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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
PIPELINES V MODELSPROBABILITY THEORYMEDICAL IMAGE COMPUTINGMORAVEC’S PARADOX

Rodney Brooks explains that, according toearly AI research, intelligence was “bestcharacterized as the things that highlyeducated male scientists found challenging”,such as chess, symbolic integration, provingmathematical theorems and solvingcomplicated word algebra problems. “Thethings that children of four or five years coulddo effortlessly, such as visually distinguishingbetween a coffee cup and a chair, or walkingaround on two legs, or finding their way fromtheir bedroom to the living room were notthought of as activities requiring intelligence.”
Moravec’s paradox. (2015, April 25). In Wikipedia, The Free Encyclopedia. Retrieved14:46, June 17, 2015, from https://en.wikipedia.org/w/index.php?title=
Moravec%27s_paradox&oldid=659139375

https://xkcd.com
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
PIPELINES V MODELSPROBABILITY THEORYMEDICAL IMAGE COMPUTINGWHY IMAGE PROCESSING SEEMS EASY

Neurons for visual processing take up30% of the brain’s cortex (as opposed toabout 8 % for touch and 3 % forhearing).
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PIPELINES V MODELSPROBABILITY THEORYMEDICAL IMAGE COMPUTINGPIPELINES

In software engineering, a pipeline consists of a chain ofprocessing elements (processes, threads, coroutines, functions, etc.),arranged so that the output of each element is the input of the next
Pipeline (software). (2015, May 1). In Wikipedia, The Free Encyclopedia. Retrieved 16:50, June 17, 2015, from

https://en.wikipedia.org/w/index.php?title=Pipeline_(software)&oldid=660291081
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PIPELINES V MODELSPROBABILITY THEORYMEDICAL IMAGE COMPUTINGOPTIMISING TWO PARAMETERS
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
PIPELINES V MODELSPROBABILITY THEORYMEDICAL IMAGE COMPUTINGSINGLE PASS
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
PIPELINES V MODELSPROBABILITY THEORYMEDICAL IMAGE COMPUTINGOPTIMISING TWO FUNCTIONS
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
PIPELINES V MODELSPROBABILITY THEORYMEDICAL IMAGE COMPUTINGBOTTOM-UP & TOP-DOWN PROCESSING IN THE BRAIN

Pipelines are a purely bottom up approach, with no top-downcontrol.Data processing in the brain involves both top-down andbottom-up processing.Can not expect to achieve optimal understanding from apurely bottom-up approach.

JOHN ASHBURNER GENERATIVE MODELS



INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
PIPELINES V MODELSPROBABILITY THEORYMEDICAL IMAGE COMPUTINGGENERATIVE MODELS

A generative model is a model for randomly generating observabledata, typically given some hidden parameters. It specifies a jointprobability distribution over observation and label sequences.Generative models are used in machine learning for eithermodeling data directly (i.e., modeling observations draws from aprobability density function), or as an intermediate step to forminga conditional probability density function. A conditional distributioncan be formed from a generative model through Bayes’ rule.
Generative model. (2015, April 30). In Wikipedia, The Free Encyclopedia. Retrieved 16:46, June 17, 2015, from

https://en.wikipedia.org/w/index.php?title=Generative_model&oldid=660109222
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
PIPELINES V MODELSPROBABILITY THEORYMEDICAL IMAGE COMPUTINGPROBAILITY THEORY

“Probability theory is nothing but common
sense reduced to calculation.”

— Laplace
Desiderata of probability theory:

1 Representation of degree of plausibility by realnumbers.
2 Qualitative correspondence with common sense.
3 Consistency.
Jaynes, Edwin T. Probability theory: the logic of science. Cambridge university press, 2003.
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
PIPELINES V MODELSPROBABILITY THEORYMEDICAL IMAGE COMPUTINGPRODUCT AND SUM RULES

Product Rule

p(y, x) = p(y|x)p(x)= p(x|y)p(y)
Sum Rule

p(y) = ∑
x

p(y, x)
or for continuous x
p(y) = ∫

x

p(y, x)dx

p(x) is the probability of x.
p(x, y) is the joint probability of xand y.
p(x|y) is the probability of xconditional on y.
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
PIPELINES V MODELSPROBABILITY THEORYMEDICAL IMAGE COMPUTINGBAYES RULE

Combining the sum and product rules, gives Bayes rule:
p(θ|X) = p(X|θ)p(θ)

p(X) = p(X|θ)p(θ)∫
θ p(X|θ)p(θ)dθ

In words:
Posterior = Likelihood× PriorEvidence
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
PIPELINES V MODELSPROBABILITY THEORYMEDICAL IMAGE COMPUTINGIGNORANCE PRIORS

Sometimes we don’t have previous observationsto formulate priors.Jaynes suggests using a maximum entropy prior.An ignorance prior is a prior probabilitydistribution where equal probability is assignedto all possibilities.Ignorance priors can be motivated viainvariance/symmetry (transformation groups).
Jaynes, Edwin T. Probability theory: the logic of science. Cambridge university press, 2003.

JOHN ASHBURNER GENERATIVE MODELS



INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
PIPELINES V MODELSPROBABILITY THEORYMEDICAL IMAGE COMPUTINGPRIORS FOR POSITIVE VALUES

Some things can not be less thanzero.Counts of observed photons.Multiplicative “bias” fields.Lengths, areas, volumes, etc.Formulate the model vialogarithms, and impose a prior onthese.
Jeffreys, Harold. “An invariant form for the prior probability in
estimation problems.” In Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, vol. 186, no. 1007, pp.453-461. The Royal Society, 1946.
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PIPELINES V MODELSPROBABILITY THEORYMEDICAL IMAGE COMPUTINGSCIENTIFIC PROCESS

MacKay, David JC. “Bayesian
interpolation.” Neuralcomputation 4, no. 3 (1992):415-447.
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PIPELINES V MODELSPROBABILITY THEORYMEDICAL IMAGE COMPUTINGGOLDILOCKS AND THE THREE BAYESIAN MODELS
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This model was too simple

This model is just right

This model was too complex

“Everything
should be
made as
simple as
possible,
but not
simpler.”

— Einstein (possibly)
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
PIPELINES V MODELSPROBABILITY THEORYMEDICAL IMAGE COMPUTINGGENERAL AIM OF MEDICAL IMAGE COMPUTING

Given an image or a set of images x∗, best predict y∗.Here, y may be:A diagnosis.An optimal treatment decision.Another image, for example:A cleaned up version of the same image.A map of where a neurosurgeon should best avoid.A map of gamma ray absorption for attenuation correction inMR/PET.etc
JOHN ASHBURNER GENERATIVE MODELS



INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
PIPELINES V MODELSPROBABILITY THEORYMEDICAL IMAGE COMPUTINGGENERAL AIM OF MEDICAL IMAGE COMPUTING

Often a collection of training data to work from (X and Y).The aim becomes of of determining p(y∗|x∗,Y,X).
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
PIPELINES V MODELSPROBABILITY THEORYMEDICAL IMAGE COMPUTINGGENERAL AIM OF MEDICAL IMAGE COMPUTING

Predictions are based on some model, M. Usually, a model hasparameters, θ:
p(y∗|x∗,Y,X,M) = ∫

θ
p(y∗, θ|x∗,Y,X,M)dθ

= ∫
θ
p(y∗|x∗,Y,X, θ,M)p(θ|M)dθ

Predictions may also be made by averaging over models.
p(y∗|x∗,Y,X) = ∑

i

p(y∗|x∗,Y,X,Mi )P(Mi )
JOHN ASHBURNER GENERATIVE MODELS



INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
PIPELINES V MODELSPROBABILITY THEORYMEDICAL IMAGE COMPUTINGUNFORTUNATELY...

“In theory, there is no difference between theory and
practice. But, in practice, there is.”

Many of the integrations needed to compute model evidence arenot computationally feasible in medical image computingapplications. Workarounds include:Use maximum a posteriori (MAP) estimation, andapproximate probability distributions via a delta function.
θ̂ = argmax

θ
log p(X, θ)

Model selection via cross-validation.
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTIONMIXTURE OF GAUSIANS
E = − log p(f|µµµ,σσσ,γγγ)= −
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTIONINCORPORATING “BIAS” CORRECTION
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTIONLATENT VARIABLES
Optimisation done via EM.Marginalised with respect tolatent variables (z), which encodetissue class memberships.

p(f, θ) = ∫
z
p(f, z, θ)dzwhere

θ = {µ, σ ,γ, β,α}
JOHN ASHBURNER GENERATIVE MODELS
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Ashburner, John, and Karl J. Friston. “Unified segmentation.” Neuroimage26, no. 3 (2005): 839-851.
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/,
spm12/spm_preproc_run.m.
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GROUPWISE REGISTRATIONLDDMMSHOOTING“GROUPWISE REGISTRATION”

Sometimes the aim is to align multiplescans together.Ignoring the many technical details, theprocedure involves alternating between:Create the mean of aligned images.Align all images to be slightly closer tothe mean.
An early attempt (1999).
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average
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GROUPWISE REGISTRATIONLDDMMSHOOTING“GROUPWISE REGISTRATION”

Based on matching K tissue maps togethervia a multinomial model, where:
logP(f(x)|µ, φ) = K∑

k=1

fk (x) log µk (φ(x))
Tissue probailities sum to 1 at each voxel:

µk ≥ 0,
K∑
k=1

µk = 1

fk ≥ 0,
K∑
k=1

fk = 1
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
GROUPWISE REGISTRATIONLDDMMSHOOTINGNON-EUCLIDEAN GEOMETRY

Distances are not always measured along astraight line.Sometimes we want distances measured on amanifold.Shortest path on a manifold is along a geodesic.Linear trajectory
Nonlinear trajectory
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
GROUPWISE REGISTRATIONLDDMMSHOOTINGMETRIC DISTANCES

Distances should satisfy the properties of a metric:
1 d (x, y) ≥ 0 (non-negativity)
2 d (x, y) = 0 if and only if x = y (identity of indiscernibles)
3 d (x, y) = d (y, x) (symmetry)
4 d (x, z) ≤ d (x, y) + d (y, z) (triangle inequality).Satisfying (3) requires inverse-consistent image registration.Satisfying (4) requires a specific class of image registration models.
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GROUPWISE REGISTRATIONLDDMMSHOOTINGCOMPUTING A METRIC DISTANCE

φ
1

θ
1

Decompose a curved path into a series of short linesegments, and add the lengths of the segmentstogether.

JOHN ASHBURNER GENERATIVE MODELS



INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
GROUPWISE REGISTRATIONLDDMMSHOOTINGCOMPUTING LARGE DEFORMATIONS

φ
1

θ
1We can consider a large deformation as the composition of a seriesof small deformations:

φ1 = (id + vtN−1
N

)
◦
(id + vtN−2

N

)
◦ ... ◦

(id + vt1

N

)
◦
(id + v0

N

)
The inverse of the deformation can be computed from:
θ1 = (id− v0

N

)
◦
(id− vt1

N

)
◦ ... ◦

(id− vtN−2
N

)
◦
(id− vtN−1

N

)
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
GROUPWISE REGISTRATIONLDDMMSHOOTINGMETRIC DISTANCES FROM LARGE DEFORMATIONS

By modelling trajectories as piecewise linear, distances can becomputed by adding the distances from the small deformations:
d = 1

N

N−1∑
n=0

||Lvtn ||

For large N , the evolution of a deformation may be conceptualisedas integrating the following equation:
dφ
dt

= vt (φ)
Geodesic distances (from zero) are then measured by:

d = ∫ 1

t=0

||Lvt ||dt
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GROUPWISE REGISTRATIONLDDMMSHOOTINGIMAGE REGISTRATION

Image registration finds shortest distancebetween images.Often formulated to minimise the sum oftwo terms:Distance between the image intensities.Distance of the deformation from theidentity.The sum of these gives a distance.

µ ° θ f ° φ

φ

|J
φ
|

θ

|J
θ
|

JOHN ASHBURNER GENERATIVE MODELS



INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
GROUPWISE REGISTRATIONLDDMMSHOOTINGLDDMM

Large Deformation Diffeomorphic Metric Mapping is an imageregistration algorithm that minimises the following:
E = 1

2

∫
1

t=0

||Lvt ||2dt + 1

2σ2 ||f − µ
(
φ−11

)
||2

where φ0 = id, dφ
dt

= vt (φt )
First term is a squared deformation distance measure.Second term is the squared difference between images.The objective is to estimate a series of velocity fields (vt ).
Beg, MF, Miller, MI, Trouvé, A & Younes, L. Computing large deformation metric mappings via geodesic flows of
diffeomorphisms. International Journal of Computer Vision 61(2):139–157 (2005).
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GROUPWISE REGISTRATIONLDDMMSHOOTINGLDDMM VIA “GEODESIC SHOOTING”

In practice, we just need to estimate an initialvelocity (v0), from which we compute theinitial momentum by u0 = L†Lv0.We set the deformation at time 0 to an identitytransform (φ0 = id ), and then evolve thefollowing dynamical system for unit time:
ut = det |Dφ−1t |(Dφ−1t )T (u0 ◦ φ−1t )
vt = (

L†L
)−1

ut
dφ
dt

= vt (φt )
Younes, L, Arrate, F & Miller, MI. Evolutions equations in computational anatomy. Neuroimage 45(1S1):40–50 (2009).
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GROUPWISE REGISTRATIONLDDMMSHOOTINGLDDMM VIA “GEODESIC SHOOTING”

The final deformation (φ1) is a type ofexponential of the initial velocity (v0).
Exponential map (Riemannian geometry). (2015, January 13). In Wikipedia, The FreeEncyclopedia. Retrieved 18:04, March 31, 2015, from
http://en.wikipedia.org/w/index.php?title=Exponential_map_
(Riemannian_geometry)&oldid=642372186

Younes, L, Arrate, F & Miller, MI. Evolutions equations in computational anatomy. Neuroimage 45(1S1):40–50 (2009).
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GROUPWISE REGISTRATIONLDDMMSHOOTING“SCALAR MOMENTUM”

At the solution, gradients of the LDDMM objective function shouldvanish:
L†Lv0 + 1

σ2 det |Dφ1|(f ◦ φ1 − µ)(∇µ) = 0

Re-expressiong this, we see that the initial velocity (andmomentum) is given by:
L†Lv0 = u0 = 1

σ2 (∇µ)det |Dφ1|(µ − f ◦ φ1)
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GROUPWISE REGISTRATIONLDDMMSHOOTING“SCALAR MOMENTUM”

u0 = 1

σ2 (∇µ)det |Dφ1|(µ − f ◦ φ1)
If a population of subjects are all aligned with the same templateimage, 1

σ2 (∇µ) will be the same for all subjects. Deviations fromthe template are encoded by the “scalar momentum”,
det |Dφ1|(µ − f ◦ φ1). This is a scalar field, and in principle is allthat is needed (along with the template) to reconstruct the originalimages.
Miller et al. “Collaborative computational anatomy: an MRI morphometry study of the human brain via diffeomorphicmetric mapping.” Human Brain Mapping 30(7):2132–2141 (2009).Singh, Fletcher, Preston, Ha, King, Marron, Wiener & Joshi (2010). Multivariate Statistical Analysis of Deformation
Momenta Relating Anatomical Shape to Neuropsychological Measures. T. Jiang et al. (Eds.): MICCAI 2010, Part III, LNCS6363, pp. 529–537, 2010.
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GROUPWISE REGISTRATIONLDDMMSHOOTINGEVOLUTION

Template and gradients Residuals Momentum (u) Velocity (v) θ |J
θ
| φ |J

φ
|
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
GROUPWISE REGISTRATIONLDDMMSHOOTINGEXAMPLE IMAGES

Some example images.
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
GROUPWISE REGISTRATIONLDDMMSHOOTINGSCALAR MOMENTUM

Scalar momenta after aligning to a common template.
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
GROUPWISE REGISTRATIONLDDMMSHOOTINGRECONSTRUCTED IMAGES

Images reconstructed from scalar momenta (and template).
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
GROUPWISE REGISTRATIONLDDMMSHOOTING

“Shapes are the ultimate non-linear sort of thing”

David Mumford

Ashburner, John, and Karl J. Friston. “Diffeomorphic registration using
geodesic shooting and Gauss-Newton optimisation.” NeuroImage 55, no. 3(2011): 954-967.Ashburner, John, and Stefan Klöppel. “Multivariate models of inter-subject
anatomical variability.” Neuroimage 56, no. 2 (2011): 422-439.Ashburner, John, and Michael I Miller. “Diffeomorphic Image Registration.”In Brain Mapping: an Encyclopedic Reference, pp. 315-321. AcademicPress: Elsevier (2015). Toga AW (ed.).
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/,
spm12/toolbox/Shoot.
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2 SEGMENTATION
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4 LONGITUDINAL REGISTRATIONBias FieldsRigid-BodyDiffeomorphismsCombined Model
5 DIMENSIONALITY REDUCTION
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BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELLONGITUDINAL DATA: OAS2_0002
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BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELLONGITUDINAL DATA: OAS2_0002
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BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELLONGITUDINAL DATA: OAS2_0048

JOHN ASHBURNER GENERATIVE MODELS



INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELLONGITUDINAL DATA: AVERAGES
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELOPTIMISATION

Problem is treated as finding a maximum a posteriori (orregularised maximum likelihood) solution.
θ̂ = argmin

θ
E(θ)

where
E(θ) ≡ − log p(θ,Data) = − log p(Data|θ)− log p(θ)
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELOPTIMISATION: NEWTON’S METHOD

An iterative local optimisation scheme:
θ(n+1) = θ(n) − [H(E(θ(n)))]−1∇E(θ(n))

where H(E(θ(n))) = Hessian matrix of 2nd derivatives
∇E(θ(n)) = vector of 1st derivatives

Note: may converge to a maximum, minimum or saddle point,depending on whether or not the Hessian is positive definite.
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELOPTIMISATION: GAUSS-NEWTON ALGORITHM

Gauss-Newton method can be used for least-squares minimisation,where the objective function has the following form:
E(θ) = ∑

i

r2i (θ)
Ensures a positive definite approximation of the Hessian.Converges (hopefully) to a local minimum.

θ(n+1) = θ(n) − [JTJ]−1 JT r
where J = ∂ri

∂θj
(θ(n))

Can also motivate a positive definite approximation via a Fisherinformation matrix (as in Fisher scoring).
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELBIAS FIELDS: GENERATIVE MODEL

f (x) b(x)
λ

µ(x) Lb

N

f (x) – image
µ(x) – mean image
λ – noise precision
b(x) – bias field
Lb – bias regularisation
N – number of images
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELBIAS FIELDS: OBJECTIVE FUNCTION

Minimise the following:
E = N∑

n=1

(
λn
2
‖fn − µebn‖2 + 1

2
‖Lbbn‖2

)

f – image
µ – mean image
λ – noise precision
b – bias field
Lb – bias regularisation
N – number of images
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELBIAS FIELDS: EXPONENTIAL MAP

The “bias field” is really not a bias, as it is multiplicative ratherthan additive.Want the probability of re-scaling by (say) 2 to be the same asthat of scaling by 1

2
.Parameterise by a field b(x), and generate bias from theexponential.

exp(b) = lim
n→∞

(
1 + b

n

)n
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELBIAS FIELDS: REGULARISATION

Penalise sum of squares of second derivatives:
‖Lbb‖2 = ω0

∫
x

‖∇2b(x)‖2dx
Differential operator(L†bLb)

0

0

1

0

0

0

2

−8

2

0

1

−8

20

−8

1

0

2

−8

2

0

0

0

1

0

0

Differential operator(zoomed out) Green’s function(via FFTs)
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELRIGID-BODY: GENERATIVE MODEL

f (x)ξ (x)q

λ

µ(x)

N

f (x) – image
µ(x) – mean image
λ – noise precision
ξ (x) – rigid-body transform
q – rigid-body parameters
N – number of images
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELRIGID-BODY: OBJECTIVE FUNCTION

E = N∑
n=1

λn
2
‖fn − µ(ξ−1

qn
)‖2 = N∑

n=1

λn
2

∫
x

|Dξqn (x)|(fn(ξqn (x))− µ(x))2dx
f – image
µ – mean image
λ – noise precision
ξq – rigid-body transform
N – number of images

Note the change of variables.∫
x

g (x)dx = ∫
x

g (φ(x))|Dφ(x)|dx
where |Dφ(x)| means theJacobian determinant of φ at x.
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELRIGID-BODY: EXPONENTIAL MAP

A rigid-body transformation matrix (Rq ∈ SE (3)) is computed via amatrix exponential:
Rq = exp


0 q4 −q5 q1
−q4 0 q6 q2
q5 −q6 0 q3
0 0 0 0

 , where expQ = ∞∑
n=0

1

n!Qn.

A mapping from each voxel in the template, to the corresponingvoxel in the nth image is by:
ξqn (x) = I3,4M

−1
n Rqn

Mµ

[
x

1

] , where I3,4 = 1 0 0 0

0 1 0 0

0 0 1 0

 .
Each M maps from voxels to corresponding mm coordinates.

JOHN ASHBURNER GENERATIVE MODELS



INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELRIGID-BODY: EXPONENTIAL MAP

Rotation in 2D (Rq ∈ SO(2)):
Rq = exp

[
0 q1
−q1 0

]
Computing a matrix exponential isanalagous to integrating a dynamicalsystem over unit time.

Rq = lim
n→∞

[
1 q1/n

−q1/n 1

]n
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELDIFFEOMORPHISMS: GENERATIVE MODEL

v(x) φ(x) f (x)
λLv

µ(x)

N

f (x) – image
µ(x) – mean image
λ – noise precision
φ(x) – diffeomorphism
v(x) – initial velocity
Lv – velocity regularisation
N – number of images
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELDIFFEOMORPHISMS: OBJECTIVE FUNCTION

E = N∑
n=1

(
λn
2
‖fn − µ ◦ φ−1

vn
‖2 + 1

2
‖Lvnvn‖2

)
= N∑

n=1

(
λn
2

∫
x

|Dφvn (x)|(fn(φvn (x))− µ(x))2dx+ 1

2
‖Lvnvn‖2

)
f – image
µ – mean image
λ – noise precision
φv – diffeomorphism
v – velocity field
Lv – velocity regularisation
N – number of images

Note: Diffeomorphicdeformations are computed via aRiemannian exponential.
JOHN ASHBURNER GENERATIVE MODELS



INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELDIFFEOMORPHISMS: EXPONENTIAL MAP

Riemannian exponantial is computed via geodesic shooting.Initialise φv to the identity transform and computeinitial momentum from initial velocity via:
u = L†

v
Lvv.

Then the following dynamical system is integratedover unit time:
φ̇v = (Kv

(∣∣Dφ−1
v

∣∣ (Dφ−1
v

)T (u ◦ φ−1
v

)))
◦ φv

Kv is the Green’s function of L†vLv , such that:
KvL

†
v
Lvv = v

L†
v
LvvKvu = uJOHN ASHBURNER GENERATIVE MODELS



INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELDIFFEOMORPHISMS: EXPONENTIAL MAP

µ f

µ ° θ f ° φ

φ

|J
φ
|

θ

|J
θ
|

Template and gradients Residuals Momentum (u) Velocity (v) θ |J
θ
| φ |J

φ
|

φ̇v = (Kv

(∣∣Dφ−1
v

∣∣ (Dφ−1
v

)T (u ◦ φ−1
v

)))
◦ φv
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELDIFFEOMORPHISMS: REGULARISATION

‖Lvv‖2 = ∫
x

(ω1
4
‖Dv + (Dv)T‖2F + ω2tr(Dv)2 + ω3‖∇2v‖2

)
dx

Three hyper-parameters are involved:
ω1 controls stretching and shearing (but not rotation).
ω2 controls the divergence, which in turn determines theamount of volumetric expansion and contraction.
ω3 controls the bending energy. This ensures that theresulting velocity fields have smooth spatial derivatives.
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELDIFFEOMORPHISMS: REGULARISATION

Twosimulatedimages
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELCOMBINED MODEL: GENERATIVE MODEL

v(x) φ(x) f (x) b(x)
q ξ (x) λ

Lv

µ(x) Lb

N

f (x) – image
µ – mean image
λ – noise precision
b(x) – “bias” field
Lb – bias field regularisation
ξ (x) – rigid-body transform
q – rigid-body parameters
φ
v

– diffeomorphism
v – velocity field
Lv – velocity regularisation
N – number of images
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODELCOMBINED MODEL: GENERATIVE MODEL

Minimise the following objective function:
E = ∑N

n=1

1

2

∫
x
λn |Dφn(x)|(f ′n(x)− µ(x)eb′n(x))2 dx+∑N

n=1

1

2
‖Lvnvn‖

2 +∑N
n=1

1

2
‖Lbbn‖2

where:
φn = ξqn ◦ φvn
f ′n = fn(φn)
b′n = bn(φn)
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTION
BIAS FIELDSRIGID-BODYDIFFEOMORPHISMSCOMBINED MODEL

“Everything is the way it is because it got that way”

D’Arcy Wentworth Thompson (1860–1948)

Ashburner, John, and Gerard R. Ridgway. “Symmetric diffeomorphic
modeling of longitudinal structural MRI.” Frontiers in neuroscience 6(2012).
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/,
spm12/toolbox/Longitudinal.
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTIONDIMENSIONALITY REDUCTION
Kernel methods can be useful for relatively small datasets.Less useful for big big data.

N × N kernel matrix too large for memory.May need to retain “horizontal” privacy in situations wherepatient data are mined across hospitals.Reduce dimensionality, while retaining as much informationas possible.Construct some form of generative model.
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTIONPRINCIPAL COMPONENT ANALYSIS
Minimise the following w.r.t. H and W:

E = ∑N
n=1

1

2
||fn −

∑K
k=1

hkwkn||2

Or this, w.r.t. µ, H and W:
E = ∑N

n=1

1

2
||fn − µ −

∑K
k=1

hkwkn||2
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTIONEM FOR PRINCIPAL COMPONENT ANALYSIS
Given a P × N matrix F, decompose it into a P × K matrix H anda K × N matrix W, such that:

F ' HW

The EM algorithm is:
E-step: W← (HTH)−1HTF

M-step: H← FWT (WWT )−1
Roweis, Sam. “EM algorithms for PCA and SPCA.” Advances in neural information processing systems (1998): 626-632.
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTIONNON-NEGATIVE MATRIX FACTORISATION
One form of NMF minimises the Frobenious Norm:
E = N∑

n=1

1

2
||fn −

K∑
k=1

hkwkn||2 , W ∈ RK×N+ 0 , H ∈ RP×K+

The EM algorithm is similar, except it involves non-negative leastsquares (quadratic programming).
Lee, Daniel D., and H. Sebastian Seung. “Algorithms for non-negative matrix factorization.” In Advances in neuralinformation processing systems, pp. 556-562. 2001.Lee, Daniel D., and H. Sebastian Seung. “Learning the parts of objects by non-negative matrix factorization.” Nature 401,no. 6755 (1999): 788-791.
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTIONGENERALISED PRINCIPAL COMPONENT ANALYSIS
If F is binary, we could fit a logistic version byminimising the following w.r.t. H and W:
E = − N∑

n=1

P∑
p=1

log(σpn)fpn + log(1− σpn)(1− fpn)
where

σpn = 1

1 + exp(∑K
k=1

hpkwkn)
−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

aTx + b

1/
(1

+
ex

p(
−a

T
x 

−
 b

))

Logistic Sigmoid

The EM algorithm involves logistic regression.
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTIONPRINCIPAL GEODESIC ANALYSIS
Could combine diffeomorphic registration with PCA by minimising:

E = ∑N
n=1

λ
2
||fn − µ ◦ φ−1n ||2 + 1

2
||vn||2Vwhere H encodes principal components of initial velocity forcomputing diffeomorphisms:

vn = ∑K
k=1

hkwkn

φn = Exp(vn) (via geodesic shooting)
Zhang, Miaomiao, and P. Thomas Fletcher. “Probabilistic principal geodesic analysis.” In Advances in Neural InformationProcessing Systems, pp. 1178-1186. 2013.Zhang, Miaomiao, and P. Thomas Fletcher. “Bayesian Principal Geodesic Analysis for Estimating Intrinsic Diffeomorphic
Image Variability.” Medical Image Analysis (2015).
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTIONCOMBINED PCA/PGA MODEL
Could combine diffeomorphic registration with PCA by minimisingthe following w.r.t. µ, H, A and W:
E = ∑N

n=1

λ1
2
||fn − (µ + rn) ◦ φ−1n ||2 + λ2

2
||rn||2 + 1

2
||vn||2V

where:
vn = ∑K

k=1
hkwkn

φn = Exp(vn)
rn = ∑K

k=1
akwknNote: Some form of metamorphoses approach may be better.

Richardson, Casey L., and Laurent Younes. “Metamorphosis of Images in Reproducing Kernel Hilbert Spaces.” arXivpreprint arXiv:1409.6573 (2014).
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400 face images.
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTIONSHAPE AND APPEARANCE MODEL

Reconstructionwith K = 64.
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Ignoring theappearancevariations.
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTIONAPPEARANCE MODEL ONLY

Ignoring theshape variations.
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTIONMNIST EIGEN-COMPONENTS

Yann LeCun, Corinna Cortes & Christopher J.C. Burges. http://yann.lecun.com/exdb/mnist/
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTIONMNIST RANDOM SAMPLES

Yann LeCun, Corinna Cortes & Christopher J.C. Burges. http://yann.lecun.com/exdb/mnist/
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INTRODUCTIONSEGMENTATIONDIFFEOMORPHIC REGISTRATIONLONGITUDINAL REGISTRATIONDIMENSIONALITY REDUCTIONMNIST WEIGHTS

Yann LeCun, Corinna Cortes & Christopher J.C. Burges. http://yann.lecun.com/exdb/mnist/
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“To recognize shapes, first learn to generate images”

Geoffrey E Hinton (2007)
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