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In this paper, we compare mean-field and neural-mass models of electrophysiological responses using
Bayesian model comparison. In previous work, we presented a mean-field model of neuronal dynamics as
observed with magnetoencephalography and electroencephalography. Unlike neural-mass models, which
consider only the mean activity of neuronal populations, mean-field models track the distribution (e.g., mean
and dispersion) of population activity. This can be important if the mean affects the dispersion or vice versa.

ﬁz:’:;r_ii'ass models Here, we introduce a dynamical causal model based on mean-field (i.e., population density) models of
Nonlinear neuronal activity, and use it to assess the evidence for a coupling between the mean and dispersion of hidden
Modelling neuronal states using observed electromagnetic responses. We used Bayesian model comparison to compare
Laplace assumption homologous mean-field and neural-mass models, asking whether empirical responses support a role for
Mean-field population variance in shaping neuronal dynamics. We used the mismatch negativity (MMN) and
Neuronal somatosensory evoked potentials (SEP) as representative neuronal responses in physiological and non-
Bayesian physiological paradigms respectively. Our main conclusion was that although neural-mass models may be
sufficient for cognitive paradigms, there is clear evidence for an effect of dispersion at the high levels of
depolarization evoked in SEP paradigms. This suggests that (i) the dispersion of neuronal states within
populations generating evoked brain signals can be manifest in observed brain signals and that (ii) the

evidence for their effects can be accessed with dynamic causal model comparison.
© 2010 Elsevier Inc. All rights reserved.
Introduction simplicity is important because the current paper uses this scheme in

Neuronal activity generated by coupled neuronal populations can be
autonomous or elicited by sensorimotor or cognitive perturbation. Neural
models have been in used to study this activity for many years (e.g,
Wilson and Cowan 1972; Nunez 1974; Freeman 1975; Lopes da Silva
et al, 1976; Jansen and Rit, 1995; Jirsa and Haken 1996; Valdes et al.,
1999; David and Friston 2003). These models form the basis for under-
standing the genesis of neuroimaging signals (e.g., Riera et al., 2007). We
continue this modelling initiative, by using the formulation of population
dynamics described by Marreiros et al. (2009) as the basis of a dynamic
causal model (DCM) of evoked electromagnetic responses. We try to
establish its face validity using Bayesian model comparison and evaluate
its ability to explain empirical data, in relation to simpler variants.

This is the third and final paper in a trilogy that tries to integrate
the Fokker-Planck formalism and stochastic formulations of neuronal
dynamics with DCM. The first (Marreiros et al. 2008) introduced the
idea that the sigmoid activation could be regarded as accommodating
dispersion of neuronal states (as opposed to dispersion of the
threshold). The second (Marreiros et al. 2009) used this perspective
to motivate a simple method-of-moments scheme to model density
dynamics in terms of the mean and dispersion of neuronal states. This
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dynamic casual models of real data.

This work rests on a key distinction between models that
summarize the activity of a neuronal population with a single state
(e.g., its mean activity) and those that model the distribution of states
in terms of probability densities (i.e., density dynamics). We follow
the terminology established in Deco et al. (2008), which adopts a
pragmatic approach: if the model can be cast as a set of ordinary
differential equations describing the evolution of neuronal states, it is
called a neural-mass model (NMM; e.g., Freeman 1975; Lopes da Silva
et al.,, 1976; Rodrigues et al., 2006). This is motivated by treating the
current state as a point ‘mass’ (i.e., delta function) approximation to
the underlying density on the population's states. Conversely, models
based on stochastic differential equations that include random
fluctuations are referred to as mean-field models (MFM; e.g., Knight
1972a,b; Sampolinsky and Zippelius, 1982; Nykamp and Tranchina
2000; Omurtag et al. 2000; Frank et al., 2001; Haskell et al., 2001). This
nomenclature appeals to the use of the term ‘mean-field’ in statistical
physics and machine learning. A mean-field assumption approxi-
mates a full density (on the states of a population of neurons or
multiple populations) with a density that factorises into a series of
simpler marginal densities; where the marginals influence each other
through average or mean-field effects. These models necessary entail
a stochastic or probabilistic representation of activity, which is usually
encoded by the sufficient statistics of a probability density (like the
mean and variance of a Gaussian distribution). Although we will not
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deal with them in this paper, models that are formulated as partial
differential equations of space and time are referred to as neural field
models (NFM; e.g., Wilson and Cowan 1972; Amari 1972; 1975;
Robinson et al., 2005), because they model the spatiotemporal
dynamics on spatially extensive (e.g., cortical) fields.

It should be noted that this operational taxonomy of models is
insensitive to the deep history of their development or their original
descriptions; for example, there is a fundamental difference between
the work of Wilson and Cowan (1972) and that of Amari (1972; 1975)
on ‘neural fields’ and that of Freeman (1975) and that of Lopes da Silva
et al. (1976) on ‘neural-masses’: the former provides spatiotemporal
descriptions of neuronal dynamics, without recourse to experimental
evidence; whereas the latter are derived from observing empirical
population responses and writing down equations that reproduce
physiological responses. Both neural field and mass models are
parsimonious models of mean activity (e.g., firing rate or membrane
potential) and have been used to emulate a wide range of brain
rhythms and dynamics. Neural-mass models are particularly appro-
priate for data that reflect the average behaviour of neuronal
populations; such as the electroencephalogram (EEG) and magne-
toencephalogram (MEG) (David et al., 2006; Marreiros et al., 2009).

In a previous paper (Marreiros et al., 2009) we formulated neural-
mass models, currently used as generative models in dynamic causal
modelling, as a limiting case of mean-field models; in which the
variance of the activity in any one neuronal population is fixed. Unlike
neural-mass models, mean-field models consider the full density on
the hidden states of neuronal populations including the variance or
dispersion. We derived a generic mean-field treatment of neuronal
populations or ensembles based on a Laplace or Gaussian approxima-
tion to the population or ensemble density. The Laplace approximation
(also known as a saddle-point approximation) approximates the
integral of an exponential function using a second-order Taylor
expansion. When the function is a probability density, the implicit
assumption is that the density is approximately Gaussian. Because a
Gaussian density can be specified in terms of its first two moments, the
ensuing scheme is formally identical to the second-moment method
described by Rodriguez and Tuckwell (1996). This scheme summarizes
density dynamics with (ordinary differential) equations of motion for
the sufficient statistics of the ensemble density. This reduces to a
neural-mass model when the second-order statistics (i.e., variance) of
neuronal states is assumed to be constant. The key behaviour we were
interested in was the coupling between the mean and variance under
the Laplace approximation, which is lost in neural-mass approxima-
tions. In this work, we use the mean-field density dynamics as the
basis of a dynamic causal model (DCM) of observed data. The resulting
framework allows one to adjudicate between models which include
(or not) the high-order statistics of hidden neuronal states when
predicting EEG/MEG time series. This adjudication is based on the
relative evidence for different models of the same data that obtain
from Bayesian inversion (i.e,, fitting) of the models.

The aim of this work was to evaluate dynamic causal models based
on density dynamics and compare them to established neural-mass
models. DCM is a natural extension of the convolution models used in
the standard analysis of biological time series (see David et al., 2006).
DCM models neuronal dynamics in each source or region and
interactions within and between distributed sources. Currently, DCM
uses neural-mass models and implicitly considers only the mean
neuronal state for each population; i.e., special cases of the more general
population density formulation, in which we ignore all but the first-order
statistics (i.e., the mean). Here, we replace the neural-mass model with
second-order dynamics under the Laplace approximation using the
Fokker-Planck formalism (Frank, 2004) to give a mean-field model
(Marreiros et al., 2009). This allows us to model the interactions between
mean neuronal states (e.g,, firing rates) and their dispersion within each
population and to compare homologous DCMs based on neural-mass
and mean-field models in terms of their model evidence. This enabled us

to ask whether including density dynamics is warranted; i.e., to see if
there is any evidence for an effect of second-order statistics or dispersion.

The paper is composed of two sections. In the first, we summarize
density dynamics under mean-field and Laplace assumptions and
describe the resulting DCM framework. In the second section, we use
two EEG data sets and Bayesian model comparison (BMC) to assess the
relative evidence for neural-mass and mean-field models. In addition,
we establish the face validity of neural-mass DCMs and their mean-
field generalizations using synthetic data, generated using the
conditional estimates of the network parameters, for each of the
empirical examples.

Theory

Neural-mass and field models can reproduce neuronal dynamics
reminiscent of observed evoked responses. However, to emulate more
complex dynamics we may need to take into account the high-order
statistics of ensemble dynamics. In a previous paper (Marreiros et al.,
2009) we derived a generic mean-field treatment of neuronal
dynamics, based on a Laplace approximation to the ensemble density.
This model is formulated in terms of equations of motion for the
moments of the ensemble density, reducing to an NMM when the
second-order moment (variance) is ignored. The interesting behav-
iour in these mean-field models arises from the coupling between the
mean and variance of ensemble activity, which is ignored in neural-
mass approximations. Here, we will use the Laplace and neural-mass
approximations in DCMs of electrophysiological responses to sensory
input. We start by reviewing briefly mean-field and neural-mass
models (MFM and NMM) for M/EEG and then turn to Bayesian
estimation, inference and model comparison in the context of DCM.

Modelling neuronal dynamics with mean-field models

In DCM, neural-mass models are used to model the evolution of
the mean response of neuronal populations to exogenous or
experimental perturbations (David et al., 2006; Kiebel et al., 2008).
Mean-field approximations go further and model the distribution of
the population response. However, employing MFMs can be compu-
tationally expensive, because one has to consider the density at all
points in neuronal state-space, as opposed to a single quantity (e.g.,
the mean). In other words, to represent the full probability
distribution of states over a population, we would need to encode
the probability of finding a neuron in every state at each point in time,
which would require an infinite number of variables. Under the
Laplace approximation, the population or ensemble density reduces
to a Gaussian form, whose sufficient statistics is composed of only the
conditional mean and covariance. This simplification allows one to
model interactions between the first two moments (i.e., mean and
variance) of neuronal states in an efficient and tractable way.

In brief, the dynamics of neurons in an ensemble can be described
with the stochastic differential equation dx = f(x,u)dt + «dl, where f
(x,u) corresponds to the equations of motion describing neuronal
processes and ® controls the amplitude of uncorrelated random
fluctuations dI (i.e., a Weiner process) in neuronal states x(t)ER".
Here, u(t)=9%™ is a real valued vector of time-dependent exogenous or
experimental inputs. To compute the associated density dynamics, one
can use the Fokker-Planck formalism:" q= —V-fq +Vv-Dvq, where q
(x,t) is an approximate density on neuronal states (e.g., post synaptic
potentials and conductances) and D() is a diffusion tensor. The time-
dependent density q(x,t) is an ensemble density, which approximates
the probability of finding a neuron from the ensemble in state x and
time t. The high dimensionality and complexity of this Fokker-Planck
formalism can be finessed with a mean-field approximation, q(x,t) ~
IT q(x”,t), which describes the evolution of separable ensembles that
are coupled by mean-field effects. Moreover, the Laplace assumption
allows us to summarize the ensemble density with a Gaussian density,
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described by the mean and variance of the states of the i-th population.
By parameterizing the densities in terms of these time-dependent
sufficient statistics, we have; q(x,t) = N(u?3™). Please see
Marreiros et al. (2009) for a fuller explanation.

Crucially, the Laplace assumption allows the density dynamics
(based on stochastic differential equations) to be expressed as an
ordinary differential equation for its sufficient statistics (mean and
variance) in a compact form (Marreiros et al., 2009)

)= e + or(sVa") M
s 0 = g 050 4 505 0T 4 p) 4 por

This allows one to describe the population dynamics knowing only
the flow, its gradient and curvature at each point in state-space. The
reason that there are no superscripts on the sufficient statistics :=
W, u?, . 3MW3@ 3 is that the sufficient statistics of one
population can influence the sufficient statistics of another through
extrinsic and intrinsic connections. Eq. (1) shows explicitly how the
first and second moments of the density depend on each other; the
variance affects the mean when the curvature of the flow is nonzero
(which is always the case when the equations of motion are nonlinear
in the states). The effect of the mean on the variance depends on the
gradients of the flow, which only change with the mean, when the
curvature is nonzero. Therefore, the MFM formulation enables us to
model interactions between the mean of neuronal states (e.g.
postsynaptic potentials) and their variance over each population
modelled (cf.,, Harrison et al., 2005).

A special case of the MFM is obtained if we assume 3” is fixed for
all populations. This is the NMM, where we ignore all but the first
moment of the density (i.e., the mean or mode). Because the curvature
02" is generally constant and negative, this induces a decay term,
giving density dynamics of the form

i = 0w + %tr(E“’Aiﬁ"’) 2)

This corresponds to a neural-mass model and will be the NMM
used in this paper. The value for 3 we used was the stationary
solution to Eq. (1), in the absence of input (i.e., the same steady-state
value as in the MFM). Further assuming that 3 is spherical (i.e., all
off-diagonal terms are zero) means the decay terms disappears
because the leading diagonal; B,ZJ}") is generally O for most neuronal
models. This is because the self-decay terms are generally linear in the
states (see Eq. (3) below for an example). In this case, we can ignore
the second-order statistics completely and the dynamics reduce to the
original equations of motion for a single neuron: pt” = f(yu).

The equations of motion f for each population considered in this
paper are described in Marreiros et al. (2009) and conform to a simplified
Morris and Lecar (1981) model, where the states are composed of
transmembrane potential and three conductances: leaky, excitatory and
inhibitory. This conductance-based model can be expressed with the
equations of motion for the states of the i-th population

Yo
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The presynaptic input ¢{”:k<E,l scales with the expected firing
rate in all populations, where the sigmoid function of - ) is a Gaussian
cumulative density on the depolarization (Marreiros et al., 2008) and
the coupling parameters 'y,[} specify the connectivity among popula-
tions. Vg is the threshold potential for neuronal firing. These
parameters can be used to ensure that each population couples to
one and only one conductance type (i.e., each population can only
release one sort of neurotransmitter). Critically, in this work, the
model also allows for conduction delays on the connections (not
shown in the equations for simplicity). Given Eq. (3) we can write
down the derivatives that are required to evaluate the density
dynamics in Eq. (1) (cf. Eq. (18) in Marreiros et al. 2009), where,
dropping superscripts for clarity:
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This particular form of neuronal model is among the simplest that are
nonlinear in the states (note that the rate of change of voltage
depends on conductance times voltage). This nonlinearity is critical in
the present context because, as discussed above, in its absence there is
no coupling between the mean and dispersion (i.e., the neural-mass
and mean-field formulations would behave identically). We are not
suggesting, in the choice of this model, that it is a sufficient or
complete model of neuronal dynamics; this would be a wider
question for model comparison. We are using this minimal model to
ask whether mean-field formulations provide a better account of
observed neuronal responses than their neural-mass counterparts.

Having established the form of the ordinary differential equations
(Egs. (1) and (2)) for the mean-field and neural-mass models of
population activity, we now describe how they are embedded in a
DCM to provide a spatiotemporal forward model of observed
electromagnetic responses.

Dynamic causal modelling for EEG/MEG

Dynamic causal modelling provides a generative model for M/EEG
responses (David et al., 2006; Kiebel et al., 2008). The idea behind this
approach is that M/EEG data are the response of a distributed network
of interacting neuronal sources to experimental inputs. Here every
source contains different neuronal populations, each described by a
NMM or a MFM. Each population has its own (intrinsic) dynamics
governed by the neural-mass or the mean-field equations above, but
also receives extrinsic input, either directly as sensory input or from
other sources. The dynamics of these sources are specified fully by a
set of first-order differential equations that are formally related to
other neural-mass and mean-field models of M/EEG (e.g., Breakspear
et al. 2006; Rodrigues et al. 2006).

DCM for event related potential models the activity of a source
using three neural subpopulations, each assigned to one of three
cortical layers; an excitatory subpopulation in the granular layer, an
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inhibitory subpopulation in the supra-granular layer and a population
of deep pyramidal cells in the infra-granular layer. These are
connected using the connectivity rules described in the study of
Felleman and Van Essen (1991). See Fig. 1. Here, it is assumed that the
depolarization of pyramidal cell populations gives rise to observed M/
EEG data, which are expressed in the sensors through a conventional
lead-field. The full spatiotemporal model takes the form of a nonlinear
state-space model with hidden states modelling (unobserved)
neuronal dynamics, while the observation (lead-field) equation is
instantaneous and linear in the states. The ensuing DCM is specified in
terms of its state-equation (Egs. (1) or (2)) and an observer or output
equation

0‘1,”{/1)
h(9) = L(6) a,u? (5)

where 1/ is the mean depolarization of the i-th population and h(6)
is the predicted EEG or MEG signal. Here, (0,0, Y% kike,0...) are the
unknown quantities that parameterize the state and observer
equations (David et al., 2006). The parameters also control any
unknown attributes of the stimulus function encoding exogenous
input; we use Gaussian bump functions parameterized by their
latencies and dispersions. We assume the MEG or EEG signal is a linear

mixture of depolarizations in the pyramidal populations; where the
columns of L(#) are conventional lead-fields, which account for
passive conduction of the electromagnetic field from the sources to
the sensors (Mosher et al. 1999). The parameters of the lead-field, 6
encode the location and orientation of the underlying sources and o
scale their contribution to the dipole. Please see David et al. (2006)
and Kiebel et al. (2008) for further background and Daunizeau et al.
(2009) for details of the particular spatial model we used in this study.
The predicted signal h(6) corresponds to a generalized convolution
of exogenous inputs (i.e., experimental stimulus functions). Under
Gaussian assumptions about measurement noise, this generalized
convolution gives a likelihood model for observed M/EEG data:

y =vec(h(9) + XB) + ¢= ©)
p(y|9,N) = N(vec(h(9) + XpB),diag(\) @ V)

Observation noise, ¢, is assumed to be zero-mean Gaussian and
independent over channels, where A is a vector of unknown channel-
specific error variances and V represents a temporal autocorrelation
matrix. Low-frequency noise or drift components are modelled by
confounding variables in the columns of the matrix, X (this was
simply a constant term in this paper) with associated parameters 3 C
9. For computational expediency, we reduce the dimensionality of the
sensor data, while retaining the maximum amount of information.
This is assured by projecting the data onto a subspace defined by its
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Fig. 1. Neuronal state-equations for a source model with a layered architecture composed of three interconnected populations (spiny-stellate, interneurons, and pyramidal cells),

each of which has three different states (voltage, excitatory and inhibitory conductances).



A.C. Marreiros et al. / Neurolmage 51 (2010) 91-101 95

principal modes; computed using singular value decomposition; see
Fastenrath et al. (2009). Having established how the mean-field and
neural-mass models specify a likelihood model for observed signals,
we now consider how the ensuing DCM is fitted or inverted.

Bayesian estimation, conditional inference and model comparison

A DCM is fitted to data by tuning the free parameters to minimize
the discrepancy between predicted and observed MEG/EEG time
series, under complexity constraints. In addition to minimizing
prediction error, the parameters are constrained by a prior specifica-
tion of the range they are likely to lie in the study of Friston et al.
(2003). These constraints, which take the form of a prior density —p
(9), are combined with the likelihood, p(y|9), to form a posterior
density p(d]y) o p(y|9)p(¥) according to Bayes' rule. The priors p(9)
are usually specified under log-normal assumptions to impose
positivity constraints; and are therefore specified by the prior mean
and variance of log-parameters. Table 1 lists the priors for the free
parameters of the neuronal model and the values we used for its fixed
parameters.

For a given DCM, say model m, inversion corresponds to
approximating the moments of the posterior or conditional distribu-
tion given by Bayes' rule

p(y[¥, m)p(¥,m)

p(yIm) @

p(dy,m) =

The estimation procedure employed in DCM is described in the
study of Friston et al. (2003). The posterior moments (mean and
covariance) are updated iteratively using variational Bayes under a
fixed-form Laplace (i.e., Gaussian) approximation to the conditional
density —q(9). This can be regarded as an expectation-maximization
(EM) algorithm that employs a local linear approximation of the
predicted responses (Eq. (6)) about the current conditional expecta-
tion. The E-step conforms to a Fisher-scoring scheme (Fahrmeir and

Table 1
Prior densities on the neuronal parameters.

Tutz 1994) that performs a descent on a variational free-energy F(q,\,
m), with respect to the conditional moments. In the M-step, the error
variances A are updated in exactly the same way to provide their
maximum likelihood. The estimation scheme can be summarized as
follows:

E—step : g—ming F(q,\,m)
M-—step : A—min, F(q,\,m)

F(g,\,m) = (Inq(9) — Inp(y[9,\) — Inp(3|m)),
= KL(qllp(3y,\)) — Inp(y |\, m)

The free-energy is simply a function of the log-likelihood, the log-
prior and the approximation to the conditional density we seek. The
free-energy is the Kullback-Leibler divergence between the real and
approximate conditional density minus the log-likelihood. This means
that when the free-energy is minimized, the discrepancy between the
true and approximate conditional density is suppressed (because the
divergence is non-negative). At this point the free-energy approx-
imates the negative log-evidence F ~ —In p(y|\,m). This scheme is
identical to that employed by DCM for fMRI and evoked responses
(Friston et al., 2003; David et al., 2006).

The log-evidence is an important quantity because it allows one to
compare different models (Penny et al. 2004). We can approximate
the log-evidence for model m with In p(y|m) =~ —F. The most likely
model is the one with the largest log-evidence. Model comparison
rests on the likelihood ratio (i.e., Bayes-Factor) of the evidence or
relative log-evidence for two models. For models i and j the Bayes-
Factor is
By = ply|m) = InBy = Inp(y|m = i) — Inp(y|m = j) (9)

p(yim;)

Strong evidence in favour of one model typically requires the
difference in log-evidence to be three or more (Penny et al. 2004).

Free parameters

Extrinsic coupling parameters

Intrinsic coupling parameters

Capacitance

Time constants
Diffusion tensor

Conduction delays

Stimulus function parameters
Fixed parameters

Potentials
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Under flat priors on models this corresponds to a conditional
confidence that the winning model is exp(3) ~ 20 times more
likely than the alternative. This indicates that the data provide
‘strong’ (10:1 to 30:1) evidence in favour of one model over the
other. See http://en.wikipedia.org/wiki/Bayes_factor for the range
of Bayes factors indicating ‘very strong’ (30:1 to 100:1) and ‘decisive’
(more than 100:1) evidence for a model. In the next section, we will
use the free-energy bound on log-evidence to compare the different
models elaborated above.

Simulations and empirical results

Our key question was: can we find evidence for coupling between
the mean and dispersion of neuronal states in empirical data?
However, we anticipated that the answer would be context sensitive;
in the sense that some evoked responses may induce large fluctua-
tions in dispersion, whereas others may not. This context sensitivity
can be seen from the form of Eq. (1), where changes in the dispersion
of neuronal states depend upon the systems Jacobian 3, f”) or rate of
change of flow with state. The Jacobian depends on depolarization and
conductance (Eq. (4)), which depends on presynaptic input ¢f?. This
implies that we would expect to see large fluctuations in dispersion
and the ensuing effect on the mean under high levels of extrinsic
presynaptic input. We therefore chose to perform our model
comparison using two sorts of evoked responses. The first used a
traditional ‘cognitive’ paradigm (a mismatch negativity paradigm) in
which auditory stimuli can be regarded as delivering low amplitude
physiological inputs to cortical sources. In contrast, the second
paradigm was a somatosensory evoked potential (SEP) paradigm; in
which neuronal sources are excited with a non-physiological
electrical stimulus, eliciting transient but high amplitude presynaptic
inputs. We predicted that if there was any evidence for the mean-field
model, relative to the neural-mass model, then we would be more
likely to see it in the SEP paradigm, relative to the mismatch negativity

Network for MMN models

Input

x(mm): 46-61 59
Y(mm): -22-14 -32-25
Z(mm): 8 8 8

paradigm. In what follows, we describe these paradigms and the
results of our model comparisons.

Mismatch negativity paradigm

In this section, we analyze data from a multi-subject mismatch
negativity (MMN) study (Garrido et al. 2007a). This analysis is largely
the same as we have presented previously when looking at plasticity
using DCM. The only difference here is that we used the conductance-
based neuronal model described in Marreiros et al. (2009) and
compared the neural-mass and mean-field variants of this model. In
brief, the MMN is the differential response to an unexpected (rare or
oddball) auditory stimulus relative to an expected (standard) stimulus.
The MMN has been studied extensively and is regarded as a marker for
error detection, caused by a deviation from a learned regularity, or
familiar auditory context. According to Nddtdnen et al. (2001) the MMN
is caused by two underlying functional processes, a sensory memory
mechanism and an automatic attention-switching process that might
engage frontal generators (Giard et al. 1990). It has been shown that
the temporal and frontal MMN sources have distinct behaviours over
time (Rinne et al. 2000) and that these sources interact with each other
(Jemel et al. 2002). Thus the MMN could be generated by a
temporofrontal network (Doeller et al. 2003; Opitz et al. 2002; Escera
et al. 2003), as revealed by M/EEG and fMRI studies. In a predictive
coding framework, these findings can also be framed as adaptation and
experience-dependent plasticity in an auditory network (Jddskeldinen
et al., 2004; Friston, 2005; Garrido et al., 2007a,b).

Using DCM, we modelled the MMN generators with a temporo-
frontal network composed of bilateral sources over the primary and
secondary auditory and frontal cortex. Following Garrido et al.
(2007a), we used a five-source network with forward and backward
extrinsic (between-source) connections. Exogenous or auditory input
(modelled with u(t)ER, a parameterized bump function of time; see
Table 1) enters via subcortical structures into two bilateral sources in

Network for SEP models

x(mm): 4 -40 -40
y(mm): -24 -10 -30
z(mm): -8 45 45

Input

Fig. 2. DCM networks used for the mismatch negativity (MMN) and somatosensory evoked potential (SEP) paradigms. Forward connections (solid lines), backward connections
(dashed lines) and lateral connections (dotted lines) couple sources. The inserts shows the prior locations of sources; these are composed of vertices on a canonical cortical mesh
within 16 mm of the source locations shown in the Talairach and Tournoux coordinates. See text and Garrido et al. (2007a) for a full model description.
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Fig. 3. Bayesian model comparisons for NMM in relation to MFM. Right: relative log-
evidence for the NMM for each subject using the network in Fig. 2. The NMM log-
evidences are consistently better than the MFM log-evidences, with a pooled difference
>100 over subjects. Left: the same results for the SEP data; the group log-evidence
difference was >100 in favour of the MFM. The solid lines indicate the mean over subjects.
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posterior auditory cortex (IA1 and rAl). These have forward
connections to two bilateral sources in anterior auditory cortex; i.e.,
superior temporal gyri (ISTG and rSTG). These sources are laterally
and reciprocally connected via the corpus callosum. The fifth source is
located in the right inferior frontal gyrus (rIFG) and is connected to
the rSTG with reciprocal unilateral connections. Using these sources
and prior knowledge about the functional anatomy cited above, we
specified the DCM network in Fig. 2. Here, we were interested in
comparing the NMM and MFM formulations of this network, in terms
of their negative free-energy. To simplify the analysis, we modelled
only the responses evoked by standard stimuli (from 0 ms to 256 ms).

Empirical results

Two DCMs (NMM and MFM variants) were inverted for all twelve
subjects and compared using their log-evidence. Fig. 3 shows the
differences in log-evidences for each subject. For all but one subject,
there was decisive evidence for the NMM over the MFM. The log-
evidence at the group level (>100), pooled over all subjects (given the
data are conditionally independent over subjects) was similarly
decisive. Although the relative log-evidence is quantitatively mean-
ingful in its own right, one can also treat it as a log-odds ratio and use
its distribution over subjects to compute a classical p-value (Stephan
et al,, 2010). In this instance, a one-sample t-test was extremely
significant (T=3.58, df =11, p=0.002). This means that we can reject
the null hypothesis that the data are explained equally well by neural-
mass and mean-field formulations of the same neuronal model.

These results suggest the NMM is a better model for explaining
evoked auditory responses. Note that the complexities of the NMM
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Fig. 4. Upper panels: observed (left) and predicted (right) evoked responses over 128 channels and peristimulus time. Each coloured line corresponds to a different channel. These
results are from the neural-mass DCM of the first subject from the MMN paradigm. Lower panels: the same but showing MFM predictions. The observed response is duplicated
because it is adjusted for the confounding DC or constant term in our model (see Eq. (5)). This adjustment renders the observed data slightly different, depending on the model fit.
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Fig. 5. These are the same data as shown in Fig. 4 but in image format. Upper panels: observed (left) and predicted (right) evoked responses over 128 channels and peristimulus time
(grey scale normalised to the maximum of each image). These results are from the NMM-DCM of the first subject from the MMN paradigm. Lower panels: the same but showing MFM

predictions.

and MFM are the same; the MFM has more states but does not have
more unknown parameters. This may seem counterintuitive because
the dispersion in the MFM may appear to make it more complicated.
However, the dispersion is a sufficient static of a density on hidden
states and is not itself subject to random effects. This means, given the
model parameters, it is a deterministic quantity and does not add to
model complexity (i.e., it is specified by the same parameters as the
neural-mass model). This is important because the results in Fig. 3 are
remarkably consistent over subjects and cannot be explained by
differences in model complexity. In short, the NMM provides a better
prediction of the observed responses than the MFM, in this paradigm.
Furthermore, the differences between the NMM and MFM predictions
are fairly subtle (see Fig. 4). This suggests that the population variance
is actually quite stable over peristimulus time, because the model
selection clearly favours the predictions from the neural-mass model
(Fig. 5).

Simulations

We next performed some comparative evaluations and validations
of DCM using neural-mass and mean-field models, using synthetic
data based on the empirical results above. These are presented to
show that the empirical model comparison above is sufficiently
sensitive to disambiguate between neural-mass and mean-field
variants of the same model. After generating data from a known
model, we used model comparison to ask whether one can recover the
correct model over its alternative. We integrated the NMM and MFM
with known (true) model parameters derived from the real data
above (the conditional means from a DCM of the grand average over
subjects) and added random measurement noise with a standard
deviation of 10% of the peak response in channel space. This was
roughly the amplitude of noise in the real data—see Fig. 4. Finally, we
used the synthetic data generated by both models to invert the

neural-mass and mean-field DCMs. Table 2 lists the resulting log-
evidences. Each column contains the log-evidences for each data set.
The maximum values are found on the diagonal; i.e., the true model
had the greatest evidence and the relative evidence for the correct
model was ‘decisive’. These results confirm that these models can be
disambiguated using DCM, under empirically realistic levels of noise.

Somatosensory evoked potential paradigm

To explore the context sensitivity of these results, we analyzed
data from a study of paired associative stimulation (PAS) (Litvak et al.,
2007), which involves repetitive magnetic cortical stimulation timed
to interact with median nerve stimulation-induced peripheral signals
from the hand. The PAS paradigm has been shown to induce long-
lasting changes in somatosensory evoked potentials (Wolters et al.,
2005) as measured by single-channel recordings overlying somato-
sensory cortex. The SEP generators evoked by compound nerve
stimulation have been studied extensively with both invasive and
non-invasive methods in humans and in animal models (Allison et al.,
1991). Litvak et al. (2007) characterised the topographical distribu-
tion of PAS-induced excitability changes as a function of the timing
and composition of afferent somatosensory stimulation, with respect

Table 2
Log-evidences for neural-mass (NMM) and mean-field (MFM) models using synthetic
data generated by a five-source MMN model (see Fig. 2) using NMM and MFM
formulations. The diagonal values in bold show higher log-evidences for the true
model.

Models Synthetic data

NMM MFM
NMM —662.7 —952.9
MFM —844.2 —665.5
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to a transcranial magnetic stimulation (TMS). The temporal response
pattern of the SEP is composed of a P14 component generated
subcortically and then an N20-P30 complex from the sensorimotor
cortex, which is followed by a P25-N35 complex (Allison et al. 1991).
The remainder of the SEP can be explained by a source originating
from the hand representation in S1 (Litvak et al., 2007).

We chose these data as examples of fast sensory transients that
might engage a more circumscribed network than the auditory
stimuli in the MMN paradigm above. We anticipated that the density
dynamics of neuronal populations that were stimulated electromag-
netically, may disclose the effects of dispersion (see above). We
analyzed the SEP data from eleven subjects following median nerve
stimulation (i.e., in the absence of transcranial magnetic stimulation)
as above. The network architecture was based on previous reports
(Buchner et al.,, 1995; Ravazzani et al., 1995, Litvak et al., 2007): we
modelled the somatosensory system with three sources, each
comprising three neuronal populations. In this model (see Fig. 2,
Litvak et al., 2007 and Marreiros et al. 2008) exogenous input was
delivered to the brainstem source (BS), which accounts for early
responses in the medulla. The input was a mixture of two
parameterized bump functions with prior latencies based on known
conduction delays (see Table 1). This region connects to two sources
Sland SIlin Brodmann area 3 (Marreiros et al., 2008). We inverted the
resulting DCMs using the sensor data from 4 ms to 64 ms, following
stimulation. We report the results form the first ten subjects because
the DCM inversion failed to converge for the last subject.

Empirical results
Fig. 3 (right) shows the log-evidence differences. In stark contrast

to the MMN results, there was ‘decisive’ evidence in all but one subject
for the MFM over the NMM. Moreover, the large group difference in

log-evidence of (>100) favours the MFM model; i.e., if we had to
account for the data from all subjects with the same model, then the
evidence for the MFM was decisive. The classical p-value was similarly
significant (T=2.19, df =9, p=0.028) but less significant than in the
MMN analyses due to larger inter-subject variability. These results
indicate that the MFM is, in this instance, a demonstrably better
explanation for somatosensory evoked potentials. It is important to
appreciate that exactly the same model was used for the MMN and
SEP data, including the prior density on the free parameters (with the
exception of the exogenous input). However, the results of model
comparison are, as anticipated, completely the opposite and remark-
ably consistent over subjects for both paradigms.

Anecdotally, the superior performance of the mean-field model
seemed to be its ability to fit both the early N20-P30 complex and
later waveform components of the SEP (although no model was able
to fit the P14 components convincingly). This contrasts with the
neural-mass model that was unable to reproduce the fast initial
transients but was able to model the slower components that
followed. The results from the first subject in channel space illustrate
this difference nicely (Fig. 6); showing that the predictions of both
models are almost indistinguishable after 30 ms. Phenomenologically,
this means that the dispersion of neuronal states in the MFM confers a
greater range on the time constants of population dynamics, which
allows the MFM to reproduce fast, large-amplitude responses in, we
presume, relatively circumscribed neuronal populations responding
synchronously to extrinsic afferents.

Simulations
To ensure the model comparison retained its sensitivity in this SEP

setting, we again generated synthetic data using the conditional
means of the parameters estimated from the empirical SEP data. We
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Fig. 6. Observed and predicted responses from the SEP paradigm in the first subject. These images adopt the same format as Fig. 5 but showing responses over 64 channels and 4 ms
to 64 ms of peristimulus time. The key thing to note here is the failure of the neural-mass DCM to model the early (N20) components of the SEP (white rectangle), relative to its
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Table 3

Log-evidences for neural-mass (NMM) and mean-field (MFM) models using synthetic
data generated by a three-source SEP model (see Fig. 2) using NMM and MFM
formulations. The diagonal values in bold show higher log-evidences for the true model.

Models Synthetic data

NMM MFM
NMM —185.0 —175.8
MFM —369.6 —102.1

used an NMM and an MFM for generation and inversion and evaluated
all combinations to ensure that model selection identified the correct
model. For the integration of the forward models, we used the
conditional means of parameters over subjects. We added random
noise to these synthetic data, with a standard deviation that was 5% of
the peak response in sensor space. We used the three-source model
above (Litvak et al., 2007; Marreiros et al., 2008) to generate and model
data. Table 3 presents the log-evidences for each of the four inversions.
The highest evidences were obtained for the models that were used to
generate the synthetic data: these correspond to the diagonal entries.
Again, the results conform that model comparison can identify the
correct model of these somatosensory responses, and do so decisively.

A quantitative illustration of density dynamics

Fig. 7 (upper left panel), shows the sufficient statistics of
population activity for source in the first SEP subject. These are the
mean and covariance of neuronal states, in source space. These are
obtained by integrating the ensemble dynamics in Eq. (1), using the
equations of motion in Eq. (3) and Fig. 1 and the conditional
parameter estimates. Generally, when the mean depolarization
increases, the covariance decreases, getting close to zero when the
mean approaches its maximum. This is seen here at about 30 ms. This
concentration of neuronal states augments the decay of mean
depolarization (see Eq. (1)). Note that at around 20 ms the N20 is
modelled by polyphasic dynamics in the mean depolarization that
rests on a coupling with dispersion. These coupling and ensuing
dynamics are the ones missing in the neural-mass model. In the lower

Source space

Variance

time (ms)

Fig. 7. Standard DCM output for MFM of the SEP data. Upper panel: conditional
estimates of the mean (solid lines) and covariance (dotted lines) of neuronal states, in
source space (coloured lines correspond to different neuronal subpopulations). Lower
panel: conditional estimates of responses, in sensor space (coloured lines correspond to
different spatial modes; solid line: predicted; dotted line: observed).

panel, we see the conditional response estimate, in sensor space, in
terms of the observed (dotted lines) and predicted (solid lines) time
series for all modes. These results are representative of DCM
prediction accuracy.

Discussion

We have introduced a mean-field DCM for M/EEG data, which
approximates the full density dynamics of population activity in
neuronal sources of observed electromagnetic responses with a
Gaussian density. This work was motivated by the observation that
neural-mass models, which consider only the first moment of the
density of each neuronal population, can be seen as a limiting case
of mean-field models (Marreiros et al., 2009). The mean-field model
used physiological plausible priors with the hope of creating a
reasonably realistic conductance-based model (cf., Rodrigues et al.,
2006). We have shown, using model inversion and simulations that
one can disambiguate between MFM and NMM models (Tables 2
and 3) and found that the NMM was the best model for explaining
the MMN data. In contrast, we found that the MFM was a better
model of the SEP data (Fig. 3), in the vast majority of subjects and
at the group level. We deliberately chose these distinct data sets in
the hope of disclosing this dissociation between neural-mass and
mean-field models.

This difference in performance between the two models on the
two data sets lies in the difference between Eqgs. (1) and (2). Our
results suggest that the MFM captures the faster SEP population
dynamics better than the NMM. This may be because the SEP
paradigm evokes larger presynaptic inputs to small circumscribed
neuronal populations as compared to the MMN and related cognitive
paradigms. It is this input that induces changes in conductance which
synchronise hidden states and cause a subsequent suppression of
mean activity. It can be seen from Eq. (1) that changes in covariance
depend on the derivative of flow. Eq. (4) shows that this depends on
depolarization and conductance. In support of this, the MFM solutions
for the SEP data do indeed show a reciprocal coupling between mean
depolarization and variance (see Fig. 7). Having said this, the
appropriateness of a model for any particular data or paradigm data
cannot necessarily be deduced analytically. The aim of this paper was
to show that questions about density dynamics of this sort can be
answered using Bayesian model comparison. Future studies with
NMM and MFM may provide heuristics about the relative utility of
these models. In particular, it will be interesting to use MFMs when
more complex dynamics are induced by extreme perturbations from
steady-state dynamics (e.g., transcranial magnetic stimulation).

Most DCMs in the literature are deterministic; in that they allow
for observation noise on the sensors but do not consider random
fluctuations on hidden states. Here, the hidden states in mean-field
DCMs are sufficient statistics of a density, which accommodates
random fluctuations on neuronal states. This is important because it
means we can model systems specified in terms of stochastic
differential equations (cf,, Eq. (3)) with ordinary differential equa-
tions (Eq. (1)) through the Fokker-Planck formalism. A potential
application of this approach, beyond finessing prediction of EEG
signals, could be in the context of EEG-fMRI fusion; where the second-
order statistics of neuronal activity (cf., power) may be an important
predictor of BOLD signals.

It is important to appreciate that the scheme described in this
paper is not tied to any particular model of neuronal dynamics. The
same comparisons presented above could be repeated easily, using
any model of neuronal dynamics that are entailed by their equations
of motion. Indeed, we anticipate that people will want to compare
neural-mass and mean-field implementations of different models
(see software note). The only constraint on these comparisons is that
the equations of motion should be nonlinear in the neuronal states.
This is because linear models preclude a coupling of first and second-
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order moments and render the behaviour of the neural-mass and
mean-field formulation identical.

Conclusion

We have shown that it is possible to implement a mean-field DCM,
which considers the mean and variance of neuronal population
activity. The modulation of second-order statistics may be a useful
extension of DCM for evoked responses, as measured with magne-
toencephalography and electroencephalography. Critically, the role of
higher moments can be assessed empirically in a Bayesian model
comparison framework. In this initial work, we conclude that,
although conventional neural-mass models may be sufficient for
modelling responses in conventional cognitive paradigms, it is easy to
find evidence for coupling among the moments of neuronal ensemble
densities in observed EEG data.

Software note

Matlab demonstration and analysis routines referred to in this
paper are available as academic freeware as part of the SPM software
from http://www.filion.uclac.uk/spm.

Acknowledgments

The Portuguese Foundation for Science and Technology and the
Wellcome Trust supported this work. We thank Marta Garrido for the
MMN data and Vladimir Litvak and Joseph Classen for the SEP data.

References

Allison, T., McGarthy, G., Wood, C.C., Jones, S.J., 1991. Potentials evoked in human and
monkey cerebral cortex by stimulation of the median nerve. A review of scalp and
intracranial recordings. Brain 114, 2465-2503.

Amari, S., 1972. Characteristics of random nets of analog neuron-like elements. IEEE
Trans. Syst. Man Cybern. 2 (5), 643-657.

Amari, S., 1975. Homogeneous nets of neuron-like elements. Biol. Cybern. 17, 211-220.

Breakspear, M., Roberts, J.A., Terry, J.R., Rodrigues, S., Mahant, N., Robinson, P.A., 2006. A
unifying explanation of primary generalized seizures through nonlinear brain
modeling and bifurcation analysis. Cereb. Cortex 16, 1296-1313.

Buchner, H., Adams, L., Muller, A., Ludwig, I, Knepper, A., Thron, A, Niemann, K., Scherg,
M., 1995. Somatotopy of human hand somatosensory cortex revealed by dipole
source analysis of early somatosensory evoked potentials and 3D-NMR tomogra-
phy. Electroencephalogr. Clin. Neurophysiol. 96, 121-134.

David, O., Friston, K.J., 2003. A neural-mass model for MEG/EEG: coupling and neuronal
dynamics. Neurolmage 20, 1743-1755.

David, O., Kiebel, S.J., Harrison, L.M., Mattout, ]., Kilner, .M., Friston, KJ., 2006. Dynamic
causal modeling of evoked responses in EEG and MEG. Neurolmage 30 (4), 1255-1272.

Daunizeau, J., Kiebel, SJ., Friston, KJ., 2009 Aug 15. Dynamic causal modelling of
distributed electromagnetic responses. Neuroimage 47 (2), 590-601.

Deco, G., Jirsa, V.K., Robinson, P.A., Breakspear, M., Friston, KJ., 2008. The dynamic brain:
from spiking neurons to neural-masses and cortical fields. PLoS Comput. Biol. 4 (8),
e1000092.

Doeller, C.F., Opitz, B., Mecklinger, A., Krick, C., Reith, W., Schroger, E., 2003. Prefrontal
cortex involvement in preattentive auditory deviance detection: neuroimaging and
electrophysiological evidence. Neuroimage 20, 1270-1282.

Escera, C., Yago, E., Corral, M., Corbera, S., Nunez, M.L, 2003. Attention capture by
auditory significant stimuli: semantic analysis follows attention switching. Eur. J.
Neurosci. 18, 2408-2412.

Fahrmeir, L., Tutz, G., 1994. Multivariate Statistical Modelling Based on Generalized
Linear Models. Springer-Verlag, New York.

Fastenrath, M., Friston, KJ., Kiebel, SJ., 2009. Dynamical causal modelling for M/EEG:
spatial and temporal symmetry constraints. Neurolmage 44 (1), 154-163.

Felleman, D.J., Van Essen, D.C., 1991. Distributed hierarchical processing in the primate
cerebral cortex. Cereb. Cortex 1, 1-47.

Frank, T.D., 2004. Nonlinear Fokker-Planck Equations: Fundamentals and Applications.
Springer Series in Synergetics. Springer, Berlin.

Frank, T.D., Daffertshofer, A., Beek, P.J., 2001. Multivariate Ornstein-Uhlenbeck
processes with mean-field dependent coefficients: application to postural sway.
Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 63 (011), 905.

Freeman, W.J., 1975. Mass Action in the Nervous System. Academic Press, New York.

Friston, K., 2005. Philos. Trans. R. Soc. Lond., B Biol. Sci. 360, 815-836.

Friston, K., Harrison, L.M., Penny, W.D., 2003. Dynamic causal modelling. Neurolmage
19 (4), 1273-1302.

Garrido, ML, Kilner, J.M., Kiebel, SJ., Stephan, K.E., Friston, KJ., 2007a. Dynamic causal
modelling of evoked potentials: a reproducibility study. Neurolmage 36, 571-580.

Garrido, M.L, Kilner, J.M,, Kiebel, S.J., Friston, KJ., 2007b. Evoked brain responses are
generated by feedback loops. PNAS 104 (52), 20961-20966.

Giard, M.H., Perrin, F., Pernier, J., Bouchet, P., 1990. Brain generators implicated in the
processing of auditory stimulus deviance: a topographic event-related potential
study. Psychophysiology 27, 627-640.

Harrison, L.M., David, O., Friston, KJ., 2005. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360
(1457), 1075-1091.

Haskell, E., Nykamp, D.Q., Tranchina, D., 2001. Population density methods for large-
scale modelling of neuronal networks with realistic synaptic kinetics: cutting the
dimension down to size. Network 12, 141-174.

Jadskeldinen, L.P., Ahveninen, J., Bonmassar, G., Dale, A.M., lmoniemi, RJ., Levanen, S.,
Lin, F.H., May, P., Melcher, ], Stufflebeam, S., Tiitinen, H., Belliveau, J.W., 2004.
Human posterior auditory cortex gates novel sounds to consciousness. Proc. Natl.
Acad. Sci. U. S. A. 101, 6809-6814.

Jansen, B.H., Rit, V.G., 1995. Electroencephalogram and visual evoked potential
generation in a mathematical model of coupled cortical columns. Biol. Cybern.
73, 357-366.

Jemel, B., Achenbach, C., Muller, B.W., Ropcke, B., Oades, R.D., 2002. Mismatch negativity
results from bilateral asymmetric dipole sources in the frontal and temporal lobes.
Brain Topogr. 15, 13-27.

Jirsa, VK, Haken, H, 1996 Jul 29. Field theory of electromagnetic brain activity. Phys. Rev.
Lett. 77 (5), 960-963.

Kiebel, S.J., Garrido, ML.L, Moran, RJ., Friston, KJ., 2008. Dynamic causal modelling for
EEG and MEG. Cogn. Neurodyn. 2 (2), 121-136.

Knight, B.W., 1972a. The relationship between the firing rate of a single neuron
and the level of activity in a population of neurons. Experimental evidence
for resonant enhancement in the population response. ]J. Gen. Physiol. 59,
767-778.

Knight, B.W., 1972b. Dynamics of encoding in a population of neurons. J. Gen. Physiol.
59, 734-766.

Litvak, V., Zeller, D., Oostenveld, R., Maris, E., Cohen, A, Schramm, A., Gentner, R.,
Zaaroor, M., Pratt, H., Classen, ]., 2007. LTP-like changes induced by paired
associative stimulation of the primary somatosensory cortex in humans: source
analysis and associated changes in behaviour. Eur. J. Neurosci. 25 (9), 2862-2874.

Lopes da Silva, F.H, van Rotterdam, A., Barts, P., van Heusden, E., Burr, W., 1976. Models
of neuronal populations: the basic mechanisms of rhythmicity. Prog. Brain Res. 45,
281-308.

Marreiros, A.C., Kiebel, SJ., Daunizeau, J., Friston, KJ., 2008. Population dynamics:
variance and the sigmoid activation function. Neuroimage 42 (1), 147-157.

Marreiros, A.C., Kiebel, S.J., Daunizeau, J., Harrison, L.M., Friston, KJ., 2009. Population
dynamics under the Laplace assumption. Neuroimage 44 (3), 701-714.

Morris, C., Lecar, H., 1981. Voltage oscillations in the barnacle giant muscle fiber.
Biophys. J. 35, 193-213.

Mosher, J.C., Leahy, RM., Lewis, P.S., 1999. EEG and MEG: forward solutions for inverse
methods. IEEE Trans. Biomed. Eng. 46, 245-259.

Nditdnen, R., Tervaniemi, M., Sussman, E., Paavilainen, P., Winkler, 1., 2001. “Primitive
intelligence” in the auditory cortex. Trends Neurosci. 24, 283-288.

Nunez, P.L, 1974. The brain wave equation: a model for the EEG. Math. Biosci. 21,
279-297.

Nykamp, D.Q., Tranchina, D., 2000. A population density approach that facilitates large-
scale modeling of neural networks: analysis and an application to orientation
tuning. J. Comput. Neurosci. 8, 19-50.

Omurtag, A., Knight, B.W., Sirovich, L., 2000. On the simulation of large populations of
neurons. J. Comput. Neurosci. 8, 51-63.

Opitz, B., Rinne, T., Mecklinger, A., von Cramon, D.Y., Schroger, E., 2002. Differential
contribution of frontal and temporal cortices to auditory change detection: fMRI
and ERP results. Neuroimage 15, 167-174.

Penny, W.D.,, Stephan, K.E., Mechelli, A, Friston, KJ., 2004. Comparing dynamic causal
models. Neurolmage 22, 1157-1172.

Ravazzani, P., Tognola, G., Grandori, F., Budai, R., Locatelli, T., Cursi, M., Di Benedetto, G.,
Comi, G., 1995. Temporal segmentation and multiple source analysis of short-
latency median nerve SEPs. J. Med. Eng. Technol. 19, 70-76.

Riera, JJ, Jimenez, JC, Wan, X, Kawashima, R, Ozaki, T., 2007 Aprr. Nonlinear local
electrovascular coupling. II: from data to neuronal masses. Hum. Brain Mapp. 28
(4), 335-354.

Rinne, T., Alho, K., llmoniemi, RJ., Virtanen, J., Nditinen, R., 2000. Separate time
behaviors of the temporal and frontal mismatch negativity sources. Neuroimage 12,
14-19.

Robinson, P.A., Rennie, CJ., Rowe, D.L., 0'Connor, S.C., Gordon, E., 2005. Multiscale brain
modelling. Phil. Trans. Roy. Soc. B 360, 1043-1050.

Rodriguez, R., Tuckwell, H.C,, 1996. Statistical properties of stochastic nonlinear
dynamical models of single spiking neurons and neural networks. Phys. Rev. E 54,
5585.

Rodrigues, S., Terry, ].R., Breakspear, M., 2006. On the genesis of spikewave oscillations
in a mean-field model of human thalamic and corticothalamic dynamics. Phys. Lett.
A 355, 352-357.

Sampolinsky, H., Zippelius, A., 1982. Relaxational dynamics of the Edwards-Anderson
model of the mean-field theory of spin-glasses. Physical Review B 25 (11),
6860-6875.

Stephan, K.E., Penny, W.D., Moran, RJ., den Ouden, H.E., Daunizeau, J., Friston, KJ., 2010
Nov 12. Ten simple rules for dynamic causal modeling. Neuroimage 49 (4),
3099-3109.

Valdes, P.A,, Jimenez, ].C., Riera, ]., Biscay, R., Ozaki, T., 1999. Nonlinear EEG analysis
based on a neural-mass model. Biol. Cybern. 81, 415-424.

Wilson, H.R., Cowan, J.D., 1972. Excitatory and inhibitory interactions in localized
populations of model neurons. Biophys. J. 12, 1-24.



