

This model is just right

/Thls model was too simple

e P(Data | Model‘)
—— p(Data | Model,)
= p(Data | Model,)

This model was too complex

Data
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“Everything
should be
made as
simple as
possible,
but not
simpler.”

— Einstein (possibly)
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GENERAL AIM OF MEDICAL IMAGE COMPUTING

Given an image or a set of images x*, best predict y*.
Here, y may be:

@ A diagnosis.

@ An optimal treatment decision.

@ Another image, for example:

@ A cleaned up version of the same image.

o A map of where a neurosurgeon should best avoid.

o A map of gamma ray absorption for attenuation correction in
MR/PET.

@ efc
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GENERAL AIM OF MEDICAL IMAGE COMPUTING

Often a collection of training data to work from (X and Y).
The aim becomes of of determining p(y*|x*, Y, X).
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GENERAL AIM OF MEDICAL IMAGE COMPUTING

Predictions are based on some model, J7. Usually, a model has
parameters, 0:

ply* X", Y, X, 1) — /p(y*,@]x*,Y,X,M)dQ
0
- / ply*[x", Y, X, 8, J1£)p(6] 1£)d6
0

Predictions may also be made by averaging over models.

ply* ", Y, X) = " ply*|x*, Y, X, JL;) P(I1;)
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UNEORTUNATELY...

“In theory, there is no difference between theory and
practice. But, in practice, there is.”

Many of the integrations needed to compute model evidence are
not computationally feasible in medical image computing
applications. Workarounds include:

e Use maximum a posteriori (MAP) estimation, and
approximate probability distributions via a delta function.

0 = arg max log p(X, )
0

@ Model selection via cross-validation.

JOHN ASHBURNER GENERATIVE MODELS
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INCORPORATING “BIAS” CORRECTION

Original Corrected Original Corrected
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INCORPORATING “BIAS” CORRECTION

2
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LATENT VARIABLES

SEGMENTATION

JOHN ASHBURNER

Optimisation done via EM.

Marginalised with respect to
latent variables (z), which encode
tissue class memberships.

plf.0) = [, plf, z 0)dz
where

0 ={poypBal

GENERATIVE MODELS
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@ Ashburner, John, and Karl J. Friston. “Unified segmentation.” Neuroimage
26, no. 3 (2005): 839-851.

@ http://www.fil.ion.ucl.ac.uk/spm/software/spmi2/,
spml2/spm_preproc_run.m.
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© DIFEEOMORPHIC REGISTRATION

@ Groupwise registration
e LDDMM
@ Shooting
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“GROUPWISE REGISTRATION”

Sometimes the aim is to align multiple

scans together.

Ignoring the many technical details, the
procedure involves alternating between:

@ Create the mean of aligned images.

@ Align all images to be slightly closer to
the mean.

An early attempt (1999).
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“GROUPWISE REGISTRATION”

average

-7
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“GROUPWISE REGISTRATION”

GROUPWISE REGISTRATION
LDDMA
SHOOTING

9 o

13 I
11 It
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“GROUPWISE REGISTRATION”

Based on matching K tissue maps together

via a multinomial model, where:

K
log P(f(x)|pt, 9) = > fi(x) log i (e(x))
k=1

Tissue probailities sum to 1 at each voxel: .- .-

v
e
(1=
=
=
I
—

Pk
. .-
K
fi > O,ka =1 .
k=1
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“GROUPWISE REGISTRATION”
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“GROUPWISE REGISTRATION”
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NON-EUCLIDEAN GEOMETRY

@ Distances are not always measured along a
straight line.

@ Sometimes we want distances measured on a
manifold.

@ Shortest path on a manifold is along a geodesic.

Linear trajectory

P PP P0000

Nonlinear trajectory

bttt eoo000
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METRIC DISTANCES

Distances should satisfy the properties of a metric:
@ d(x,y) > 0 (non-negativity)
@ d(x,y) = 0 if and only if x = y (identity of indiscernibles)
0 d(x,y) = dly, x) (symmetry)
d(x,z) < d(x,y) + dly, z) (triangle inequality).
Sahsfymg (3) requires inverse-consistent image registration.
Satisfying (4) requires a specific class of image registration models.

bttt o000
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COMPUTING A METRIC DISTANCE

Decompose a curved path into a series of short line
segments, and add the lengths of the segments
together.

bttt o000
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COMPUTING LARGE DEEORMATIONS

b

Y,

We can consider a large deformation as the composition of a series
of small deformations:

@ = <id+vt"’T*1>o<id+vt"’T’2>o...o(id+vﬁ>o<id+vﬁ°>

The inverse of the deformation can be computed from:
91 = (id - 3) o (id - ) 0.0 (id - "%z ) o (id — 42 )

JOHN ASHBURNER GENERATIVE MODELS
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METRIC DISTANCES FROM LARGE DEEORMATIONS

By modelling trajectories as piecewise linear, distances can be
computed by adding the distances from the small deformations:

1 N-1
d= 5> lILvel
n=0

For large N, the evolution of a deformation may be conceptualised
as integrating the following equation:

d
Tf = vi(g)
Geodesic distances (from zero) are then measured by:

1

d= [ Lvellde
t=0

JOHN ASHBURNER GENERATIVE MODELS



GROUPWISE REGISTRATION
DIEEEOMORPHIC REGISTRATION LDDMM
SHOOTING

IMAGE REGISTRATION

@ Image registration finds shortest distance *
between images.
@ Often formulated to minimise the sum of
two terms:
e Distance between the image intensities.
o Distance of the deformation from the
identity.

@ The sum of these gives a distance.

JOHN ASHBURNER GENERATIVE MODELS
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LDDMM

Large Deformation Diffeomorphic Metric Mapping is an image
registration algorithm that minimises the following:

1
8=;/to||Lvt[|2dt+I|f (o)l

where ¢, = id, Z‘p v (@)

First term is a squared deformation distance measure.
Second term is the squared difference between images.
The objective is to estimate a series of velocity fields (v;).

Beg, MF, Miller, MI, Trouvé, A & Younes, L. Computing large deformation metric mappings via geodesic flows of
diffeomorphisms. International Journal of Computer Vision 61(2):139-157 (2005).
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LDDMM VIA “GEODESIC SHOOTING”

Momentum (u) Velocity (v)

In practice, we just need to estimate an initial
velocity (vp), from which we compute the
initial momentum by ug = LTLvy.

We set the deformation at time 0 to an identity
transform (¢, = id), and then evolve the
following dynamical system for unit time:

ur = det|Do; (Do) T (ug 0 ;)
-1
v = (LTL) u

g = ve(o,)

Younes, L, Arrate, F & Miller, M. Evolutions equations in computational anatomy. Neuroimage 45(151):40-50 (2009).
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LDDMM VIA “GEODESIC SHOOTING”

Momentum (u) Velocity (v)

The final deformation (¢;) is a type of
exponential of the initial velocity (vg).

Exponential map (Riemannian geometry). (2015, January 13). In Wikipedia, The Free
Encyclopedia. Retrieved 18:04, March 31, 2015, from
http://en.wikipedia.org/w/index.php?title=Exponential_map_
(Riemannian_geometry)&oldid=642372186

Younes, L, Arrate, F & Miller, M. Evolutions equations in computational anatomy. Neuroimage 45(151):40-50 (2009).
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“SCALAR MOMENTUM”

At the solution, gradients of the LDDMM objective function should
vanish:

1
LTLvo + — det |Dey|(f o 9y — p)(Vpr) = 0

Re-expressiong this, we see that the initial velocity (and
momentum) is given by:

1
L'Lvo = up = —(Vpdet|Dgy[( — f o g)

JOHN ASHBURNER GENERATIVE MODELS
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“SCALAR MOMENTUM”

1
up = ?(V}ﬁdet D@ |(1 — fogq)

If a population of subjects are all aligned with the same template
image, Ol—z(Vp) will be the same for all subjects. Deviations from
the template are encoded by the “scalar momentum”,

det D@, |(n — f o ;). This is a scalar field, and in principle is all
that is needed (along with the template) to reconstruct the original
images.

Miller et al. “Collaborative computational anatomy: an MRI morphometry study of the human brain via diffeomorphic
metric mapping.” Human Brain Mapping 30(7):2132-2141 (2009).

Singh, Fletcher, Preston, Ha, King, Marron, Wiener & Joshi (2010). Multivariate Statistical Analysis of Deformation

Momenta Relating Anatomical Shape to Neuropsychological Measures. T. Jiang et al. (Eds.): MICCAI 2010, Part III, LNCS
6363, pp. 529-537, 2010.
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Template and gradients Residuals Momentum (u) Velocity (v) 0 19 ] 1
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ExAMPLE IMAGES

Some example images.
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GROUPWISE REGISTRATION
LDDMM
SHOOTING

Scalar momenta after aligning to a common template.

12N Ge
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RECONSTRUCTED IMAGES

Images reconstructed from scalar momenta (and template).

JOHN ASHBURNER GENERATIVE MODELS
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“Shapes are the ultimafe non-linear sort of thing”

David Mumford

Ashburner, John, and Karl J. Friston. “Diffeomorphic registration using
geodesic shooting and Gauss-Newton optimisation.” Neurolmage 55, no. 3
(2011): 954-967.

Ashburner, John, and Stefan Kloppel. “Multivariate models of inter-subject
anatomical variability” Neuroimage 56, no. 2 (2011): 422-439.

Ashburner, John, and Michael I Miller. “Diffeomorphic Image Registration.”
In Brain Mapping: an Encyclopedic Reference, pp. 315-321. Academic
Press: Elsevier (2015). Toga AW (ed.).

http://wuw.fil.ion.ucl.ac.uk/spm/software/spmi2/,
spml12/toolbox/Shoot.
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Bias FIELDS
Ricip-Bopy
DIEEEOMORPHISMS
COMBINED MODEL

@ LONGITUDINAL REGISTRATION
@ Bias Fields
@ Rigid-Body
@ Diffeomorphisms
@ Combined Model
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LONGITUDINAL DATA: OAS2_ 0002

Bias FIELDS
RiGip-Bopy
DIEEEOMORPHISMS
COMBINED MODEL

First scan (0 days) Second scan (1895 days) Jacobian determinants
after rigid body after rigid body | windowed between
registration. " registration. NN 0.7 and 1.3.

Residuals from Residuals from
rigid body registration, rigid body registration,
without bias correction. < with bias correction.

Residuals from
diffeomorphic

2l registration,

4| with bias correction.
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Bias FIELDS
Ricip-Bopy
DIEEEOMORPHISMS
COMBINED MODEL

LONGITUDINAL DATA: OAS2_0002

First scan (0 days)
after rigid body
registration.

Residuals from
tigid body registration,
without bias correction.

JoHN ASHBURNER

Second scan (1895 days)
after rigid body
registration.

Residuals from Residuals from

i rgid body registration, diffeomorphic

with bias correction. ) registration,
with bias correction.
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Control subjects
expansion/year.

Dementia subjects
expansion/year.
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OPTIMISATION

Problem is treated as finding a maximum a posteriori (or
regularised maximum likelihood) solution.

0 = arg min &(0)
0

where

&(0) = —log p(#, Data) = — log p(Data|8) — log p(6)
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OPTIMISATION: NEWTON'S METHOD

An iterative local optimisation scheme:

1
o~ o~ H(8")] Vel
where H <8(0(”>)> = Hessian matrix of 2nd derivatives

va(e)

I

vector of 1st derivatives

Note: may converge to a maximum, minimum or saddle point,
depending on whether or not the Hessian is positive definite.
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OPTIMISATION: GAUSS-NEWTON ALGORITHM

Gauss-Newton method can be used for least-squares minimisation,
where the objective function has the following form:

@ Ensures a positive definite approximation of the Hessian.
e Converges (hopefully) to a local minimum.

o~ gl - a7y T
o
00;
Can also motivate a positive definite approximation via a Fisher
information matrix (as in Fisher scoring).

where J = G
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Bias FIELDS: GENERATIVE MODEL

f(x) — image

Lp
|
v j1(x) — mean image
@ A — noise precision
b(x) — bias field

Ly — bias regularisation

A N — number of images
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Bias FIELDS: OBJECTIVE FUNCTION

Minimise the following:
N1 1
n bn 12 2
8233 (1 —neb + Jltanl?)

f — image

1 — mean image

A — noise precision

b — bias field

L, — bias regularisation

N — number of images
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Bias FIELDS: EXPONENTIAL MAP

@ The “bias field” is really not a bias, as it is multiplicative rather
than additive.

@ Want the probability of re-scaling by (say) 2 to be the same as
that of scaling by %

@ Parameterise by a field b(x), and generate bias from the
exponential.

exp(b) = lim <1 + ﬁ)n

n—oo
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Bias FIELDS: REGULARISATION

Penalise sum of squares of second derivatives:

| Lob| = wo / |72 bix)|2dx

Differential operator Differential operator Green’s function
(LZLb) (zoomed out) (via FFTs)
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Ricip-Bopy: GENERATIVE MODEL

f(x) — image

' 11(x) — mean image

@—» A — noise precision
£(x) — rigid-body transform

g — rigid-body parameters

A N — number of images
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RiGID-BoDpy: OBJECTIVE FUNCTION

& - Z*“f— €12 - Z [ 1Dt e x) ~ o

Note the change of variables.

f — image

L — mean image /g(x)dx _ / ‘D(P |dX
A — noise precision x x

&, — rigid-body transform where {D(p(x)| means the

N — number of images Jacobian determinant of ¢ at x.
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Ricip-Bopv: EXPONENTIAL MAP

A rigid-body transformation matrix (Rq € SE(3)) is computed via a
matrix exponential:

0 ga  —9s q1 .
—q 0 g q 1,
Ry = ex , where expQ = —Q".
g P g -9 0 g3 P j;an!
0 0 0 0

A mapping from each voxel in the template, to the corresponing
voxel in the nth image is by:

X

1 0 00
1} ,wherel34= (0 1 0 0
0 010

£q,(x) = I54M, " Rq, M, {

Each M maps from voxels to corresponding mm coordinates.
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Ricip-Bopv: EXPONENTIAL MAP

Rotation in 2D (Rq € SO(2)):

Rq = exp ql}

-q1 O

Computing a matrix exponential is
analagous to integrating a dynamical
system over unit time.

[ 1 qﬂn}n

Rq = Iim —qun 1

n—oo

JOHN ASHBURNER
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DIEFEOMORPHISMS: GENERATIVE MODEL

u(x) — mean image
A — noise precision

@%/

¢(x) — diffeomorphism
v(x) — initial velocity
L, — velocity regularisation

@ f(x) — image
'

b
A

N — number of images

N
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DIFFEOMORPHISMS: OBJECTIVE FUNCTION

Go
I
[]=

)"" —-12 1 2
(16 - no g2 12 + FILuval?)

n=1

[]=

(% [[1964, 0660, x) 2 + 5 L vol?

Il
—_

n

f — image

[ — mean image

Note: Diffeomorphic
deformations are computed via a
Riemannian exponential.

A — noise precision

¢, — diffeomorphism

v — velocity field

L, — velocity regularisation
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DIEFEOMORPHISMS: EXPONENTIAL MAP

Riemannian exponantial is computed via geodesic shooting.
Initialise @, to the identity transform and compute

initial momentum from initial velocity via:

u=LlLv.

Then the following dynamical system is integrated
over unit time:

¢y = (K, (D67} (DO (w0 9,)) ) 0 6,

K, is the Green’s function of Lz L,, such that: ‘ >
KiL]Liv = v : A
LK — u - -
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DIEFEOMORPHISMS: EXPONENTIAL MAP

Template and gradients

tteeee00

o ¢y = (Ku (IDg; ' (DG} (w0 9,)) ) o 6,
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DIFFEOMORPHISMS: REGULARISATION

ILov[? = / (“21Dv + W[ + otV + ws] V2V ) dx

Three hyper-parameters are involved:
@ w; controls stretching and shearing (but not rotation).

@ wy controls the divergence, which in turn determines the
amount of volumetric expansion and contraction.

@ w3 controls the bending energy. This ensures that the
resulting velocity fields have smooth spatial derivatives.
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DIFFEOMORPHISMS: REGULARISATION

Two
simulated . .
images
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COMBINED MODEL: GENERATIVE MODEL

f(x) — image

Jt — mean image

A — noise precision

b(x) — “bias” field

Ly, — bias field regularisation

£(x) - rigid-body transform
q - rigid-body parameters
\ ¢, — diffeomorphism

e
]

l— [

v — velocity field
Ly — velocity regularisation

: N — number of images

N
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COMBINED MODEL: GENERATIVE MODEL

Minimise the following objective function:

8= Y11 [0 Dol (£1x) — pbxje ) dx

N 2 N 2
+ Y1 3 ILu,vall® + 35020 5 1| Lobal

where:
Y, = Eq,, o ¢v,,
f;7/ = fn(<pn>
b;r = bn((pn)
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“Everything is the way it is because it got that way”

D'Arcy Wentworth Thompson (1860-1948)

@ Ashburner, John, and Gerard R. Ridgway. “Symmetric diffeomorphic
modeling of longitudinal structural MRI” Frontiers in neuroscience 6

(2012).

@ http://www.fil.ion.ucl.ac.uk/spm/software/spmi2/,
spml2/toolbox/Longitudinal.
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DIMENSIONALITY REDUCTION

DIMENSIONALITY REDUCTION

@ Kernel methods can be useful for relatively small datasets.
@ Less useful for big big data.

o N x N kernel matrix too large for memory.
e May need to retain “horizontal” privacy in situations where
patient data are mined across hospitals.

@ Reduce dimensionality, while retaining as much information
as possible.

@ Construct some form of generative model.
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DIMENSIONALITY REDUCTION

PrINCIPAL COMPONENT ANALVSIS

Minimise the following w.rt. H and W:

& =0 I — 8 w2

Or this, wrt. g, H and W:

& =N L, —p— 5 hewgl?
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DIMENSIONALITY REDUCTION

EM ror PRINCIPAL COMPONENT ANALVSIS

Given a P x N matrix F, decompose it into a P x K matrix H and
a K x N matrix W, such that:

F =~ HW

The EM algorithm is:
e E-step: W « (HTH)"'HTF
e M-step: H — FWT(ww7')!

Roweis, Sam. “EM algorithms for PCA and SPCA.” Advances in neural information processing systems (1998): 626-632.
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DIMENSIONALITY REDUCTION

NON-NEGATIVE MATRIX FACTORISATION

One form of NMF minimises the Frobenious Norm:

N K
B3 T S hekl W e REN 1 < RPK
n=1 k=1

The EM algorithm is similar, except it involves non-negative least
squares (quadratic programming).

Lee, Daniel D, and H. Sebastian Seung. “Algorithms for non-negative matrix factorization.” In Advances in neural
information processing systems, pp. 556-562. 2001.

Lee, Daniel D,, and H. Sebastian Seung. “Learning the parts of objects by non-negative matrix factorization.” Nature 401,
no. 6755 (1999): 788-791.
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DIMENSIONALITY REDUCTION

GENERALISED PRINCIPAL COMPONENT ANALYSIS

If F is binary, we could fit a logistic version by
minimising the following w.rt. H and W:

Logistic Sigmoid

N P '
B==) > 10glopn)fon + log(l = Gpn)(1 — fon) I
n=1p=1 \;10.4
where i
1
Opn =

1+ eXp(ZI’((Zl hpk Wkn)

The EM algorithm involves logistic regression.
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DIMENSIONALITY REDUCTION

PRINCIPAL GEODESIC ANALYSIS

Could combine diffeomorphic registration with PCA by minimising:
N _
& =Y a1 5llfa —ro@ P + 5llvaly

where H encodes principal components of initial velocity for
computing diffeomorphisms:

K
Vn = Zk=1 hiewin

¢, = Explv,) (via geodesic shooting)

Zhang, Miaomiao, and P. Thomas Fletcher. “Probabilistic principal geodesic analysis.” In Advances in Neural Information
Processing Systems, pp. 1178-1186. 2013.

Zhang, Miaomiao, and P. Thomas Fletcher. “Bayesian Principal Geodesic Analysis for Estimating Intrinsic Diffeomorphic
Image Variability” Medical Image Analysis (2015).
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DIMENSIONALITY REDUCTION

CoMBINED PCA/PGA MODEL

Could combine diffeomorphic registration with PCA by minimising
the following w.rt. g, H, A and W:

& =N A, — ()o@t + 2|l 12+ 3Ivall}

where:

Vp = 25:1 hkwin
Pn = EXP(Vn)
rh = Zl’le Ak Wkn

Note: Some form of metamorphoses approach may be better.

Richardson, Casey L., and Laurent Younes. “Mefamorphosis of Images in Reproducing Kernel Hilbert Spaces.” arXiv
preprint arXiv:1409.6573 (2014).
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ORIGINAL IMAGES

400 face images.
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SHAPE AND APPEARANCE MODEL

@mss@zgazc=§§§§6§
aGGSEGG$$G@a@??@

Reconstruction
with K = 64.
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SHAPE MODEL ONLY

Ignoring the
appearance
variations.
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APPEARANCE MODEL ONLY

SEEESSSGLBTTTTEESTTILEEER
SFEEEGITTTTTTTZZIITITESTIEEES
LT Ty
TEEEITTLTTTETRLBLESSESSTESSEESS
CEEEECERCECECEEEEEERETEEES
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Ignoring the Y

shape variations.
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RANDOM SAMPLES
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RANDOM SAMPLES
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DIMENSIONALITY REDUCTION

MNIST EIGEN-COMPONENT

Yann LeCun, Corinna Cortes & Christopher J.C. Burges. http://yann.lecun.com/exdb/mnist/
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DIMENSIONALITY REDUCTION

MNIST RANDOM SAMPLES

>3- o & ] } & g &

Vann LeCun, Corinna Cortes & Christopher J.C. Burges. http://yann.lecun.com/exdb/mnist/
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MNIST WEIGHTS

Vann LeCun, Corinna Cortes & Christopher J.C. Burges. http://yann.lecun.com/exdb/mnist/
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“To recognize shapes, first learn to generate images”

Geoffrey E Hinton (2007)

JoHN ASHBURNER
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D'Arcy Thompson
On Growth and Form
(Dundee, 1917)
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