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This technical note introduces a dynamic causal model (DCM) for resting state fMRI time series based upon ob-
served functional connectivity—as measured by the cross spectra among different brain regions. This DCM is
based upon a deterministic model that generates predicted crossed spectra from a biophysically plausible
model of coupled neuronal fluctuations in a distributed neuronal network or graph. Effectively, the resulting
scheme finds the best effective connectivity among hidden neuronal states that explains the observed functional
connectivity among haemodynamic responses. This is because the cross spectra contain all the information about
(secondorder) statistical dependencies among regional dynamics. In this note, we focus on describing themodel,
its relationship to existing measures of directed and undirected functional connectivity and establishing its face
validity using simulations. In subsequent papers, we will evaluate its construct validity in relation to stochastic
DCM and its predictive validity in Parkinson's and Huntington's disease.

© 2013 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-D license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

The use of resting state fMRI (Biswal, Van Kylen and Hyde, 1997;
Biswal et al., 1995) is now widespread (Damoiseaux and Greicius,
2009); particularly in attempts to characterise differences in functional
connectivity between subject groups (or different brain states). Func-
tional connectivity is defined as the statistical dependencies among ob-
served neurophysiological responses. Although functional connectivity
can be very useful for describing abnormal patterns of distributed activ-
ity, it cannot be used to infer the underlying effective connectivity—
defined as the influence one neuronal system exerts over another
(Friston, Harrison and Penny, 2003). This technical note introduces a
dynamic causal model (DCM) for identifying and quantifying the effec-
tive connectivity that causes functional connectivity. This particular
DCM has been used for some time in electrophysiology (Friston et al.,
2012; Moran et al., 2011) and uses a neuronally plausible model of
coupled neuronal states to generate the complex cross spectra among
observed responses. A nice discussion of biophysical models in this
context can be found in (Robinson et al. 2004). Here, we formulate the
approach for resting state fMRI, with the aim of facilitating group com-
parisons in terms of (directed) effective connectivity.

Our motivation for developing this DCM was twofold: recently,
we introduced stochastic DCM that, in principle, is well suited for
for Neuroimaging, Institute of

. This is an open access article under
characterising effective connectivity in resting state fMRI studies (Li
et al., 2011). In stochastic DCM, both the effective connectivity and
hidden neuronal fluctuations ‘driving’ the system are estimated from
observed haemodynamic responses. This is a difficult inversion or
deconvolution problem that is computationally intensive (Kloeden
and Platen, 1999), because it makes minimal assumptions about the
neuronal fluctuations. Furthermore, when used to characterise group
differences in effective connectivity there is a potential problem: the
groups could differ in terms of their effective connectivity, the form or
amplitude of endogenous fluctuations, or both. For example, subjects
with Parkinson's diseasemay have exactly the same effective connectiv-
ity as control subjects butmay have neuromodulatory differences in the
amplitudes or time constants of endogenous neuronal activity. An obvi-
ous candidate here is differences in the fluctuation of beta power in the
cortico-basal ganglia-thalamic loops. If these differences exist, it would
be nice to jointly estimate the effective connectivity and autocorrela-
tions of neuronal fluctuations and test for differences in connectivity,
neuronal fluctuations or both.

Both of these potential problems – namely, an unconstrained inver-
sion problem and potential differences in neuronal activity – can be
resolved by assuming some (parameterised) form for endogenous fluc-
tuations. This assumption would afford constraints on the model inver-
sion and provide parameters encoding endogenous activity that could
be compared between groups. These considerations speak to the as-
sumptions that underlie models of steady-state responses; in which
variables can be characterised in terms of their correlation functions of
time—or spectral densities over frequencies. In other words, instead
of trying to estimate time varying fluctuations in neuronal states
the CC BY-NC-D license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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producing observed fMRI data, one can try to estimate the parameters of
their cross correlation functions or cross spectra. This effectively means
replacing the original time serieswith their second-order statistics (e.g.,
cross spectra), under stationarity assumptions.

The advantage of doing this is that the problem of estimating hidden
neuronal states disappears and is replaced by the problem of estimating
the spectral density of neuronal fluctuations (and observation noise).
Technically speaking this means that the DCM ceases to be stochastic
and becomes deterministic, because there are no unknown states to
estimate. This greatly increases the computational efficiency, enabling
the estimation of model parameters in seconds to minutes, as opposed
to the minutes to hours required by stochastic schemes. Furthermore,
the resulting parameter estimates include both the effective connectiv-
ity and potentially useful measures of endogenous neuronal fluctua-
tions—that can be compared between groups. The disadvantage of this
deterministic DCM for cross spectra rests on the stationarity assump-
tion, which precludes state or time-dependent changes in effective con-
nectivity (Breakspear, 2004). In other words, unlike deterministic DCM
for time series, one cannot model – in a simple way – changes in effec-
tive connectivity caused by experimental manipulations or other time
sensitive factors. Having said this, most applications of resting state
fMRI are primarily interested in group differences—as opposed to state
or set-dependent differences that are usually modelled with time-
dependent (e.g., bilinear) changes in coupling. In short, DCM described
below provides a simple and efficient way of estimating the effective
connectivity from resting state fMRI time series, using observed cross
spectra under stationarity assumptions.We anticipate that the resulting
parameter estimates – for both effective connectivity and endogenous
fluctuations – may be useful as summary statistics for subsequent
group comparisons.

Cross spectra provide an ideal second-order statistic to model, as
they are a generalisation of functional connectivity. In other words,
the dynamic causal model of effective connectivity is trying to explain
functional connectivity in an explicit and direct way. The cross spectra
are measures of functional connectivity because their (inverse) Fourier
transforms correspond to cross correlation functions—and the cross cor-
relation function at zero lag is the conventional measure of functional
connectivity used in the vast majority of studies. In other words,
the cross correlation functions or cross spectra represent generalised
measures of functional connectivity that retain a temporal aspect—and
preserve information on directed functional connectivity, which is
exploited using temporal precedence representations; for example,
multivariate autoregressive models (Harrison, Penny and Friston,
2003) and Granger causality (Goebel et al., 2003).

Fig. 1 tries tomake this point schematically by showing how various
measures of statistical dependencies (functional connectivity) are inter-
related—and how they can be generated from a dynamic causal model.
This schematic serves to contextualise different measures of functional
connectivity and how they arise from (state space) models of effective
connectivity. Although it may look complicated, it contains most
descriptive measures of functional connectivity that have been used in
fMRI. These include the correlation coefficient (the value of the cross
correlation function at zero lag), coherence and (Geweke) Granger cau-
sality (Geweke, 1982). These measures can be regarded as standardised
(second-order) statistics based upon the cross covariance function, the
cross spectral density and the directed transfer functions respectively.
In turn, these are determined by the first order (Volterra) kernels,
their associated transfer functions andmultivariate autoregression coef-
ficients. Crucially, all these representations can be generated from the
underlying state space model used by DCM. There are a number of key
dichotomies implicit in Fig. 1, which we now review:

• The first is the distinction between the state space model (upper
panel)—that refers to hidden or system states, and representations
of dependencies among observations (lower panels)—that do not
refer to hidden states. This is important because although one can
generate the dependencies among observations from the state space
model, one cannot do that converse. In other words, it is not possible
to derive the parameters of the state space model (e.g., effective con-
nectivity) from transfer functions or autoregression coefficients. This
is why one needs a state space model to estimate effective connectiv-
ity or – equivalently – why effective connectivity is quintessentially
model based.

• The second dichotomy is between models of the variables per se
(upper two rows) and their second order statistics (lower two
rows). For example, convolution and auto regressive representations
can be used to generate time series, while cross covariance functions
and autoregression coefficients describe the second order behaviour
of time series. This is important because this second-order behaviour
can be evaluated directly from observed time series—this is the most
common way of measuring functional connectivity in terms of (sec-
ond order) statistical dependencies.

• The third dichotomy is between time and frequency representations.
For example, the (first order Volterra) kernels in the convolution for-
mulation are the (inverse) Fourier transform of the transfer functions
in frequency space (and vice versa). Similarly, the directed transfer
functions of the autoregressive formulation are based upon the (in-
verse) Fourier transforms of the autoregression coefficients. This is
important because the Fourier transform is a linear operator, which
means that exactly the same information is contained in the time
and frequency domain representations.

• The fourth distinction is between representations that refer explicitly
to random (state and observation) noise and autoregressive represen-
tations that do not. For example, notice that the cross covariance func-
tions of the data depend upon the cross covariance functions of state
and observation noise. Conversely, the autoregression formulation
only invokes (unit normal) innovations. In the current setting,
autoregressive representations are not regarded asmodels, but simply
ways of representing dependencies among observations. This is be-
cause (haemodynamic) responses do not cause responses—hidden
(neuronal) states cause responses.

• Crucially, all of the formulations of statistical dependencies contain
information about temporal lags (in time) or phase delays (in fre-
quency). This means that, in principle, all measures are directed –

in the sense that the dependencies from one region to another are
distinct from the dependencies in the other direction. However,
only the autoregressive formulation provides directed measures of
dependency—in terms of directed transfer functions or Granger
causality. This is because the cross covariance and spectral density
functions between two time series are antisymmetric. The auto-
regressive formulation can break this (anti) symmetry because it
precludes instantaneous dependencies by conditioning the current
response on past responses. Note that Granger causality is – in this
setting – a measure of directed functional connectivity (Friston,
Moran and Seth, 2013). This means that Granger causality (or the
underlying autoregression coefficients) reflects directed statistical
dependencies—such that two regions can have strong auto-
regression coefficients or Granger causality in the absence of a direct
effective connection.

• Finally, there is a distinction between (second order) effect sizes in
the upper row of dependency measures and their standardised
equivalents in the lower row. For example, the coherence is simply
the amplitude of the cross spectral density normalised by the auto
spectra of the two regions in question. Similarly, one can think of
Granger causality as a standardised measure of the directed transfer
function (normalised by the auto spectrum of the target region).
This can be interpreted as the variance explained in the target by
the history of the source, at a particular frequency.

In summary, given a state space model, one can predict or generate
the functional connectivity that onewould observe, in terms of cross co-
variance functions, complex cross spectra or autoregression coefficients



Fig. 1. This schematic illustrates the relationship between different formulations of dependencies amongmultivariate time series—of the sort used in fMRI. The upper panel illustrates the
form of a state spacemodel that comprises differential equations coupling hidden states (first equation) and an observer equation mapping hidden states x(t) to observed responses y(t)
(second equation). Crucially, both the motion of hidden states and responses are subject to random fluctuations, also known as state v(t) and observation e(t) noise. The form of these
fluctuations are modelled in terms of their cross covariance functions ρ(t) of time t or cross spectral density functions g(ω) of radial frequency ω, as shown in the lower equations.
Given this state spacemodel and its parameters θ (which include effective connectivity) one can now parameterise a series of representations of statistical dependencies among successive
responses as shown in the second row. These include convolution and autoregressive formulations shownon the left and right respectively—in either time (light green) or frequency (light
purple) space. Themapping between these representations rests on the Fourier transform, denoted by F and its inverse. For example, given the equations of motion and observer function
of the state spacemodel, one can compute the convolution kernels applied to state noise that produce changes in the response variables. This allows one to express observed responses in
terms of a convolution of hidden fluctuations and observation noise. The Fourier transform of these convolution kernels κ(t) is called a transfer function K(ω). Note that the transfer func-
tion in the convolution formulationK(ω)maps fromfluctuations inhidden states to response variables,whereas the directed transfer function in the autoregressive formulation S(ω)maps
directly among different response variables. These representations can be used to generate second order statistics ormeasures that summarise the dependencies as shown in the third row;
for example, cross covariance functions and cross spectra. The normalised or standardised variants of thesemeasures are shown in the lower row and include the cross correlation function
(in time) or coherence (in frequency). The equations show how the various representations can be derived from each other, where Fourier transforms of variables are (generally) in up-
percase such that F(x(t)) = X(ω). All variables are either vector or matrix functions of time or frequency. For simplicity, the autoregressive formulations shown in discrete form for the
univariate case (the same algebra applies to themultivariate case but the notation becomesmore complicated). Here, z(t) is a unit normal innovation. Finally, note the Granger causality is
only appropriate for bivariate time series. In thisfigure,⊗ corresponds to a convolution operator, * denotes the complex conjugate transpose, 〈⋅〉 denotes expectation and ~denotes discrete
time lagged forms (as shown in the upper inserts). This particular layout of models and associated sample statistics in this figure is greatly simplified and is just meant to contextualise
commonly used measures in fMRI functional connectivity research. The relationships among the sample statistics and models could be nuanced in many ways; for example, there are
continuous time formulations of autoregressive models that are closely related to formulations in terms of stochastic differential equations. Furthermore, discrete time models are not
necessarily linear—we have focused on linear models because the cross spectra and covariance functions (second order statistics) are derived easily under local linearity assumptions
(Robinson et al. 2004).
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(where the latter can be derived in a straightforward way from the for-
mer using the Yule–Walker formulation). In principle, this means that
one could either use the sampled cross covariance functions or cross
spectra as data features. It would also be possible to use the least-
squares estimate of the autoregression coefficients – or indeed Granger
causality – as data features to estimate the underlying effective connec-
tivity. We have tried various combinations and find that themost accu-
rate estimates are obtained using the cross covariance functions and
complex cross spectra. This is the scheme described below and can be
regarded as a generalisation of the deterministic scheme described in
Di and Biswal (2013). In this previous deterministic approach to resting
state fMRI, endogenous fluctuationsweremodelledwith a Fourier basis
set, using the conventional first-order data features. Here, we consider a
more general form for endogenous fluctuations, focusing on second-
order data features.
This technical note is divided into four sections. The first describes
the generative model for resting state fMRI. This is identical to the
deterministic DCM used for conventional fMRI time series analysis;
however, it is used here to predict the sample (second-order) cross
spectra, as opposed to the (first-order) time series themselves. The
second section presents a provisional face validation of the scheme,
using simulated time series and ensuing cross spectra to show that
the true effective connectivity can be recovered (within certain confi-
dence intervals). The third section repeats these simulations to see
how the accuracy of the effective connectivity estimates depends
upon the length of the time series. This section includes a simulated
group comparison to evaluate the comparative performance of Bayes-
ian and classical inference about group differences in effective connec-
tivity. The final section illustrates the application of DCM for cross
spectra to a standard real dataset, with a special focus on the



399K.J. Friston et al. / NeuroImage 94 (2014) 396–407
asymmetry between forward and backward connections in the visual
hierarchy.

The generative model

In this section, we described the generative model used by DCM for
cross spectra and comment briefly on the inversion of these models.
Dynamic causal modelling is essentially the Bayesian inversion and
selection of state space models formulated in continuous time. In this
section, we focus on the neuronal part of the state space model and
how it provides a likelihood model for observed cross spectra (and
cross covariance functions).

DCM for fMRI rests on a generative model with two components.
The first is a neuronal model describing interactions in a distributed
network of neuronal populations. The second maps neuronal activity
to observed haemodynamic responses (Buxton, Wong and Frank,
1998; Friston, Harrison and Penny, 2003). Here, we focus on the neuro-
nal model, because the haemodynamic part is exactly the same as de-
scribed previously (Stephan et al., 2007). The basic form of the model
is a linear stochastic or, strictly speaking, random differential equation
that corresponds to the equations of motion in the state space model
of Fig. 1:

ẋ tð Þ ¼ A � x tð Þ þ v tð Þ: ð1Þ

Here, x(t) = [x1(t),…, xn(t)]T is a column vector of hidden neuronal
states for n regions, whose motion depends upon the states of other
regions and some endogenous fluctuations v(t). Here, there is only
one hidden state for each region—although the current scheme has
been implemented to accommodate multistate models (Marreiros,
Kiebel and Friston, 2008). In DCM for fMRI, these hidden states are
abstract representations of neuronal activity. They correspond to the
amplitude of macroscopic variables or order parameters summarising
the dynamics of large neuronal populations. Although the above equa-
tionmay look implausibly simple, it can bemotivated in a fairly straight-
forward way from basic principles (Friston et al., 2011); for example,
the centre manifold theorem (Carr, 1981) and the slaving principle
(Ginzburg and Landau, 1950; Haken, 1983) that apply to all coupled
dynamical systems:

In brief, these hidden states can be regarded as encoding the slowly
fluctuating amplitude of activity modes (e.g., oscillations). Conversely,
the endogenous activity represents fast fluctuations about this ampli-
tude, where the implicit separation of temporal scales is mandated by
the slaving principle. Technically, endogenous fluctuations model the
dynamics attributable to fast (stable) modes that become enslaved by
the slow (unstable) modes, which determine macroscopic behaviour.
In other words, the collective activity of coupled neuronal systems be-
comes organised into slow patterns, about which fast dissipative activ-
ity fluctuates. One important insight from this formulation is that the
time-constants of macroscopic hidden states are much slower than
the microscopic neuronal time constants (e.g., effective membrane
time constants). For example, fluctuations in the characteristic frequen-
cy of each mode may be much slower (e.g., 100–10,000 ms) than the
dynamics of the fast modes (e.g., 10 to 100 ms). This is important
because it suggests that priors on the rate constants or effective connec-
tivity parameters A ⊂ θ should anticipate slow dynamics. Typically,
effective connectivity in fMRI falls in the range of 0.1 Hz to 1 Hz for
non-trivial connections. Heuristically, these rate constants can be
thought of as governing changes in the amplitude of fast (e.g., gamma
band) activity (Brown, Moehlis and Holmes, 2004), which waxes and
wanes on the order of seconds (Breakspear and Stam, 2005).

To equip the model with haemodynamics, we simply supplement
the neuronal states above with haemodynamics states – like blood
flow and deoxyhemoglobin content – using the appropriate equations
of motion. The mapping to measured BOLD responses is completed
with a (nonlinear) observer function, as in the upper panel of Fig. 1.
This means that neuronal and haemodynamic states are treated on an
equal footing, enabling the joint estimation of (global) effective connec-
tivity and (local) haemodynamic parameters. In the time domain,
haemodynamics effectively smooth the underlying neuronal fluctua-
tions; while in the frequency or spectral domain they suppress high fre-
quencies—bymodulating the transfer function fromneuronal activity to
BOLD measurements. By absorbing the haemodynamics into transfer
functions, we are implicitly using a linear approximation. In other
words, we assume that the haemodynamic response function does not
change with neuronal or haemodynamic states. Although this allows
for regional variations in haemodynamics, it precludes a nonlinear
modelling of haemodynamic saturation and refractoriness. However,
this is exactly the same approximation used in conventional linear con-
volution models of fMRI time series.

To complete the specification of the likelihood model, we have to
parameterise the nature of the endogenous fluctuations (and observa-
tion noise). The most parsimonious and general form, in this setting, is
a power law or scale free form that can be motivated from a large
body of work on noise in fMRI (e.g., Bullmore et al., 2001) and underly-
ing neuronal activity (Shin and Kim, 2006; Stam and de Bruin, 2004):

gv ω; θð Þ ¼ αvω
−βv þ gu ω; θð Þ

ge ω; θð Þ ¼ αeω
−βe :

ð2Þ

Under this model, the parameters control (α,β) ⊂ θ the amplitudes
and exponents of the spectral density where, for example, the spectral
density of white noise is flat β = 0, while pink noise has β = 1, and
brown noise has β = 2. Autoregressive processes produce a similar
form of coloured noise (see Fig. 1). Note that the endogenous fluctua-
tions have an extra term. This models any spectral contribution from
exogenous or experimental input u(t) that is scaled by an exogenous
input parameter C ⊂ θ

gu ω; θð Þ ¼ F C � u tð Þð Þ ð3Þ

where F(⋅) represents the Fourier transform. This allows us to accom-
modate designed or deterministic inputs and allows fluctuations that
are externally driven to contribute to the observed cross spectra. We
will see an example of this in the last section.

To fully specify the likelihood model, we now have to consider the
probability of observing somedata features given themodel parameters
θ = (A,C,α,β,…). These parameters can be used to generate the expect-
ed cross spectra g(ω,θ) = K(ω) ⋅ g(ω,θ)v ⋅ K(ω)∗ + g(ω,θ)e using the
equations in Fig. 1. However, the sample cross spectra g(ω) are derived
from a finite realisation or time series and will differ from the expected
values. In our current implementation, we assume that this difference
corresponds to additive Gaussian sampling error such that:

g ωð Þ ¼ g ω; θð Þ þ N ωð Þ: ð4Þ

Note that the sampling error N(ω) is distinct from the observation
error E(ω) = F(e(t)) in Fig. 1. The observation error is generated by
thermal and physiological noise processes during acquisition of the
data and contributes to the observed spectra. Conversely, the sampling
error models deviation of the observed spectra from their expected
values under a particular set of parameters (which includes the spectra
of observation noise). Clearly, the sampling error will be correlated over
frequencies and this has to be accommodated in the likelihood model.
We assume that the sample error has correlations over frequencies
that correspond to an autoregressive process with a coefficient of one
half.

By specifying the probabilistic relationship between the sample and
expected cross spectra, one can evaluate the likelihood or the probabil-
ity of getting some spectral observations given the parameters
p(g(ω)|θ). The full generative model p(g(ω), θ) = p(g(ω)|θ)p(θ|m) is
then completed by specifying prior beliefs p(θ|m) about the parameters,



Table 1
Priors on parameters (haemodynamic priors have been omitted for simplicity).

Parameter Description Prior mean Prior variance

ln(−Aii) Inhibitory self connections ln1
2

1
256

Aij Extrinsic effective connectivity 1
128

1
64

C Exogenous input scaling 0 1
ln(α) Amplitude of fluctuations 0 1

64

ln(β) Exponent of fluctuations 0 1
64
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which define a particular modelm. Because many of the parameters in
these models are nonnegative (scale) parameters, we generally defined
these priors as Gaussian distributions over ln(θ). Table 1 lists the priors
used in DCM for fMRI cross spectra, most of which are exactly the same
as used in other DCM's for fMRI (Stephan et al., 2007).

Equipped with this generativemodel one can now invert and fit any
observed cross spectra using standard variational Bayesian techniques
(Beal, 2003). In our implementations we use Variational Laplace
(Friston et al., 2007) to evaluatemodel evidence p(g(ω)|m) and the pos-
terior density over model parameters p(θ|g(ω),m) in the usual way. In
practice, we actually use both the cross spectral density and the cross
covariance functions as data features, where the cross spectra are com-
plex valued. Bayesian model inversion of nonlinear models of complex
data follows exactly the same calculus as for real valued data—as
shown in our previous treatment of DCM for complex cross spectra in
electrophysiology (Friston et al., 2012).

In this setting, sample cross spectra and cross covariance functions
can be regarded as nonlinear transformations of the original time series
data that are sensitive to variations in model parameters that cause
changes in slow and fast fluctuations respectively. These transforma-
tions are non-linear because sample spectra and covariances are
second-order data features—that rely upon the squared values of
the original data. Conceptually, converting the time series data into
cross spectra is not dissimilar from any other nonlinear data transfor-
mation—like the log transformation of (nonnegative) reaction times in
psychophysics. These transformations are chosen to make the model
assumptions as valid as possible and to retain the data features that
best inform parameter estimation.

In the examples below, sample cross spectra were estimated using
a fourth order autoregressive model to ensure smooth spectral esti-
mates—of the sort produced by the generative model. A fourth order
scheme was chosen because this (relatively low) order minimised con-
ditional uncertainty about parameter estimates—using the sorts of time
series thatwe typically analyse. A low order autoregressive schemepro-
duces fairly smooth sample cross spectra, of the sort predicted by the
generative model. The frequencies considered ranged from 1

128 Hz to
the Nyquist frequency (half the sampling rate or 1

2�TR Hz) in 64 evenly
spaced frequency bins. This completes the description of the generative
model for fMRI cross spectra and its inversion. Compared to stochastic
DCM, the inversion of DCM for cross spectra is computationally
efficient – taking a second or so per iteration – and generally converging
in about 16 to 64 iterations. The iteration time scales roughly quadrati-
callywith the number of regions or nodes, taking a fewhundredmillisec-
onds for two nodes and about 30 s for 16 nodes. This also is much faster
than standard (deterministic) DCM schemes, because one does not have
to solve (integrate) any differential equations. In the next section, we
address the accuracy and validity of this model using simulated data.

Simulations and face validity

To ensure that the scheme can recover veridical estimates of effec-
tive connectivity and implicit neuronal architectures,we generated syn-
thetic fMRI data using Eq. (1) and the usual haemodynamic equations of
motion (Stephan et al., 2007). The results of these simulations are
shown in Fig. 2 and exhibit the characteristic amplitude and slow fluctu-
ations seen in resting state time-series. This figure shows the response
of three regions or nodes, over 256 (2 s) time-bins, to smooth neuronal
fluctuations that were generated independently for each region. These
endogenous fluctuations (and observation noise) were generated
using an AR(1) process with an autoregression coefficient of one half
(scaled to a standard deviation of 1/8). These valueswere chosen to pro-
duce a maximum fMRI signal change of about 1%. The upper panels
show the endogenous neuronal fluctuations and consequent changes
in hidden neuronal and haemodynamic (cyan) states that generate
the observed fMRI signal. Note that the fMRI signal is smoother than
the underlying neuronal fluctuations, reflecting the low-pass filtering
of the haemodynamic response function (that has a characteristic time
constant of several seconds). This smoothing is produced by successive-
ly smoother fluctuations in haemodynamic states (like blood flow,
blood volume anddeoxyhemoglobin content) that accumulate fast neu-
ronal fluctuations.

The coupling parameters used for this simulation used a small hier-
archy of three areas, with reciprocal connections—producing a directed
and cyclic connectivity graph (see Fig. 2):

A ¼
−:5 −:2 0
þ:4 −:5 −:3
0 þ:2 −:5

2
4

3
5: ð7Þ

As often seen in empirical studies, this simulated architecture com-
prised positive (excitatory) forward connections and negative (inhibi-
tory) backward connections (denoted by solid and broken lines in the
figures). The use of positive and negative coupling parameters produces
the anti-correlated responses seen between higher and lower nodes
(see Fig. 2, lower left panel). The remaining model parameters were
set to their usual priors and scaled by a random variate with a standard
deviation of about 5%. This simulates regional variation in the haemody-
namic response function. The resulting synthetic data were then used
for model inversion to produce results of the sort shown in Fig. 3.

Fig. 3 shows the posterior density over the effective connectivity pa-
rameters (upper panel) in terms of the posterior expectation (grey bar)
and 90% confidence intervals (pink bars). For comparison the true
values used in the simulations are superimposed (black bars). Happily,
the true values of the extrinsic connection strengths fall within the
90% confidence intervals. However, the self connections (light grey)
were not estimated so accurately and two areas show a log scaling pa-
rameter that ismarginally too small. Note fromTable 1 that the self con-
nections are modelled as scale parameters, whereas the extrinsic
parameters are free to take positive and negative values. This means
that the model has underestimated self connectivity by about 10%.
This corresponds to an underestimate of self inhibition and may reflect
the fact that the sampled cross spectra were generated by a first-order
autoregressive process, while the generative model assumes a power
law distribution—which is not quite the same (see Fig. 1). The sampled
(dotted lines) and predicted (solid lines) cross spectra from this exam-
ple can be seen in the lower panel of Fig. 3. The agreement is self
evident, if not perfect. The right and left panels show the imaginary
and real parts of the complex cross spectra, superimposed for all pairs
of regions. Thefirst half of these functions corresponds to the cross spec-
tra, while the second half corresponds to the cross covariance functions.
Note that the cross covariance functions have only real values.

Simulations and accuracy

To assess the accuracy of the inversion and how accuracy depends
upon the amount of data, we repeated the above simulations using
time series of 128 to 1024 scans. A typical resting state fMRI experiment
with a repetition time of two seconds will provide 180 scans after six
min. For each run length, we performed 32 simulations using the
same set of parameters as above. To score the quality of the inversions,
we used the root mean square (RMS) difference between the posterior
expectations and the true values of the extrinsic connectivity
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parameters. As noted above, a typical nontrivial effective connectivity
for fMRI is about 0.1 Hz. Interestingly, this is about the samemagnitude
as the confidence intervals seen in Fig. 3. This means, that onewould be
hoping to find a RMS estimation error around 0.1 Hz or less.

Fig. 4 shows the results of these simulations in terms of the individ-
ual RMS error for each analysis (red diamonds) and the mean (black
bars) as a function of run length. It is clear that increasing the number
of scans improves accuracy, which becomes acceptable after about
512 scans. At this point, the RMS error is about 0.08 Hz, with themajor-
ity of simulations falling below our heuristic threshold of 0.1 Hz.With a
repetition time of 2 s, this corresponds to a run of about 17 min, which
is much longer than people typically acquire. Having said this, pooling
the estimates over the 32 simulations for each run length, produces
remarkably accurate estimates, as shown in the right panels. These
averages were obtained using Bayesian parameter averaging—for each
parameter separately: i.e., ignoring posterior correlations that deter-
mine the confidence intervals overmixtures or contrasts of parameters.
The results show the characteristic shrinkage of Bayesian estimators
(towards the prior expectations of zero); however, this is not very
severe in relation to the true values. The remarkable thing here is that
the Bayesian parameter averages for long runs of 1024 scans and short
runs of just 256 scans produce very similar estimates—again with a bi-
ased expectation for self connections. This suggests that even short
runs of 256 scans (about 8 min) may provide accurate estimates, if
averaged over a sufficient number of subjects. Similarly, one might
anticipate that differences between two groups could be identified
reasonably accurately—even with relatively short runs. To address
this sensitivity to group differences we performed a final series of
simulations:

Simulating tests of group differences

We repeated the above simulations with runs of 512 scans; howev-
er, for the second 16 of 32 simulations (e.g., subjects), we decreased the
negative effective connectivity from the second to the first region. In
other words, we increased the inhibitory effective connectivity of the
first backward or descending connection and set it to 0.4. To make
things more interesting, we also reduced the self inhibition of the target
area (the first region) to about 20%, making it more excitable and set it
to −0.2. To see whether these differences could be estimated and de-
tected reliably, we characterised the differences using both Bayesian
and classical inference.

The upper left panel of Fig. 5 shows the Bayesian parameter averages
of the differences between the first and second groups of 16 subjects,
using the same format as the previous figures. It can be seen that the de-
crease in the backward connections has been estimated almost perfect-
ly, with a high level of posterior confidence. Conversely, the change in
the recurrent or self connection has been underestimated by about
50% with a greater conditional uncertainty. Interestingly, several other
changes (of lessermagnitude) have been confidently identified; howev-
er, these are less than 0.1 Hz. Note that these are not false positives be-
causewe are not declaring that any difference is significant in a classical
sense. The samedatawere then analysed using classical inference, of the
sort that is typically applied in group studies using DCM parameter
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estimates as summary statistics for each subject. We considered
univariate and multivariate tests that look for individual differences in
effective connectivity or differences in mixtures of connectivity, respec-
tively. The first would be used if one had specific hypotheses about par-
ticular connections or classes of connection (e.g., backward connections
or intrinsic connections). Conversely, multivariate tests have a more
inclusive nature and consider all connections collectively.

The upper right panel of Fig. 5 summarises the results of classical
univariate tests using the t statistic for a difference in group means.
The red lines correspond to thresholds at a nominal level of p = 0.05
corrected (solid) and uncorrected (broken) for the nine tests shown. If
we had had a specific hypothesis about the backward connections,
then the uncorrected p-value would be extremely significant. In fact,
even correcting for all comparisons, it is still very significant. Conversely,
no other effective connectivity shows a significant effect at a corrected
level—including the self inhibition of the first area. This is consistent
with the Bayesian parameter averages, suggesting that it may be easier
to detect changes in extrinsic connections than changes in intrinsic or
self connections.

Finally, we applied a classical multivariate analysis to test for any
differences over all connections between the two groups. The standard
multivariate test here is a canonical covariate analysis. Mathematically,
this reduces to the Hotelling's T-squared, when testing for a single
effect—such as the difference in group means. The results of a canoni-
cal covariate analysis include canonical vectors and variates—and their
significance. These are shown in the lower panels of Fig. 5 and were
extremely significant with p = 0.0003. Note that because there is
only one multivariate test, there is no need to correct for multiple
comparisons. The canonical variate expresses the degree to which a
pattern of differences – encoded by the canonical vector – is expressed
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in each replication or subject. The lower left panel shows that, with the
exception of one subject in each group, the canonical vector was
expressed positively in the second group. This vector is shown on
the lower right and correctly identifies the decrease in the first back-
ward connection. Again, there is an apparent failure to detect the
decrease in the first parameter (the self connection); in fact, it is actu-
ally positive in the canonical vector. This may speak to the reduced
efficiency for detecting changes in intrinsic connectivity and the
effects of correlations among the parameter estimates over subjects
(that do not affect the univariate tests above).

In summary, although these simulations suggest that increasing the
length of the time series provides progressively more accurate esti-
mates of effective connectivity, it appears that shorter run lengths pro-
vide sufficiently efficient estimates to detect nontrivial changes in
connectivity between groups; even with relatively small numbers of
subjects (here 32).

An empirical illustration

Finally, we illustrate DCM for cross spectra using an empirical
dataset that has been used previously to describe developments in
dynamic causal modelling and related analyses. We have deliberately
chosen an activation study to show that DCM for cross spectra can be
applied to conventional studies as well as (design free) resting-state
studies. In what follows, we will briefly describe the data used for our
analysis and then report the results of their inversion.
Empirical data

These data were acquired during an attention to visual motion par-
adigm and have been used previously to illustrate psychophysiological
interactions, structural equationmodelling, and the inversion of various
dynamic causal models. The data were acquired from a normal subject
at two Tesla using a Magnetom VISION (Siemens, Erlangen) whole
body MRI system, during a visual attention study. Contiguous multi-
slice images were obtained with a gradient echo-planar sequence
(TE = 40 ms; TR = 3.22 s; matrix size = 64 × 64 × 32, voxel size
3 × 3 × 3 mm). Four consecutive 100 scan sessions were acquired,
comprising a sequence of ten scan blocks of five conditions. The first
was a dummy condition to allow for magnetic saturation effects. In
the second condition, subjects viewed a fixation point at the centre
of a screen. In an attention condition, subjects viewed 250 dotsmoving
away from the centre at 4.7 degrees per second and were asked to
detect changes in velocity. In a no attention, the subjects were asked
simply to view the moving dots. Finally, in a baseline condition, sub-
jects viewed stationary dots. The order of the conditions alternated
between fixation and visual stimulation (stationary, no attention, or
attention). In all conditions subjects fixated on the centre of the screen.
No overt response was required in any condition and there were no
actual changes in the speed of the dots. The data were analysed
using a conventional SPM analysis using three designed or exogenous
inputs (visual input, motion and attention) and the usual confounds.
The regions chosen for network analysis were selected in a rather ad
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hoc fashion and are used here simply to demonstrate procedural
details.

Six representative regions were defined as clusters of contiguous
voxels surviving an (omnibus) F-test for all effects of interest at
p b 0.001 (uncorrected) in the conventional SPM analysis. These re-
gionswere chosen to cover a distributed network (of largely association
cortex) in the right hemisphere, from visual cortex to frontal eye fields
(see Table 2 for details). The activity of each region (node) was
summarised with its principal eigenvariate to ensure an optimum
Table 2
Regions selected forDCManalysis on the basis of an (Omnibus) SPMof the F-statistic testing for
evoked responses. Regions are defined as contiguous voxels in the SPM surviving a threshold of
p b 0.001 (uncorrected) within 8 mm of the locations shown. The anatomical designations
should not be taken too seriously because the extent of several regions covered more than
one cytoarchitectonic area, according to the atlas of Talairach and Tournoux.

Name Rough designation Location (mm) Number of
(3 mm3) voxels

V1 Early visual cortex −12−81−6 81
V5 Motion sensitive area −45−84−3 50
LOC Lateral occipital cortex −45−69−24 39
PPC Posterior parietal cortex −21−57 66 43
FEF Frontal eye fields −33−6 63 18
PFC Prefrontal cortex −75−21 33 39
weighting of contributions for each voxel with the ROI (see Fig. 6). In
this example, one can see evoked responses in visual areas (every
60 s) with a progressive loss of stimulus-bound activity and a hint of
attentional modulation and other fluctuations in higher regions.

Asymmetric connections and hierarchies

Network analyses using functional connectivity or diffusion weight-
ed MRI data cannot ask whether a connection is larger in one direction
relative to another, because they are restricted to the analysis of undi-
rected (simple) graphs. However, here we have the opportunity to ad-
dress asymmetries in reciprocal connections and ask questions about
hierarchical organisation (e.g., Chen et al., 2009). There are many inter-
esting analyses that one could consider, given a weighted (and signed)
connectivity or adjacency matrix. Here, we will illustrate a simple
analysis of functional asymmetries: Hierarchies are defined by the
distinction between forward (bottom-up) and backward (top-down)
connections. There are several strands of empirical and theoretical
evidence to suggest that, in comparison to forward influences, the net
effects of backward connections on their targets are inhibitory (e.g., by
recruitment of local lateral connections, Angelucci and Bressloff, 2006;
Angelucci and Bullier, 2003). Theoretically, this is consistent with pre-
dictive coding, where top-down predictions suppress prediction errors
in lower levels of a hierarchy (Bastos et al., 2012). In light of this, one
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might hypothesise that forward effective connectivity should be posi-
tive, while backward effective connectivity should be predominantly
inhibitory (negative in this DCM). To address this, we used priors
on the extrinsic connectivity to estimate hierarchical forward and back-
ward connections (see Fig. 6). In addition, we allowed the experimental
effects of visual input, motion and attention to contribute to the neuro-
nal fluctuations (visual input affected V1, motion affected V5 and atten-
tion was allowed to affect PPC, FEF and PFC).

The results of model inversion are shown in Fig. 7. The upper left
panels show the predicted and observed cross spectra (and cross covari-
ance functions) using the same format as the previous figures. Here,
there is a remarkably good agreement between the predicted and sam-
ple functions, which in some instances cannot be discerned by eye. In
contrast to the simulations, herewe see the spectral correlates of the ex-
perimental factors (visual input,motion and attention). These correlates
are evident as peaks (and harmonics) in the cross spectra—highlighted
with cyan circles. This experimental variance provides greater spectral
density at particular frequencies and can increase the efficiency of
parameter estimation.
Because dynamic causalmodelling characterises the system in terms
of the effective connectivity and other parameters governing the dy-
namics of hidden states,we can reconstitute any of the characterisations
in Fig. 1, either at the level of observed responses or at the level of any
hidden states. For example, the lower left panel of Fig. 7 shows the
auto spectra of each region predicted for haemodynamic responses.
Contrast this with the equivalent auto spectra for neuronal activity
(lower right panel), which possess a greater preponderance of higher
frequencies, with a 1/f like form.

The estimates of effective connectivity generating these predictions
are shown on the right. As predicted, all the negative or inhibitory effec-
tive connections are backwards connections. Furthermore, all but two of
the backward connections are inhibitory. The two exceptions are inter-
esting: the first is the backward connection from the posterior parietal
cortex to the lateral occipital cortex, which could be construed as a
lateral connection between the dorsal and ventral streams. The second
exception is the backward connection from V5 to V1, which is excep-
tionally strong and positive. We have seen this result a number of
times and had thought about it in terms of extrageniculate input to V5



Predictions and responses

0 100 200 300 400
-2

0

2

4

6

8

time (seconds)

re
al

0 100 200 300 400
-2

-1.5

-1

-0.5

0

0.5

1

1.5

time (seconds)

im
ag

in
ar

y

0.02 0.04 0.06 0.08 0.1 0.12 0.14

0

2

4

6

8

Spectral density (hemodynamics)

frequency (Hz)

ab
s(

C
S

D
)

V1
V5
LOC
PPC
FEF
PFC

0.02 0.04 0.06 0.08 0.1 0.12 0.14

0

0.005

0.01

0.015

0.02

Spectral density (neuronal)

frequency (Hz)

ab
s(

C
S

D
)

V1

V5

LOC PPC

FEF

PFC

0.20 1.05

0.27 -0.21

0.21

0.93

0.83 -0.33

-0.630.51

Effective connectivity

Fig. 7. This figure summarises the results ofmodel inversion using themodel anddata of the previousfigure. The upper left panel's show the predicted and observed data features using the
same format as Fig. 3. The lower left panels show the predicted and observed auto spectra in the six regions, where spectral peaks induced by experimentalmanipulations are highlighted
with cyan circles. The underlying auto spectra predicted for the hidden neuronal states (lower right) show a greater preponderance of higher frequencies with a 1/f form. The right panel
reports the posterior expectations of effective connectivity using the same format as Fig. 2. The key thing to note here is that negative or inhibitory values are restricted to backwards or
descending connections.

406 K.J. Friston et al. / NeuroImage 94 (2014) 396–407
that might, in some instances, render it hierarchically beneath other
visual regions.

In summary, one can recover plausible results using real data with,
in this example, 360 scans concatenated over four runs. The particular
illustration here has only addressed model inversion; however, the
usual procedures for model optimisation with Bayesian model compar-
ison or post hoc reduction can be applied to results of this DCM, which
we anticipatewill find themost useful application in providing summa-
ry statistics for group comparisons in resting state fMRI studies.

Discussion

In conclusion, we hope to have introduced a dynamic causal model
that could be useful in analysing resting-state studies or indeed any
data reporting unknown or endogenous dynamics (e.g. sleep EEG).
Being able to estimate weighted adjacency matrices summarising func-
tional brain architectures (in terms of directed effective connectivity)
also opens the door to graph theoretic analyses that may leverage
important advances in network theory (Bullmore and Sporns, 2009).

Clearly, there are many issues that we have not addressed in this
technical introduction. For example, we have not explored how this
DCM scales with the number of nodes. However, because it uses exactly
the same inversion scheme and priors as other DCMs, all previous ex-
tensions and variants should, in principle, apply. For example, one can
use multiple states in each region to model inhibitory and excitatory
neuronal populations explicitly (Marreiros, Kiebel and Friston, 2008).
Furthermore, one can use the usual Bayesian model comparison and
reduction schemes or, indeed, impose constraints to handle large
numbers of regions (Seghier and Friston, 2013). These and other issues
will be dealt with in subsequent publications that address construct
validity—through comparative analyseswith stochastic DCM (using sim-
ulated and real data).We also anticipate a series of applications to resting
state fMRI data from Huntington's and Parkinson's disease—that may
highlight unforeseen issues and motivate further developments.

Althoughmost applications of resting state fMRI address differences
among carefully selected subjects, there is growing interest in
characterising the dynamics of functional connectivity per se (Allen et
al. in press). The model we have considered does not allow for dynamic
changes in effective connectivity (or the spectra of neuronal fluctua-
tions); however, one can envisage extensions of the current scheme,
in which successive epochs of resting state data are modelled. In princi-
ple, this would allow for epoch-to-epoch variations in connectivity (or
neuronal spectra)—and therebymodel their dynamics on a slower time-
scale. In fact, this sort of model is already used in the dynamic causal
modelling of electromagnetic cross spectral densities, where subsets
of model parameters are allowed to change in a condition or epoch-
specific fashion (Moran et al., 2011).

The schemes described in this paper are implemented inMatlab code
and are available freely as part of the open-source software package
SPM12 (http://www.fil.ion.ucl.ac.uk/spm). Furthermore, the attentional
data set used in this paper can be downloaded from the above website,
for people who want to reproduce the analyses described in this paper.

http://www.fil.ion.ucl.ac.uk/spm)
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