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We offer a formal treatment of choice behavior based on the premise that agents minimize the expected free energy of

future outcomes. Crucially, the negative free energy orquality of a policy can be decomposed into extrinsic and epistemic

(or intrinsic) value. Minimizing expected free energy is therefore equivalent to maximizing extrinsic value or expected

utility (defined in terms of prior preferences or goals), while maximizing information gain or intrinsic value (or reducing

uncertainty about the causes of valuable outcomes). The resulting scheme resolves the exploration-exploitation dilemma:

Epistemic value is maximized until there is no further information gain, after which exploitation is assured through

maximization of extrinsic value. This is formally consistent with the Infomax principle, generalizing formulations of

active vision based upon salience (Bayesian surprise) and optimal decisions based on expected utility and risk-sensitive

(Kullback-Leibler) control. Furthermore, as with previous active inference formulations of discrete (Markovian)

problems, ad hoc softmax parameters become the expected (Bayes-optimal) precision of beliefs about, or confidence

in, policies. This article focuses on the basic theory, illustrating the ideas with simulations. A key aspect of these

simulations is the similarity between precision updates and dopaminergic discharges observed in conditioning paradigms.
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This article introduces a variational (free energy)

formulation of explorative behavior and the

(epistemic) value of knowing one’s environment. This

formulation tries to unite a number of perspectives on

behavioral imperatives; namely, the exploration-

exploitation dilemma and the distinction between the

explicit (extrinsic) value of controlled outcomes

and their epistemic (intrinsic) value in reducing

uncertainty about environmental contingencies

(Bialek, Nemenman, & Tishby, 2001; Botvinick &

An, 2008; Braun, Ortega, Theodorou, & Schaal, 2011;

Bromberg-Martin & Hikosaka 2009; Cohen, McClure,
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& Yu, 2007; Daw, Niv, & Dayan, 2005; Daw,

O’Doherty, Dayan, Seymour, & Dolan, 2006; Friston

et al., 2014; Pezzulo & Castelfranchi, 2009;

Schmidhuber, 1991; Solway & Botvinick, 2012; Still,

2009; Tishby & Polani, 2010). In particular, it addresses

how resolving uncertainty “makes the world interesting

and exploitable” (Still & Precup, 2012, p. 139). It is the

resolution of uncertainty that we associate with the

intrinsic value of behavior, which we assume is

synonymous with epistemic value. Our basic approach

is to cast optimal behavior in terms of inference, where

actions are selected from posterior beliefs about

behavior. This allows one to frame goals and

preferences in terms of prior beliefs, such that goals

are subsequently fulfilled by action (Botvinick &

Toussaint, 2012; Kappen, Gomez, & Opper, 2012;

Toussaint & Storkey, 2006). This furnishes an

explanation of behavior in terms of one

straightforward imperative—to minimize surprise or,

equivalently, to maximize Bayesian model evidence.

The resulting active inference scheme unifies

conventional treatments of normative behavior under

uncertainty. Classical treatments generally consider

belief updates and action selection separately, calling

on Bayesian inference to optimize beliefs and other

schemes (such as dynamic programming) to select

actions (Bonet & Geffner, 2014; Hauskrecht, 2000;

Kaelbling, Littman, & Cassandra, 1998). Treating

action selection as (active) inference means that both

state estimation and the ensuing behavior can be

described as a minimization of variational free energy

or surprise.1 In this setting, action reduces the difference

between the current and (unsurprising) goal states that

are defined by prior expectations, much like cybernetic

formulations (Miller, Galanter, & Pribram, 1960). This

difference can be reduced in two ways. First, by

executing a pragmatic action, that fulfills goals

directly (i.e., exploitation); for example, by visiting a

known reward site in the context of foraging. Second, by

performing an epistemic action (i.e., exploration) to

disclose information that enables pragmatic action in

the long run; for example, exploring a maze to

discover unknown reward sites (Kirsh & Maglio,

1994). Clearly, most behavior has both pragmatic and

epistemic aspects. Epistemic actions are the focus of

much current research (Andreopoulos & Tsotsos,

2013; Ferro, Ognibene, Pezzulo, & Pirrelli, 2010;

Kamar & Horvitz, 2013; Lepora, Martinez-Hernandez,

& Prescott, 2013; Lungarella & Sporns, 2006;

Ognibene, Chinellato, Sarabia, & Demiris, 2013;

Ognibene, Volpi, Pezzulo, & Baldassare, 2013;

Pezzementi, Plaku, Reyda, & Hager, 2011; Schneider

et al., 2009; Singh, Krause, Guestrin, & Kaiser, 2009).

For example, the coastal navigation algorithm (Roy,

Burgard, Fox, & Thrun, 1999) shows that epistemic

actions can sometimes increase the distance from a

goal. In this example, agents move toward a familiar

location (and away from the goal) to plan a path to the

goal with greater confidence. This example illustrates

the exploration-exploitation dilemma encountered at

every decision point—and the implicit choice between

epistemic and pragmatic actions. This choice is usually

addressed in the setting of reinforcement learning

(Dayan, 2009; Humphries, Khamassi, & Gurney,

2012; Still & Precup, 2012) but here we place more

emphasis on planning or inference (Attias, 2003;

Botvinick & Toussaint, 2012). In short, we offer a

solution to exploration-exploitation dilemma that rests

solely on the minimization of expected free energy.

In active inference, constructs like reward, utility,

epistemic value, etc. are described in terms of prior

beliefs or preferences. In other words, preferred

outcomes are simply outcomes one expects, a priori, to

be realized through behavior (e.g., arriving at one’s

destination or maintaining physiological states within

some homoeostatic range). This formulation of utility

has a number of advantages. First, it eliminates any ad

hoc parameters in classical schemes (such as softmax

parameters, temporal discounting, etc.). Second, it

reveals the formal relationships among classical

constructs, enabling their interpretation in terms of

beliefs or expectations. For example, we have

previously shown that the softmax parameter in

classical (utilitarian) choice models corresponds to the

precision or confidence in posterior beliefs about

policies—and that this precision increases with

expected utility (Friston et al., 2014). Third, this

formulation is equipped with a relatively simple and

biologically plausible process theory based upon

variational message passing (Friston et al., 2013). This

can be potentially useful when looking for the neuronal

correlates of message passing in decision-making

paradigms. Finally, casting rewards and value as

probabilistic beliefs means that intrinsic and extrinsic

values share a common currency. This means one can

express (extrinsic) reward in terms of (epistemic)

information gain and quantify their relative

contributions to behavior.

Formally speaking, we resolve the exploration-

exploitation dilemma by endowing agents with prior

beliefs that they will minimize the expected free energy

1Variational free energy was introduced by Richard Feynman to

solve inference problems in quantum mechanics and can be

regarded as a generalization of thermodynamic free energy. In this

paper, free energy refers to variational free energy. We will see later

that minimizing free energy (or maximizing negative free energy)

corresponds to maximizing expected value.
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of future outcomes. In other words, the agent will be

surprised if it behaves in a way that is not Bayes

optimal. Because expected free energy determines

action selection, the resulting behavior is necessarily

Bayes optimal. Crucially, expected free energy is

minimized over an extended timescale, making

exploration a necessary and emergent aspect of

optimal behavior. Expected free energy can be

expressed as the Kullback-Leibler (KL) divergence

between the posterior (predictive) and prior

(preferred) distributions over future outcomes, plus

the expected entropy of those observations, given

their causes. In brief, minimizing this divergence

ensures preferred outcomes are actively sampled from

the environment, while minimizing the expected

entropy resolves uncertainty about the (hidden) states

causing those outcomes.2 Intuitively, these two aspects

of emergent behavior (sampling preferred outcomes

and minimizing expected uncertainty) correspond to

exploitation and exploration, respectively.

Interestingly, the negative expected free energy can

also be expressed as the expected divergence between

the posterior (predictive) distribution over hidden

states with and without future observations, plus the

expected utility (defined as the log of the prior

probability of future states). We will associate these

terms with epistemic and extrinsic value respectively.

We have shown previously that minimizing the

divergence between the posterior predictive

distribution and prior preferences produces behavior

that is risk-sensitive or KL optimal (Friston et al.,

2013). Here, we show that this risk-sensitive control is

a special case of minimizing expected free energy,

which effectively supplements expected utility with a

KL divergence that reflects epistemic value, mutual

information, information gain, or Bayesian surprise,

depending upon one’s point of view. The KL

divergence is also known as relative entropy or

information gain. This means that minimizing

expected free energy maximizes information gain

(Ognibene & Demiris, 2013; Sornkarn, Nanayakkara,

& Howard, 2014; Tishby & Polani, 2010) or,

heuristically, satisfies curiosity by reducing uncertainty

about the world (Schmidhuber, 1991). An alternative

perspective on this epistemic quantity is afforded by

Bayesian surprise; namely, the KL divergence

between prior and posterior beliefs (Bruce & Tsotsos,

2009; Itti & Baldi, 2009). However, in this case, the

Bayesian surprise pertains to future states that have yet

to be observed.

For readers who are familiar with our previous work

on active inference, this paper introduces a generic

formulation that combines earlier work on optimal

choice behavior (Friston et al., 2014) with

formulations of salience based on sampling the world

to resolve uncertainty (Friston, Adams, Perrinet, &

Breakspear, 2012). These two formulations can be

regarded as special cases of minimizing expected free

energy, when sensory cues are unambiguous and when

outcomes have only epistemic value, respectively. In

this article, we show that minimizing expected free

energy provides an inclusive perspective on several

other established formulations of behavior.

In what follows, we introduce the basic formalism

behind active inference, with a special focus on

epistemic value and how this emerges under active

(Bayesian) inference. The second section considers

(biologically plausible) variational message passing

schemes that can be used to simulate active

inference in the context of partially observed

Markov decision processes (Kaelbling et al., 1998)

or to model empirical choice behavior. The final

sections present simulations of exploration and

exploitation, using a simple foraging game to

illustrate the fundamental role of epistemic value in

actively resolving uncertainty about goal-directed

behavior. These sections consider planning and

learning as inference, respectively. In future work,

we will consider the optimization of models per se

in terms of Bayesian model selection (structure

learning) and the role of Bayesian model averaging

in contextualizing shallow (model-free) and deep

(model-based) models.

ACTIVE INFERENCE

This section describes active inference, in which

inference and behavior are seen as consequences

of minimizing variational free energy or,

equivalently, maximizing Bayesian model evidence

(Friston, 2010). We have previously considered

epistemic value and salience using continuous

time predictive coding schemes and saccadic

searches (Friston et al., 2012). Here, we will use a

discrete time and state space formulation of Bayes

optimal behavior to show that information gain is a

necessary consequence of minimizing expected free

energy.

This formulation rests upon two key distinctions.

First, we distinguish between a real world process that

generates observations and an agent’s internal model

2Note the dialectic between minimizing the entropy expected in

the future and maximizing the entropy of current beliefs—implicit

in minimizing free energy Friston et al. (2012). “Perceptions as

hypotheses: Saccades as experiments.” Front Psychol. 3: 151.
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of that process. These are referred to as the generative

process and generative model respectively. The

process and model are coupled in two directions:

(sensory) observations generated by the generative

process are observed by the agent, while the agent

acts on the world to change that process. We will see

that action serves to minimize the same quantity

(variational free energy) used to make inferences

about the hidden causes of observations. Crucially,

action is a real variable that acts on the generative

process, while the corresponding hidden cause in the

generative model is a control state. This means the

agent has to infer its behavior by forming beliefs

about control states, based upon the observed

consequences of its action.

We will adopt the formalism of partially observed

Markov decision processes (POMDP). This is just a

way of describing transitions among (discrete) states,

under the assumption that the probability of the next

state depends on, and only on, the current state. The

partially observed aspect of the ensuing Markovian

process means that the states of the generative process

are hidden and have to be inferred through a limited

set of (possibly noisy) observations.3

Notation: We use conventional notation, where the

parameters of categorical distributions over discrete

states s 2 S 2 f1; . . . ; Jg are denoted by J # 1

vectors of expectations S
_

2 ½0; 1%, while the ~ notation

denotes sequences of variables over time. The entropy

of a probability distribution PðaÞ ¼ PrðA ¼ aÞ will be
denoted by HðAÞ ¼ H ½PðaÞ% ¼ EPðaÞ½) lnPðaÞ% and

the relative entropy by the Kullback-Leibler (KL)

divergence D½QðaÞjjPðaÞ% ¼ EQðaÞ½lnQðaÞ ) lnPðaÞ%.

The dot notation means A + B ¼ ATB and A# B

denotes the Hadamard (or element by element)

product of two matrices. Similarly, lnA denotes the

logarithm of the elements of a matrix.

Definition: Active inference rests on the tuple

ðP;Q;R; S;A;U ;ΩÞ:

● A finite set of observations Ω

● A finite set of actions A

● A finite set of hidden states S

● A finite set of control states U

● A generative process over observations ~o 2 Ω,

hidden states ~s 2 S, and action ~a 2 A

Rð~o;~s; ~aÞ ¼ Prðfo0; . . . ; otg ¼ ~o; fs0; . . . ; stg

¼ ~s; fa0; . . . ; at)1g ¼ ~aÞ

● A generative model over observations ~o 2 Ω,

hidden ~s 2 S, and control ~u 2 U states

Pð~o;~s; ~ujmÞ ¼ Prðfo0; . . . ; oTg ¼ ~o; fs0;
. . . ; sTg ¼ ~s; fut; . . . ; uTg ¼ ~uÞ, with parameters

θ

● An approximate posterior over hidden and con-

trol states such that Qð~s; ~uÞ ¼ Prðfs0; . . . ; sTg ¼
~s; fut; . . . ; uTg ¼ ~uÞ with parameters or expecta-

tions ðs
_
; π
_
Þ, where π 2 f1; . . . ;Kg is a policy

that indexes a sequence of control states

ð~ujπÞ ¼ ðut; . . . ; uT jπÞ

Remark: The generative process describes the

environment in terms of transitions among hidden

states that generate observed outcomes. These

transitions depend upon actions, which are sampled

from approximate posterior beliefs about control

states. In turn, these beliefs are formed using

a generative model (denoted by m) of how

observations are generated. The generative model

describes what the agent believes about the world,

where (approximate posterior) beliefs about hidden

states and control states are encoded by

expectations. This is a slightly unusual setup

because there is a distinction between actions (that

are part of a generative process) and control states

(that are part of the generative model). This

distinction allows actions to be sampled from

posterior beliefs about control, effectively converting

an optimal control problem into an optimal inference

problem (Attias, 2003; Botvinick & Toussaint, 2012).

Furthermore, note that (unlike the generative process)

the generative model includes beliefs about future

states.

So far, we have just described the agent’s world

and its model of that world. To describe the agent’s

exchange with its environment, we have to specify

how its expectations depend upon observations

and how its action depends upon expectations. In

other words, we have to close the perception-action

cycle (Fuster, 2004). In brief, we will make

one sassumption; namely, that both actions and

expectations minimize the free energy of

observations. More precisely, we will assume that

expectations minimize free energy and the

expectations of control states prescribe action at

the current time t:

3For readers interested in technical details, the simulations (and

figures) reported in this paper can be reproduced by downloading

the academic freeware SPM. Annotated Matlab scripts can then be

accessed through a graphical user interface (invoked by typing

DEM and selecting “epistemic value”). Please visit http://www.fil.

ion.ucl.ac.uk/spm/software/
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ðs
_-
; π
_-
Þ ¼ argminFð~o; s

_
; π
_
Þ

Prðat ¼ utÞ ¼ Qðutjπ
_-
Þ

Fð~o; s
_
; π
_
Þ ¼ EQ½) lnPð~o;~s; ~ujmÞ% ) H ½Qð~s; ~uÞ%

¼ ) lnPð~ojmÞ þ D½Qð~s; ~uÞjjPð~s; ~uj~oÞ%

(1)

Heuristically, at each decision point or cycle the agent

first figures out which states are most likely by

optimizing its expectations with respect to free

energy (using the generative model). After

optimizing its posterior beliefs, an action is sampled

from the posterior probability distribution over

control states. Given this action, the environment

generates a new observation (using the generative

process) and a new cycle begins.

The first expression for free energy in Equation 1

shows that it is an expected energy, under the

generative model, minus the entropy of the

approximate posterior. This expression can be

rearranged to give the second expression, which shows

that free energy is an upper bound on the negative

logarithm of Bayesian model evidence ) lnPð~ojmÞ,
which is also known as surprise or surprisal. The free

energy is an upper bound on surprise because the

divergence term cannot be less than zero (Beal, 2003).

Therefore, minimizing free energy corresponds to

minimizing the divergence between the approximate

and true posterior. This formalizes the notion of

approximate Bayesian inference in psychology and

machine learning (Dayan & Hinton, 1997; Dayan,

Hinton, & Neal, 1995; Helmholtz, 1866/1962).

Minimizing surprise provides a nice perspective on

perception which, in this setting, corresponds to

updating expectations about hidden states of the world

in a Bayes optimal fashion. But what about action? If

action is sampled from beliefs about control states, then

the agent must believe its actions will minimize free

energy. We now look at this more closely.

In active inference, agents do not just infer hidden

states but actively sample outcomes that minimize

free energy. The aim here is to explain how agents

restrict themselves to a small number of preferred

outcomes (i.e., goals). This is fairly straightforward

to explain if agents minimize surprise, while a priori

expecting to attain their goals. More formally, if

actions depend upon posterior beliefs, then actions

depend on prior beliefs. This means prior beliefs

entail goals because they specify action. In turn, the

generative model entails prior beliefs because it

comprises the likelihood over observations, an

empirical prior over state transitions and a prior over

control states. These correspond to the three marginal

distributions of the generative model:

Pð~o;~s; ~ujmÞ ¼ Pð~oj~sÞPð~sj~uÞPð~ujmÞ. Crucially, the

only self-consistent prior beliefs an agent can

entertain about control states is that they will

minimize free energy.4 One can express this

formally by associating the prior probability of a

policy with the path integral (from the current to the

final state) of free energy expected under that policy

(c.f., Hamilton’s principle of least action and

Feynman’s path integral formulation of quantum

mechanics). We will call this the quality, value, or

the expected (negative) free energy of a policy,

denoted by Qð~ujπÞ :¼ QðπÞ:

lnP ~ujγð Þ ¼ γ +QðπÞ ¼ γ + ðQtþ1ðπÞ þ . . .þQT ðπÞÞ

QτðπÞ ¼ EQðoτ ;sτ jπÞ½lnPðoτ ; sτ jπÞ% þ H ½QðsτjπÞ%

(2)

This expression says that a policy is a priori more likely if

the policy has a high quality or its expected free energy is

small. Heuristically, this means that agents believe they

will pursue policies that minimize the expected free

energy of outcomes and implicitly minimize their

surprise about those outcomes. Equivalently, policies

that do not minimize expected free energy are a priori

surprising and will be avoided. Put simply, not only do

agents minimize free energy or surprise (Equation 1) but

they also believe they will minimize free energy or

surprise (Equation 2). These beliefs (Equation 2) are

realized through active inference because agents

minimize surprise (Equation 1). This self-consistent

recursion leads to behavior that is apparently purposeful,

in the sense that it appears to avoid surprising states.

The expected free energy is the free energy of

beliefs about the future (not the free energy of future

beliefs). More formally, the expected free energy is

the energy of counterfactual outcomes and their

causes expected under their posterior predictive

distribution, minus the entropy of the posterior

4This is a fairly subtle assertion that lies at the heart of active

inference. Put simply, agents will adjust their expectations to

minimize the free energy associated with any given observations.

However, when the agent actively samples observations, it has the

opportunity to choose observations that minimize free energy—an

opportunity that is only realized when the agent believes this is how

it behaves. A more formal proof by reductio ad absurdum—that

appeals to random dynamical systems—can be found in Friston and

Mathys (2015). I think therefore I am. Cognitive Dynamic Systems.

S. Haykin, IEEE press: in press. In brief, to exist, an ergodic system

must place an upper bound on the entropy of its states, where

entropy is the long-term average of surprise. Therefore, any

system that does not (believe it will) minimize the long-term

average of surprise does not (believe it will) exist.
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predictive distribution over hidden states. The

posterior predictive distributions are distributions

over future states at τ > t expected under current

beliefs: Q oτ; sτ jπð Þ ¼ EQðstÞ½Pðoτ ; sτjst; πÞ%. Notice

that this predictive posterior includes beliefs about

future outcomes and hidden states, while the current

posterior QðstÞ just covers hidden states. In this setup,

γ 2 θ plays the role of a sensitivity or inverse

temperature parameter that corresponds to the

precision of, or confidence in, prior beliefs about

policies.

Note that we have introduced a circular causality by

specifying prior beliefs in this way: Prior beliefs about

control states depend upon (approximate posterior

predictive) beliefs about hidden states, which depend

on observations. This means that prior beliefs about

policies depend upon past observations. Indeed, we

will see later that if the precision parameter γ was

known, the prior and posterior beliefs would be

identical. However, when the precision is a free

(hyper) parameter, posterior beliefs become the prior

beliefs expected under posterior precision. This may

sound rather complicated but the important role of

posterior precision or confidence will become

increasingly evident. In brief, by making precision a

free parameter, it can be optimized with respect to free

energy or model evidence (unlike the inverse

temperature parameter of conventional models). We

now try to unpack these beliefs about policies in terms

of established formulations of goal-directed behavior.

Although Equation 2 has a relatively simple form,

it is not easy to see the behaviors it produces.

However, with some straightforward rearrangement,

two intuitive terms reveal themselves; namely,

extrinsic and epistemic value (see also Appendix A).

QτðπÞ ¼ EQðoτ ;sτ jπÞ½lnPðoτ; sτjπÞ ) lnQðsτ jπÞ%

¼ EQðoτ ;sτ jπÞ½lnQðsτ joτ ; πÞ þ lnPðoτ jmÞ

) lnQðsτjπÞ% ¼ EQðoτ jπÞ½lnPðoτ jmÞ%
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Extrinsic value

þ EQðoτ jπÞ½D½Qðsτjoτ; πÞjjQðsτ jπÞ%%
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Epistemic value

(3)

Here, the generativemodel of future statesPðoτ ; sτ jπÞ ¼
Qðsτjoτ; πÞPðoτ jmÞ comprises the predictive posterior

and prior beliefs about future outcomes. Note,

the generative model of future states is not the

generative model of states in the future, when the

predictive posterior becomes the future posterior and

the generative model of the future becomes the future

generative model Pðoτ; sτ jπÞ ¼ Pðsτ joτ; πÞPðoτjmÞ.
Equation 3 shows that under the generative model of

the future, the quality of a policy can be expressed in

terms of extrinsic and epistemic value:

Extrinsic value: Extrinsic value is the utility

Cðoτ jmÞ ¼ lnPðoτjmÞ of an outcome expected under

the posterior predictive distribution. It is this utility

that encodes the preferred outcomes that lend

behavior its goal-directed nature. In other words,

agents consider outcomes with low utility surprising,

irrespective of the policy. This means that agents

(believe they) will maximize expected utility to

ensure preferred outcomes. Note that, by definition,

the utility of an outcome is not a function of the

policy. This means the agent believes all

(unsurprising) policies lead to the same preferred

outcomes or goals. The degree to which expected

utility dominates prior beliefs about policies rests on

the precision of prior preferences. In the absence of

precise goals, epistemic or intrinsic value will come to

dominate policy selection.

Epistemic value: Epistemic value is the expected

information gain under predicted outcomes. In other

words, it reports the reduction in uncertainty about

hidden states afforded by observations. Because the

KL divergence (or information gain) cannot be less

than zero, the information gain is smallest when the

posterior predictive distribution is not informed by

new observations. Heuristically, this means valuable

policies will search out observations, cues or

“signs” that resolve uncertainty about the state of

the world (e.g., foraging to resolve uncertainty

about the hidden location of food or fixating on

informative part of a face to identify someone).

However, when there is no posterior uncertainty,

and the agent is confident about the state of the

world, there can be no further information gain and

epistemic value will be the same for all policies. In

this case, extrinsic value will dominate policy

selection.

Relationship to established formalisms

The Infomax principle: Epistemic or intrinsic value

fits comfortably with a number of formulations from

the visual sciences and information theory. As

discussed (using continuous time formulations) in

Friston et al. (2012), minimizing uncertainty about

hidden states necessarily entails an increase in the

mutual information between (sensory) outcomes and

their (hidden) causes. Formally, this can be seen with

a simple rearrangement of epistemic value to show

that it is equivalent to the mutual information between

hidden states and outcomes, under the posterior

predictive distribution:
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EQðoτ jπÞ½D½Qðsτjoτ ; πÞjjQðsτ jπÞ%%
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Epistemic value

¼ D½Qðsτ ; oτjπÞjjQðsτjπÞQðoτ jπÞ%
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Predictive mutual information

(4)

This means that policies with epistemic value render

observations more informative about their causes.

This is one instance of the Infomax principle

(Linsker, 1990), which is closely related to the

principle of maximum mutual information, or

minimum redundancy (Barlow, 1961, 1974; Bialek

et al., 2001; Najemnik & Geisler, 2005; Oja, 1989;

Olshausen & Field, 1996; Optican & Richmond,

1987).

Bayesian surprise: Epistemic value is also the

Bayesian surprise expected under counterfactual

outcomes. Bayesian surprise is a measure of salience

and is the KL divergence between a posterior and

prior distribution (Itti & Baldi, 2009). Empirically,

people tend to direct their gaze toward salient visual

features with high Bayesian surprise (Itti & Baldi,

2009). In the current setup, the expected Bayesian

surprise, or salience, is the epistemic value of a

particular policy that samples (sensory) outcomes.

Although the value of a policy includes Bayesian

surprise, it also comprises expected utility, which

contextualizes the influence of salience. In other

words, salience will only drive epistemic sampling

of salient information if the epistemic value of that

sampling is greater than the extrinsic value of an

alternative behavior. We will see examples of this

later.

Value of information: The value information is the

amount an agent would pay to obtain information

pertaining to a decision (Howard, 1966; Krause &

Guestrin, 2005; Kamar & Horvitz, 2013). In this

formulation, information has no epistemic value per

se but only relative to choices or policy selection; in

other words, information that does not affect a choice

has no value. The value of information is generally

intractable to compute for complex (e.g.,

nonstationary) environments. Here, we offer a

formulation that contextualizes the value of

information (epistemic value) in relation to extrinsic

value and provides a tractable (approximate Bayesian

inference) scheme for its evaluation.

KL control: Optimal control problems can

generally be expressed as minimizing the KL

divergence between the preferred and predictive

distribution over outcomes. The general idea behind

KL control is to select control states that minimize the

difference between predicted and desired outcomes,

where the difference is measured in terms of the KL

divergence between the respective probability

distributions. Minimizing this divergence is a

cornerstone of risk-sensitive control (Van Den

Broek, Wiegerinck, & Kappen, 2010) and utility-

based free energy treatments of bounded rationality

(Ortega & Braun, 2011, 2013). In the current context,

risk-sensitive (KL) control can be seen as a special

case of minimizing expected free energy, when

outcomes unambiguously specify hidden states. In

other words, when the generative process is

completely observable, we can associate each

outcome with a hidden state such that oτ ¼ sτ and:

QτðπÞ ¼ EQðsτ jπÞ½lnPðsτjπÞ ) lnQðsτjπÞ%

¼ )D½QðsτjπÞjjPðsτjπÞ%
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

KL divergence

¼ EQðsτ jπÞ½lnPðsτ jmÞ%
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Extrinsic value

þ H ½Qðsτ jπÞ%
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Epistemic value

ð5Þ

In this special case, minimizing free energy

minimizes the divergence between the posterior

predictive distribution over states and the prior

predictive distribution encoding goals. Here, the

extrinsic value now becomes an expected utility

over states and the epistemic value becomes the

novelty or (posterior predictive) entropy over future

states. The difference between maximizing the

entropy (novelty) and relative entropy (information

gain) distinguishes risk-sensitive (KL) control from

free energy minimization. Only minimizing free

energy allows epistemic value to guide explorative

behavior in a way that fully accommodates

uncertainty about a partially observed world. This

can be seen clearly with a final rearrangement of the

expression for the quality of a policy (see Appendix

A):

QτðπÞ ¼ EQðoτ ;sτ jπÞ½lnQðoτjsτ; πÞ

þ lnPðoτ jmÞ ) lnQðoτ jπÞ%

¼ )EQðsτ jπÞ½H ½Pðoτ jsτÞ%%
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Predicted uncertainty

)D½Qðoτ jπÞjjPðoτjmÞ%
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Predicted divergence

ð6Þ

This equality expresses the value of a policy in terms

of the posterior predictive distribution over outcomes,

as opposed to hidden states. In this formulation,

expected free energy corresponds to the expected

entropy or uncertainty over outcomes, given their

causes, plus the KL divergence between the

posterior predictive and preferred distributions. In
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other words, minimizing expected free energy

minimizes the divergence between predicted and

preferred outcomes (i.e., predicted divergence) and

any uncertainty afforded by observations (i.e.,

predicted uncertainty). Heuristically, this ensures

observations are informative. For example, an agent

who wants to avoid bright light will move to the

shade, as opposed to closing its eyes. If outcomes

are always informative, we revert to risk-sensitive

(KL) control, expressed in terms of preferences over

outcomes, as opposed to states.

In our previous formulations of active inference

and risk-sensitive (KL) control, we only considered

scenarios in which hidden states could be observed

directly. In this paper, we will illustrate the difference

between risk-sensitive (KL) control and expected free

energy minimization in a more realistic setting, in

which hidden states can only be inferred from

particular observations. In this context, we will see

that risk-sensitive (KL) control is not sufficient to

explain purposeful or exploratory responses to

salient cues that resolve uncertainty about the

environment.

Dopamine and reward prediction errors: In the

next section, we will see how approximate Bayesian

inference, implicit in active inference, can be

implemented using a relatively simple variational

message passing scheme. We have previously

discussed the biological plausibility of this scheme in

terms of recursive neuronal message passing (Friston

et al., 2013) and have associated dopamine with the

posterior precision of beliefs about control states

(Friston et al., 2014). We will see later that changes

in the expected (inverse) precision are identical to

changes in (negative) expected value. This is

potentially important because it may explain why

changes in dopamine firing have been associated with

reward prediction error (Schultz, 1998). However, it

has a deeper implication here: If expected precision

changes with expected value, then the current

formulation explains why dopamine has a multilateral

sensitivity to novelty (Kakade & Dayan, 2002; Krebs,

Schott, Schütze, & Düzel, 2009; Wittmann, Daw,

Seymour, & Dolan, 2008), salience (Berridge, 2007),

expected reward (Bunzeck & Düzel, 2006; D’Ardenne,

McClure, Nystrom, & Cohen, 2008; Daw & Doya,

2006; Dayan, 2009; McClure, Daw, & Montague,

2003; O’Doherty et al., 2004; Pessiglione, Seymour,

Flandin, Dolan, & Frith, 2006), epistemic value

(Fiorillo, Tobler, & Schultz, 2003; Redgrave &

Gurney, 2006; Bromberg-Martin & Hikosaka, 2009),

and affordance (Cisek, 2007; Gurney, Prescott, &

Redgrave, 2001; see also Nepora & Gurney, 2012).

The study of Bromberg-Martin and Hikosaka (2009) is

particularly interesting in this context because it

provides direct evidence linking dopamine responses

and epistemic value. The emerging perspective also fits

comfortably with recent attempts to reconcile

dopamine’s role in the exploration-exploitation trade-

off with the role of the basal ganglia in action

selection, “by testing the hypothesis that tonic

dopamine in the striatum, the basal ganglia’s input

nucleus, sets the current exploration-exploitation

trade-off” (Humphries et al., 2012, p. 1).

The close relationship between expected precision

and value provides an interesting perspective on the

transfer of dopaminergic responses to conditioned

stimuli in operant conditioning paradigms (Schultz,

1998). From the perspective of active inference,

conditioned stimuli have epistemic value because

they resolve uncertainty about future outcomes

(unconditioned stimuli). This perspective may also

provide an inferential account of blocking and latent

inhibition, in the sense that if epistemic uncertainty

has already been resolved by one conditioned

stimulus, then no further information gain is

afforded by another. We will pursue these arguments

with simulations of goal-directed behavior below. The

important issue here is a dual role for dopaminergic

responses in reporting precision in terms of extrinsic

and epistemic value. However, functionally, there is

only one precision (sensitivity) parameter that applies

to, and reconciles, both aspects of value. This

eliminates the need for ad hoc parameters to finesse

the exploration-exploitation dilemma. We will

illustrate these and other points using simulations in

the last two sections.

Summary

Although minimizing expected free energy corresponds

to maximizing extrinsic and epistemic value, this dual

maximization is a particular perspective on the

underlying imperative to minimize surprise. This

means that both extrinsic and epistemic value work

synergistically to increase the likelihood of preferred

outcomes with the minimum of uncertainty. For

example, extrinsic value depends on the posterior

predictive distribution over outcomes, which is only

informative when the agent can be confident about the

current state (c.f., the coastal navigation example

above). This means epistemic uncertainty must first be

resolved (by increasing epistemic value) before

expected utility comes into play. At the same time, an

agent should not indulge in epistemic actions, if it is

sufficiently confident it can pursue a successful plan.
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These considerations are especially interesting in

relation to exploration and exploitation.

In summary, minimizing free energy corresponds to

approximate Bayesian inference and, in active inference,

choosing the least surprising outcomes. If agents model

their environments, they have to entertain posterior beliefs

about the control of state transitions producing outcomes.

This means we have to consider posterior beliefs about

control states, which rest on prior beliefs about controlled

outcomes. Using the self-consistent prior that control states

minimize expected free energy (“I expect to avoid

surprises”), we arrive at a process theory that offers a

formal definition of extrinsic and epistemic value.

Furthermore, it emphasizes the fact that purposeful

behavior rests upon generative models that entertain

future outcomes. This formulation accommodates a

number of established perspectives; namely, the Infomax

principle, the notion of Bayesian surprise in reporting the

salience of cues, and KL control, which generalizes risk-

sensitive control and expected utility theory. In the next

section we will see how this theory prescribes a

computational anatomy for Bayesian belief updating that

has many similarities with message passing in the brain.

GENERATIVE MODELS AND
VARIATIONAL MESSAGE PASSING

The generative model

The generative model used to model the (finite horizon

Markovian) processes considered below can be

expressed in terms of the following likelihood and

prior distributions over observations and states up to

time t 2 ð0; . . . ; TÞ (omitting normalization constants):

P ~o;~s;~u; γj~a;mð Þ ¼ P ~oj~sð ÞP ~sj~að ÞP ~ujγð ÞP γjmð Þ

P ~oj~sð Þ ¼ Pðo0js0ÞPðo1js1Þ . . .PðotjstÞ

P ~sj~að Þ ¼ Pðstjst)1;atÞ . . .Pðs1js0;a1ÞPðs0jmÞ

P ~ujγð Þ ¼ σðγ +QÞ

(7)

Here, σð+Þ is a softmax function. The first equality

expresses the generative model in terms of the

likelihood of observations given the hidden states

(first term) and subsequent empirical prior beliefs.

Empirical priors are probability distributions over

unknown variables that depend on other unknown

variables. Empirical priors are a universal aspect of

hierarchical Bayesian models; for example,

parametric empirical Bayes (Kass & Steffey, 1989).

In effect, empirical priors are informed by

observations under hierarchical constraints. The

likelihood in the second equality implies that

observations depend on, and only on, the current

hidden state. The third equality expresses (empirical)

prior beliefs about state transitions. For simplicity, we

assume that agents know their past actions. The final

equality expresses beliefs about policies in terms of

their quality or value. In short, this model represents

past hidden states and future choices, under the belief

that controlled transitions from the current state will

minimize the expected free energy of future states.

This model can be parameterized in a fairly

straightforward way, using the notation Pðot ¼ ijst ¼
j;AÞ ¼ Aij ( PðotjstÞ ¼ A

P otjstð Þ ¼ A

P stþ1jst; utð Þ ¼ BðutÞ

P oτjmð Þ ¼ Cτ

P s0jmð Þ ¼ D

P γjmð Þ ¼ Γðα; βÞ

ð8Þ

These equalities mean that the categorical

distributions over observations, given the hidden

states, are encoded by the matrix A 2 θ that maps

from hidden states to outcomes. Similarly, the

transition matrices BðutÞ 2 θ encode transition

probabilities from one state to the next, under the

current control state. The vectors C 2 θ and D 2 θ

encode prior distributions over future outcomes and

initial states, respectively. The priors over future

outcomes specify their utility Cðoτ jmÞ ¼
ln PðoτjmÞ ¼ lnCτ . Finally, the prior over precision

has a standard gamma distribution, with shape and

rate parameters (in this paper) α ¼ 64 and β ¼ 4.

The vectorQ contains the values of each policy at the

current time. These values can be expressed in terms of

the parameters above using the expression for expected

free energy in Equation (6) and Appendix A:

QðπÞ ¼ Qtþ1ðπÞ þ . . .þQT ðπÞ

QτðπÞ ¼ 1 + ðA# lnAÞs
_

τðπÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Predicted uncertainty

)ðln o
_

τðπÞ ) lnCτÞ + o
_

τðπÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Predicted divergence

s
_

τðπÞ ¼ BðuτjπÞ . . .BðutjπÞs
_

t

o
_

τðπÞ ¼ As
_

τðπÞ

ð9Þ
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Where s
_

τðπÞ are the expected states at time τ under

policy π and 1 is a column vector of ones. Note that

when there is no uncertainty about future states, we

have 1 + ðA# lnAÞs
_

τðπÞ ¼ lnðAs
_

τðπÞÞ + As
_

τðπÞ and

the value of a policy depends only on expected

utility QτðπÞ ¼ o
_

τðπÞ + lnCτ. In other words, policies

have no epistemic value when they lead to no further

information gain.

Approximate Bayesian inference

Having specified the generative model, variational

Bayes now offers a generic scheme for approximate

Bayesian inference that finesses the combinatoric and

analytic intractability of exact inference (Beal, 2003;

Fox & Roberts, 2011). Variational Bayes rests on a

factorization of approximate posterior beliefs that

greatly reduces the number of expectations required

to encode it. The factorization we focus on exploits

the Markovian nature of the generative model and has

the following form (see Friston et al., 2013 for

details):

Q ~s; ~u; γjμð Þ ¼ Qðs0js
_

0Þ . . .QðsT js
_

T Þ

Qðut; . . . ; uT jπ
_
ÞQðγjγ

_
Þ

Qðγjγ
_
Þ ¼ Γðα; β

_

¼ α=γ
_
Þ

(10)

This assumes a factorization over hidden states,

(future) control states, and precision. It is this

factorization that renders the inference approximate

and resolves many of the intractable problems of

exact inference. For example, the factorization does

not consider sequences of hidden states, which means

we only have to evaluate sequences of control states

(as opposed to all possible sequences of controlled

state transitions). We have assumed here that the

posterior marginal over precision is, like its

conjugate prior, a gamma distribution. The rate

parameter of this posterior belief β
_

¼ α
.

γ
_

corresponds to temperature in classic formulations.

However, it is no longer a fixed parameter but a

sufficient statistic of beliefs about policies.

Given the generative model (Equation 7) and the

mean field assumption (Equation 10), it is

straightforward to solve for the expectations that

minimize variational free energy (see Appendix B).

s
_

t ¼ σðlnA + ot þ lnðBðat)1Þs
_

t)1ÞÞ

π
_
¼ σðγ

_
+QÞ

γ
_
¼

α

β )Q + π
_

(11)

Iterating these self-consistent equations until convergence

produces the posterior expectations that minimize free

energy and provides Bayesian estimates of the

unknown variables. This means that expectations

change over two timescales: A fast timescale that

updates posterior beliefs between observations and a

slow timescale that updates posterior beliefs as new

observations are sampled. We have speculated (Friston,

Samothrakis, & Montague, 2012) that these updates may

be related to nested electrophysiological oscillations,

such as phase coupling between gamma and theta

oscillations in prefrontal–hippocampal interactions

(Canolty et al., 2006). See also (Penny, Zeidman, &

Burgess, 2013). The forms of these updates are

remarkably simple and we now consider each in turn.

The first equation updates expectations about hidden

states and corresponds to perceptual inference or state

estimation. This is essentially a Bayesian filter that

combines predictions based upon expectations about the

previous state with the likelihood of the current

observation. For simplicity, we have ignored the

dependency of value on expected states that would

introduce a third (optimism bias) term (see Appendix B).

The second update is just a softmax function of the

value of each policy, where the sensitivity parameter or

expected precision is an increasing function of expected

value. This last point is quite important: It means that the

sensitivity or inverse temperature, that determines the

precision with which a policy is selected, increases with

the expected value of those policies.

The third update optimizes expected precision. If we

express these updates in terms of the posterior rate

parameter, we see that changes in (inverse)

precision are changes in (negative) expected value:

β
_

¼ β )Q + π
_
. In other words, if an observation

increases the expected value of the policies entertained

by an agent, then expected precision increases (i.e.,

temperature decreases) and the agent is implicitly more

confident in selecting the next action. As noted above,

this may explain why dopamine discharges have been

interpreted in terms of changes in expected value (e.g.,

reward prediction errors). The role of the

neuromodulator dopamine in encoding precision is

further substantiated by noting that precision enters the
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variational updates in a multiplicative or modulatory

fashion. We will pursue this in the next section.

Summary

In summary, by assuming a generic (Markovian) form

for the generative model, it is fairly easy to derive

Bayesian updates that clarify the interrelationships

between expected value and precision—and how these

quantities shape beliefs about hidden states of the world

and subsequent behavior. Furthermore, the anatomy of

this message passing is not inconsistent with functional

anatomy in the brain (see Friston et al., 2014, and

Figure 1 in this paper). The implicit computational

anatomy rests on reciprocal message passing between

expected policies (e.g., in the striatum) and expected

precision (e.g., in the substantia nigra). Expectations

about policies depend upon value that, in turn,

depends upon expected states of the world that are

iterated forward in time—to evaluate free energy in the

future (e.g., in the prefrontal cortex; Mushiake, Saito,

Sakamoto, Itoyama, & Tanji, 2006) and possibly

hippocampus (Pezzulo, Van der Meer, Lansink, &

Pennartz, 2014). In the next section, we illustrate the

basic behavior of this scheme using simulations.

INFERENCE AND PLANNING

This section considers inference using simulations of

foraging for information in a relatively simple

environment. Its focus is on the comparative

performance when minimizing expected free energy,

relative to the special cases of risk-sensitive control

and maximizing expected utility or reward. In

particular, we will look at the neuronal correlates of

the scheme in terms of simulated dopaminergic

responses. The problem we consider can be

construed as searching for rewards in a T-maze. This

T-maze offers primary rewards (or, in Pavlovian

terms, unconditioned stimuli; US) such as food and

cues (or conditioned stimuli; CS) that are not

rewarding per se but disclose rewards that can be

secured subsequently. The basic principles of this

problem can be applied to any number of scenarios

(e.g., saccadic eye movements to visual targets). This

example was chosen to be as simple as possible,

while illustrating a number of key points that follow

from the theoretical considerations above.

Furthermore, this example can also be interpreted in

terms of responses elicited in reinforcement learning

paradigms by unconditioned (US) and conditioned

(CS) stimuli. We will call on this interpretation

when relating precision updates to dopaminergic

discharges.

Figure 1. This figure illustrates the cognitive and functional anatomy implied by the variational scheme in the main text. Here, we have

associated the variational updates of expected hidden states with perception, of control states (policies) with action selection and, finally,

expected precision with attention or salience. In terms of neuronal implementation, the requisite exchange of expectations can be likened to the

exchange of neuronal signals via extrinsic connections among functionally specialized brain systems. In this (purely iconic) schematic, we have

associated perception (inference about the current state of the world) with the prefrontal cortex (which plausibly interacts with the hippocampus

in this context), while assigning action selection to the basal ganglia. Precision has been associated with dopaminergic projections from ventral

tegmental area and substantia nigra. See main text for a full description of the equations.
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The setup

The agent (e.g., rat) starts in the center of a T-maze,

where either the right or left arms are baited with a

reward (US). The lower arm contains a cue (CS),

which tells the animal whether the reward is in the

upper right or left arm. Crucially, the agent can only

make two moves from any location to another (for

simplicity, we do not require the agent to visit

intermediate locations). Furthermore, the agent

cannot leave the baited arms after they are entered.

This means that the optimal behavior is to first go to

the lower arm to find where the reward is located and

then secure the reward at the cued location in the

appropriate upper arm (i.e., the agent has to move

away from the goal so that it can be secured later, as

in the coastal navigation example). It is this epistemic

behavior we hoped would emerge as a natural

consequence of minimizing expected free energy.

This may seem a remarkably simple problem but it

has all the ingredients necessary to illustrate the basic

aspects of behavior under active inference.

Formally, in terms of aMarkov decision process, there

are four control states that correspond to visiting, or

sampling, the four locations (the center and three arms).

For simplicity, we assume that each control state takes the

agent to the associated location (as opposed to moving in

a particular direction from the current location). This is

analogous to place-based navigation strategies thought to

be subserved by the hippocampus (e.g.,Moser, Kropff, &

Moser, 2008). There are four (locations) times two (right

and left reward) hidden states and 16 outcomes. The 16

outcomes correspond to the four locations times four

stimuli (cue right, cue left, reward, and no reward).

Having specified the state space, it is now only

necessary to specify the ðA;B;C;DÞ matrices encoding

transition probabilities and preferences. These are shown

in Figure 2, where the A matrix maps from hidden states

to outcomes, delivering an uninformative cue at the

center (first) location5 and a definitive cue at the lower

(fourth) location. The remaining locations provide a

reward (or not) with probability a ¼ 90% depending

upon the hidden context (right versus left reward).

The BðuÞ matrices encode control-dependent

transitions to the corresponding location, with the

exception of the baited (second and third) locations,

which are hidden states that the agent cannot leave. The

vector C determines prior preferences about outcomes.

These are expressed in terms of a softmax function of

utility, which determines the relative log probability of

each outcome. Here, the utility of the rewarding stimulus

is c and its absence ) c. This means, the agent expects a

rewarding outcome expð2cÞ times more than a null

outcome. For example, if c ¼ 1 it would expect a

reward about expð2Þ 0 8 times more than no reward.

Note that utility is always relative and has a quantitative

meaning in terms of relative (log) probabilities of

preferred outcomes. This is important because it

endows utility with the same measure as information;

namely, bits or nats (i.e., units of information or

entropy, the former assuming base 2 logarithms and the

latter based on natural logarithms). This highlights the

close connection between value and information (see

below). Finally, the vector D specifies the agent’s

beliefs about the initial conditions; namely, that it starts

at the center location with equiprobable baiting of the

right or left arm.

Having specified the state space and contingencies,

one can iterate the variational updates (in Equation 11

and Figure 1) to simulate behavior. In these

simulations the outcomes were generated using the

contingencies of the generative model. In other

words, we assume the agent has already learned or

optimized its model of the generative process (in

terms of the model structure and its parameters). We

will revisit this assumption in the last section.

Figure 3 shows the results of simulations in terms of

performance (upper panel) and the dynamics of Bayesian

updating in terms of precision or simulated dopaminergic

responses (lower panels). The upper panel shows

performance as the percentage of successful (rewarded)

trials with increasing levels of utility, using six equally

spaced levels from c ¼ 0 to c ¼ 2. Performance was

assessed using 128 trials, under three different schemes:

Minimizing expected free energy, risk-sensitive (KL)

control, and maximizing expected utility. For

completeness, we also provide the results for the free

energy minimization when suppressing precision

updates. The three schemes can be considered as special

cases that result when successively removing terms from

the expected free energy (to give reduced forms indicated

by the brackets).

QτðπÞ ¼ EQðoτ ;sτ jπÞ½lnPðoτjsτÞ ) lnQðoτj~uÞ þ lnPðoτjmÞ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Expected utility
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

KL control
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Expected Free energy

%

(12)

This expression shows that risk-sensitive control is the

same as minimizing expected free energy when

ignoring the (predictive) entropy of outcomes given

5The values of one half in the first block of the A matrix

(Figure 2) mean that the agent cannot predict the cue from that

location. In other words, there is no precise sensory information and

the agent is “in the dark.”
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hidden states. In other words, if every hidden state

generates a unique outcome, KL control and expected

free energy minimization would be the same.

Similarly, maximizing expected utility is the same as

minimizing KL divergence, if every outcome is

generated by a unique hidden state and we do not

have to maximize the entropy of outcomes. In short,

expected utility and classical reinforcement schemes

(Sutton & Barto, 1998) are special cases of risk-

sensitive control that are optimal when (and only

when) different hidden states generate different

outcomes. Similarly, risk-sensitive control is a

special case of free energy minimization that is

optimal when (and only when) different outcomes

are generated by different hidden states. These

special cases are important because they highlight

the epistemic value of informative observations, of

the sort that are precluded by noisy or context-

sensitive observations. This nesting within free

energy minimization may also explain the

prevalence of classical schemes in the literature,

given that they generally assume hidden states are

known to the agent.

The performance of the different schemes (see

Figure 4, upper panel) speaks to several intuitive

and useful points. First, all the schemes show an

increased success rate as utility or prior preference

increases; however, only expected free energy

minimization attains near optimal performance

(90%). One might ask why risk-sensitive control

performs so poorly, given it is also sensitive to

uncertainty. However, KL schemes only consider

uncertainty or risk induced by many hidden states

causing a single outcome, as opposed to many

outcomes caused by a single state. If we had used

more locations (say, with a radial maze), the benefits

Figure 2. A schematic of the hierarchical generative model used to simulate foraging in a three-arm maze (insert on the upper left). This

model contains four control states that encode movement to one of four locations (three peripheral locations and a central location). These

control the transition probabilities among hidden states that have a factorial or tensor product form with two factors. The first is the location

(one of four locations), while the second is one of two hidden states of the world, corresponding to a combination of cues (blue or green circles)

and rewarding (red) outcomes. Each of the ensuing eight hidden states generates an observation. Some selected transitions are shown as arrows,

indicating that control states attract the agent to different locations, where outcomes are sampled. The equations define the generative model in

terms of its parameters ðA;B;C;DÞ 1 θ as described in the main text. In this figure, σð+Þ is a softmax function and 2 denotes a Kronecker

tensor product. Although the graphics are arranged in rows, the vectors of states are actually row vectors.
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Figure 3. Upper panel: The results of 128 simulated trials assessed in terms of the probability of obtaining a reward. This performance is

shown as a function of prior preference over six equally spaced levels. The four profiles correspond to active inference (FE), risk-sensitive

control (KL), expected utility (RL), and active inference under fixed levels of precision (DA). See main text for a description of these schemes

and how they relate to each other. The two horizontal lines show chance (bottom line) and optimal (top line) performance, respectively. Lower

left panels: These report expected precision as a function of time within a trial (comprising three movements). The black lines correspond to a

trial in which the cue (CS) was first accessed in the lower arm of the maze in the previous figure, after which the reward (US) was secured. The

equivalent results, when staying at the center location and accessing the reward directly, are shown as red lines. The upper panel shows the

expected precision and the lower panel shows simulated dopamine responses (that produce an increase in precision, which subsequently

decays). Lower right panels: These show the equivalent results in terms of simulated dopamine discharges. The key thing to note here is that the

responses to the cue (CS) are increased when it is informative (i.e., accessed in the lower arm), while subsequent responses to the reward (US)

are decreased. See main text for details of these simulated responses.
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of risk-sensitive control would have been more

apparent (results not shown). This follows because

more locations induce more hidden states and a

greater degree of uncertainty that would call for

risk-sensitive control. The current setup illustrates

the importance of considering both sorts of

ambiguity in the mapping between causes and

consequences (one-to-many and many-to-one) that

calls for a minimization of expected free energy. In

this example, the most informative location is the

lower arm. Visiting this location and sampling the

informative cue reduces uncertainty about hidden

states and enables expected utility to dominate in the

second (and generally successful) move.

This optimal behavior is only apparent when utility

is greater than about c > 0:6 nats. This brings us to

our second point: If expected utility or preferences are

to supervene over epistemic value, then they have to

Figure 4. Simulated dopamine responses as a function of preference (upper panels) and uncertainty (lower panels). The left panels show the

expected dopaminergic responses using the same format as Figure 3, for three levels of preference (utility) and uncertainty in the upper and

lower panels, respectively. The right-hand panels show simulated dopaminergic firing in response to the cue (CS) and reward (US) based upon

these expectations. Note that the response to the cue (CS) increases with preference and a reduction in uncertainty.
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have greater value than the information gain

associated with informative outcomes. In this

example, the cue resolves uncertainty about the

hidden context (which arm is rewarding), thereby

providing one bit or lnð2Þ ¼ 0:6931 nats of

information. Intuitively, this means the utility must

be greater than the information gain to persuade an

agent to leave locations that provide unambiguous

(informative) outcomes.

The third point of note is that expected utility (and

risk-sensitive control) perform below chance levels

when utility is zero (note that chance performance is 3
8

because the agent can make two moves and is trapped

by two locations). This reflects the fact that the upper

arms no longer hold any utilitarian attraction and

become unattractive because of the slightly ambiguous

outcomes implicit in the probabilistic reward schedule.

In other words, the most valuable policy is to stay in the

epistemically valuable (lower) location for as long as

possible.

The last set of simulations under a fixed level of

precision γ
_
¼ 1 show that optimal choice behavior

rests on updating expected precision, which we now

look at more carefully. The lower panels of Figure 3

show how expected precision is updated during a trial

of two movements and three outcomes under a high

level of utility c ¼ 2. These simulations are presented

to highlight the similarity between precision updating

and empirical dopamine responses during the

presentation of conditioned and unconditioned

stimuli. The upper left panel shows the expected

precision over variational updates, with 16 updates

between observations. The black lines correspond to

a trial in which the agent accessed the conditioned

stimulus (CS or cue) in the lower arm and then

secured the unconditional stimulus (US or reward)

on moving to an upper arm. The red lines show the

equivalent updates in a second trial, when the agent

stayed at the central location for the first move and

was then presented with the US. In both situations,

the precision increases with each successive outcome;

however, the expected precision is higher in the first

trial, when the CS reduces uncertainty about the

hidden states or context in which the agent is

operating. This reflects the greater epistemic value

of accessing the cue. Crucially, the precision of the

final state is roughly the same for both trials. The

implication of this is that expected precision

increases on presentation of the CS and, necessarily,

increases less on presentation of the subsequent US,

relative to presentation of the US alone.

This difference can be highlighted by plotting the

expected precision in terms of simulated

dopaminergic discharges, which are thought to

reflect changes in expected precision or value. More

exactly, the lower left panel shows simulated

dopamine discharges that would, when convolved

with a decaying exponential response function (with

a time constant of 16 iterations) reproduce the

expected precision in the upper panel. In other

words, we are assuming that dopamine mediates

increases in precision that subsequently decay with a

fixed time constant. In this format, one can clearly see

the phasic responses of expected precision (simulated

dopaminergic discharges) where, crucially, the

presentation of the CS reduces the response to the

US. This reproduces the well-known transfer of

dopamine responses from a US to a CS in operant

paradigms (Schultz, Apicella, & Ljungberg, 1993).

The right panels of Figure 3 shows simulated

dopamine discharges assuming that an expected

precision of one is encoded by 128 spikes per bin

(and firing rates are sampled from a Poisson

distribution). These are remarkably similar to

empirical results, often interpreted in terms of

reward prediction error and temporal difference

models of value learning. However, the current

framework offers a nuanced perspective; namely, the

CS has epistemic value that reduces uncertainty about

what will happen next. This uncertainty is already

resolved when the US is presented, thereby

attenuating the precision-dependent responses it

elicits. Put simply, the transfer of dopaminergic

responses to conditioned stimuli, in higher-order

operant paradigms, can be thought of as reporting

the confidence (precision) that policies will bring

about predicted outcomes.

The composition of extrinsic and epistemic value

implicit in expected free energy can also be used to

reproduce the empirical responses of dopaminergic

cells to CS under different levels of reward and

uncertainty (Fiorillo et al., 2003). Figure 4 shows

simulated dopamine responses under increasing

utility c ¼ f0; 1; 2g : a ¼ 0:5 and different levels of

uncertainty about the reward probability

a ¼ f0:5; 0:7; 0:9g : c ¼ 2. In both cases, the

response to the CS increases in a way that is

remarkably reminiscent of empirical results (Fiorillo

et al., 2003). Interestingly, the tonic responses appear

to be more sensitive to uncertainty (lower panels) than

utility (upper panels). This is also seen empirically,

although the tonic responses reported in Fiorillo et al.

(2003) increased in a ramp-like fashion under higher

levels of uncertainty (i.e., a ¼ 0:5). This phenomenon

is not reproduced in Figure 5, however. Generally,

precision increases as the trial progresses because

agents become increasingly confident about their

policies. One can see this general trend in Figure 4.
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Summary

In summary, we have seen that optimal choice

behavior, in a very simple paradigm, rests on

resolving uncertainty about future choices implicit in

minimizing expected free energy. This aspect of

optimal behavior is clearly disclosed when decisions

under uncertainty are confounded, not only by a

many-to-one mapping between hidden states and

outcomes, but also between outcomes and hidden

states (c.f., Littman, Sutton, & Singh, 2002). In this

general setting, the role of epistemic value becomes
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Figure 5. Upper panel: Learning in terms of success rate as a function of trials, for eight successive trials in an initially unknown maze. The

results are averaged over 128 realizations. Performance (gray lines) shows a progressive improvement as uncertainty about the hidden states

falls (pink lines). The equivalent performance for a conventional expected utility scheme is shown with broken lines. Lower panels: Simulated

dopamine responses over all iterations and trials shown in terms of average precision (middle panel) and simulated dopaminergic spike rates

(lower panel). These results demonstrate the transfer of simulated dopamine responses to the cue (CS) with learning (gray arrows).
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paramount in resolving uncertainty about what to do

next—a resolution that can be construed in terms of

exploration or foraging for information. Furthermore,

the integrative framework provided by free energy

minimization enforces a dialogue between utility and

information by casting both as log probabilities. This

means every utility or reward can be quantified in

terms of information and every bit of information

has utility. We have considered the encoding of this

information in terms of precision, showing that

biologically plausible variational updates of expected

precision are remarkably consistent with empirical

dopaminergic responses. A key aspect of this

formulation is that the precision of beliefs about the

value of policies is itself an increasing function of

expected value. This means that if dopamine reports

(changes in) precision, it also reports (changes in)

expected value and, implicitly, reward prediction

error. So far, we have limited our discussion to

planning as inference and memory. In the final

section, we turn to the role of epistemic value in

learning and memory, touching on some important

issues that attend hierarchical inference and

contextualizing behavior.

LEARNING AND MEMORY AS
INFERENCE

This section uses the same setup but considers

multiple trials during which the agent has to learn

which locations deliver rewards and cues. In other

words, we introduce an extra hierarchical level to

the problem, where the hidden context now includes

the mapping between locations and actions (i.e.,

moving to the lower arm could take it to a

rewarding location). This means the agent has to

learn which locations offer cues and which offer

rewards. The motivation here is to illustrate a form

of learning that rests on exploring the environment

and to show that there is a Bayes-optimal transition

from exploration to exploitation. Crucially, this

solution rests upon exactly the same scheme as

above—the only thing that changes is the generative

model.

There are many ways of modeling learning in

this context. These range from Bayesian model

selection and averaging, aka structure learning

(FitzGerald, Dolan, & Friston, 2014), through

optimization of the model parameters ðA;B;C;DÞ 1
θ with respect to expected free energy, to casting

the problem as a hierarchical inference problem

(c.f., Ballard, Kit, Rothkopf, & Sullivan, 2013).

We will choose the latter because it requires no

extra theory6 and illustrates how hierarchical

inference contextualizes lower-level (habitual) action

selection. In brief, we will use Bayesian belief

updating that embodies the prior that the mapping

between locations and control states does not change

from trial to trial, but the location of the reward

changes between trials. The agent therefore has to

learn (infer) time-invariant (contextual) aspects of its

environment through exploration, before it can engage

in pragmatic goal-directed behavior. We will see that

this learning is an emergent property of minimizing

expected free energy at each move.

The setup

Our aim was to illustrate learning as inference by

introducing hierarchical uncertainty into the setup.

In other words, we wanted to see if the agent could

learn about its environment by introducing

uncertainty about which locations offered rewards

and cues. In discrete state-space formulations,

hierarchical extensions involve creating product

spaces, such that each lower-level state is

reproduced under each level of a higher-level state.

Here, we considered four higher-level hidden contexts

Sð2Þ corresponding to four mappings between each of

the three arms of the T-maze. More specifically, we

introduced four mappings between the three control

states and the associated hidden location states that

determine outcomes. This just involved changing the

following matrices, where we denote the hierarchical

level of parameters and states with superscripts (such

that A;B; . . . above become Að1Þ;Bð1Þ; . . . ):

A ¼ ½Að1Þ; . . . ;Að1Þ%

BðiÞ ¼

Bð1Þðj1iÞ

.
.

.

Bð1Þðj4iÞ

2

6
6
4

3

7
7
5

C ¼ Cð1Þ

D ¼ 1
4

Dð1Þ

.

.

.

Dð1Þ

2

6
6
4

3

7
7
5

(13)

Here, jki returns the index of the i-th control state under

the k-th context; e.g., jk+ ¼ ½1; 2; 4; 3%. This means that

there are now 32 hidden states S ¼ Sð2Þ 2 Sð1Þ (four

6For example, we do not have to worry about how the agent

learns all possible configurations of the maze.
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mazes, times four locations, times two reward contexts).

The agent now has two levels of uncertainty to resolve.

The first is induced by not knowing which maze it is

in and the second is resolved by the cue, if it can be

found. Neurobiologically, uncertainty about spatial

context may be reflected in hippocampal processing

(e.g., the “flickering” reported in Jezek, Henriksen,

Treves, Moser, and Moser 2011).

Variational updating at the second level

corresponds to replacing prior beliefs about hidden

states with posterior beliefs after the previous trial.

This corresponds to minimizing variational free

energy because beliefs about the initial state Qðs0Þ ¼

D ¼ s
_

0 become empirical priors that are informed by

previous trials:

s
_0

0 ¼ Es
_0

T

E ¼ Pðs00js
0
T ;mÞ

¼ ðð1) eÞI4 þ eÞ 2 ðDð1Þ 2 1T8 Þ

(14)

Here, ðs0; sT Þ and are the posterior expectations at the

end of the previous trial and the beginning of the

current trial respectively, and where E ¼ Pðs0jsT ;mÞ
encodes beliefs that the maze will change with a small

probability e ¼ 1
8
. This Bayesian belief updating is a

formal way of saying that agents remember what they

have learned from previous experience.

Figure 5, shows the results of this memory in terms

of success rate as a function of trials, for eight

successive trials in the same (randomly selected)

mazes. The results are averaged over 128

realizations. Performance (gray lines) shows a

progressive improvement as uncertainty about the

hidden states falls (pink lines). This uncertainty is

the entropy of posterior beliefs at the end of each

trial H ½QðsT Þ% (multiplied by 100 for visual display).

The equivalent performance for a conventional

expected utility scheme is shown with dotted lines.

The key thing to take from these results is that

performance becomes near optimal after about four

trials, at which point uncertainty falls to (nearly) zero.

This means that, on average, the agent has learned

which maze it is in after four trials and can then

invoke the exploitative strategy of the previous

section, first searching for the cue and then claiming

the reward.

Crucially, despite the fact there is no explicit

epistemic value involved in inference about the

environment (maze) at the between-trial level, a

failure to consider epistemic value at the within-trial

level has deleterious consequences for learning, in

that the expected utility agent fails to learn which

maze it is in (and is content to perform at the levels

it would even if it knew). Note that the performance

in Figure 5 never exceeds the performance shown in

Figure 3.

The lower panels of Figure 5 show simulated

dopamine responses (using the format of previous

figures) over all iterations and trials. These results

demonstrate the transfer of simulated dopamine

responses to the cue or conditioned stimulus as

learning progresses (gray arrows). These trial by trial

changes are accompanied by elevated tonic responses

after the CS—that reflect increasing confidence or

precision about the outcomes of policies as the agent

becomes familiar with its new environment

(Hollerman & Schultz, 1996; Niv, 2007).

Summary

This section has shown it is straightforward to create

hierarchical generative models, in which higher levels

provide a context for lower levels, by equipping the

model with a joint state-space S ¼ Sð2Þ 2 Sð1Þ and

associated transition matrices. This enables one to

consider contingencies that are conserved (or not)

over trials. In a multi-trial setting, priors over the

initial state of each successive trial become

empirical priors that minimize variational free

energy (in exactly the same way as beliefs are

updated within trials). This is simple to implement

using Bayesian belief updating and allows a natural

separation of temporal scales across hierarchical

levels. It is relatively easy to see how one could

generalize this to hierarchically deep models of the

sort that real agents have to deal with, e.g.,

S ¼ Sð3Þ 2 Sð2Þ 2 Sð1Þ.

This hierarchical augmentation reveals the role of

integrating extrinsic and epistemic value in enabling

the agent to learn which context it is operating in and

then exploit that knowledge. It is tempting to

associate this (inevitable and emergent) progression

from exploration to exploitation with the

transformation of goal-directed behavior into habits

(Balleine & Dickinson, 1998; Dolan & Dayan, 2013;

Pezzulo, Rigoli, & Chersi, 2013). Here, this Bayes

optimal progression rests upon a contextualization of

(first level) choice behavior by (second level)

Bayesian updating that effectively accumulates

evidence to resolve uncertainty about the

consequences of behavior. This resolution restricts

the repertoire of controlled state transitions that have

to be considered in selecting the optimal policy and

effectively increases the precision of action selection.
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One might think that much of the delicate balance

between exploration and exploitation could rest upon

hierarchical active inference of this sort.

DISCUSSION

Formal approaches to decision-making under

uncertainty generally rest on partially observable

Markov decision processes, in which states are not

directly observable but have to be inferred from

observations. This formalism raises two fundamental

issues that can be cast in terms of the exploration-

exploitation dilemma. First, in relation to inference, in

some circumstances an agent might obtain a larger

reward by performing an epistemic (explorative)

action rather than a more greedy (pragmatic) action.

Second, in relation to learning, an epistemic action

may be more appropriate to resolve uncertainty about

aspects of its generative model. In classical

formulations, the exploration-exploitation dilemma is

usually solved with ad hoc solutions (like changing

the precision of softmax decision rules). Here, we

introduce a theoretical framework within which a

solution to the exploration-exploitation dilemma

emerges normatively from the minimization of

expected free energy. For example, the precision or

temperature parameter of softmax response rules

becomes a parameter of the generative model and

thereby acquires a Bayes optimal value.

More specifically, we have introduced a modeling

framework for choice behavior that can be framed in

terms of discrete states or (partially observed) Markov

decision processes. There are two perspectives on this

framework. People familiar with active inference could

consider this work to show that the minimization of

expected free energy furnishes a sufficient account of

choice behavior under uncertainty. This necessarily

entails epistemic action, providing a formal account of

risk-sensitive or KL control and expected utility theory.

The ensuing scheme also has construct validity in

relation to Bayesian surprise and information theoretic

formulations of search behavior. Crucially, the

minimization of expected free energy eschews ad hoc

parameters associated with conventional treatments

(e.g., softmax parameters). Furthermore, active

inference under hierarchical models may provide a

useful framework within which to consider the

contextualization of low-level behaviors that involves

a natural (Bayes-optimal) progression from exploration

to exploitation. Finally, it enables one to finesse the

combinatorics of difficult or deep Markovian problems

using approximate Bayesian inference—and a message

passing scheme that is not biologically implausible. In

particular, the variational updates for expected precision

show many similarities to empirical dopaminergic

responses.

Our simulations suggest that it is difficult to

completely suppress precision updates (dopaminergic

responses), even when outcomes are very predictable

(because every event portends something in our finite

horizon setup). This contrasts with the classic results of

Schultz and colleagues (Schultz et al., 1993), who found

negligible responses to conditioned stimuli after

learning. On the other hand, we were able to

reproduce the empirical findings under conditions of

uncertainty and predictive reward (Fiorillo et al., 2003;

Schultz, 1998). Furthermore, the simulations reproduce

the empirical observation that dopaminergic responses

are transferred directly from the unconditioned stimuli

to the conditioned stimuli, in the absence of any

responses during the intervening period. Detailed

response characteristics of this sort may provide

important clues that may disambiguate, or further

refine, theoretical accounts of dopaminergic function.

The second perspective on this work could be

taken by people familiar with reinforcement

learning, a branch of machine learning inspired by

behavioral psychology (Sutton & Barto, 1998). From

this perspective one can trace the steps that lead from

normative descriptions based upon expected reward

or utility to active inference and variational free

energy minimization:

● The first step is to reformulate reinforcement

learning or game theory problems as pure infer-

ence problems, i.e., planning as inference

(Botvinick & Toussaint, 2012; Still, 2009; Still

& Precup, 2012; Vijayakumar, Toussaint, Petkos,

& Howard, 2009). This means that reward or

utility functions become log probabilities defin-

ing prior beliefs or preferences about future out-

comes. This induces probability distributions

over policies that produce outcomes—and the

precision of those distributions. This is important

because it defines a Bayes-optimal precision for

selecting among policies (Friston et al., 2014).

Furthermore, casting reward or utility in terms of

log probabilities means that they have the same

currency as information (nats or bits), thereby

providing a natural way to combine the value

of an outcome and the value of information.

● The second step rests on accommodating uncer-

tainty or risk over outcomes. When the expected

utility of two choices is the same but one leads to

several outcomes and the other a single outcome,

then optimal behavior is not uniquely defined by

expected utility. The simplest way to
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accommodate uncertainty (risk) of this sort is to

maximize both expected utility and the entropy of

outcomes. Maximizing the expected entropy of

outcomes effectively keeps one’s options open

(Klyubin, Polani, & Nehaniv, 2008). However,

the sum of an entropy and expected utility can

always be expressed as a (negative) KL diver-

gence, leading to risk-sensitive or KL control.

Formally, maximizing the expected utility and

entropy of outcomes is equivalent to minimizing

the KL divergence between the expected (predic-

tive) distribution over outcomes and the distribu-

tion specified by the utility function. In

behavioral terms, maximizing the entropy of con-

trolled outcomes can be understood in terms of

novelty bonuses and related concepts (Bach &

Dolan, 2012; Daw et al., 2005; De Martino,

Fleming, Garrett, & Dolan, 2012; Kakade &

Dayan, 2002; Wittmann et al., 2008). In econom-

ics, there is a conceptual link with Shackles’

formulation of potential surprise and the crucial

role of money in facilitating risk-sensitive control

(Shackle, 1972): If I am not sure what I want to

buy, then I will save my money (liquid assets)

and buy something later (maximize the entropy

over future purchases—a fiscal Ockham’s Razor).

● Risk-sensitive or KL control works fine if there is no

uncertainty or ambiguity about hidden states given

observed outcomes. However, when the same state

can lead to several outcomes (e.g., noisy or ambig-

uous cues), we have to augment the KL divergence

with the expected entropy over outcomes given the

hidden states that cause them. Minimizing this

entropy ensures that hidden states generating ambig-

uous (high entropy) outcomes are avoided. In other

words, observations that resolve uncertainty about

hidden states become intrinsically valuable.

However, the sum of the expected conditional

entropy and the KL divergence is the expected free

energy that scores the quality or value of a policy.

This brings us to active inference and the minimiza-

tion of expected free energy that is sensitive to both

risk and ambiguity.

In what follows, we consider some of the

theoretical implications of these arguments, in

relation to established approaches in psychology and

artificial intelligence.

Curiosity and Bayesian surprise

Epistemic value and implicit exploratory behavior are

related to curiosity in psychology (Harlow, 1950;

Ryan & Deci, 1985) and intrinsic motivation in

reinforcement learning (Baldassarre & Mirolli, 2013;

Barto, Singh, & Chentanez, 2004; Oudeyer & Kaplan,

2007; Schembri, Mirolli, & Baldassare, 2007;

Schmidhuber, 1991). Here intrinsic stands in

opposition to extrinsic (e.g., drive or goal) value.

While we have focused on reducing uncertainty

during inference, most reinforcement learning

research uses curiosity or novelty-based mechanisms

to learn a policy or model efficiently. The general idea

here is that an agent should select actions that

improve learning or prediction, thus avoiding

behaviors that preclude learning (either because

these behaviors are already learned or because they

are unlearnable). It has often been emphasized that

adaptive agents should seek out surprising stimuli,

not unsurprising stimuli as assumed in active

inference. This apparent discrepancy can be

reconciled if one considers that surprising events, in

the setting of curiosity and Bayesian surprise, are

simply outcomes that are salient and minimize

uncertainty. In active inference, agents are surprised

when they do not minimize uncertainty. It is salient

(counterfactual) outcomes that optimize exploration

(and model selection) and salience-seeking behavior

stems nicely from the more general objective of

minimizing expected free energy (or surprise proper).

There is, however, an important difference

between active inference and the concepts of

curiosity and Bayesian surprise, at least as they are

usually used. Salience is typically framed in “bottom-

up” terms, in that the agents are not assumed to have

a particular goal or task. This is also a characteristic

of curiosity (and similar) algorithms that try to learn

all possible models, without knowing in advance

which will be useful for achieving a specific goal.

The active inference scheme considered here

contextualizes the utilitarian value of competing

policies in terms of their epistemic value, where the

implicit reduction in uncertainty is (or can be) tailored

for the goals or preferred outcomes in mind.

Active inference and the exploitation-
exploration dilemma

The active inference formulation effectively combines

belief state updates, action selection, and learning under

a single imperative. In principle, this results in the

efficient learning of both the structure of the

environment and the selection of the suitable policies,

thereby avoiding the problems of model-free

reinforcement learning algorithms (Sutton & Barto,

1998). Model-free schemes need to relearn a policy
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every time the environment changes (Ognibene, Pezzulo,

&Baldassarre, 2010). Active inference offers a principled

solution to the exploration-exploitation dilemma and, in

contrast with model-based learning, will not waste time

modeling irrelevant aspects of the environment (Atkeson

& Santamarıa, 1997). This may enhance learning through

generalization, by predominantly sampling features that

are conserved when the environmental context changes

(Ognibene & Baldassarre, 2014; Walther, Rutishauser,

Koch, & Perona, 2005).

Furthermore, active inference extends established

metaphors for purely perceptual processing, in

particular, hierarchical Bayesian filtering and predictive

coding (Clark, 2013; Friston, 2010; Lee & Mumford,

2003; Rao & Ballard, 1999). These perspectives can

explain several aspects of cortical hierarchies (Dayan

et al., 1995) and provide a nice perspective on the brain

as an organ that adapts to model and predict its sensory

inputs. This is particularly important because the

resulting hierarchical representation (deep generative

model) can account for sensorimotor regularities

produced by action (Lungarella & Sporns, 2006;

O’Regan & Noë, 2001). In turn, this can improve

learning and inference, which depend sensitively on an

efficient and sparse (hierarchical) representation of active

sampling and sensorimotor learning (Ballard et al., 2013;

Barto et al., 2004; Tani & Nolfi, 1999). From a modeling

perspective, the integration of learning, belief updating,

and action selection may allow one to study, in a

principled manner, how perception supports learning

and how learning can result in different internal

representations (Little & Sommer, 2013; Lungarella &

Sporns, 2006; Ognibene &Baldassarre, 2014; Verschure,

Voegtlin, & Douglas, 2003).

This may be particularly important when modeling

inference and behavior in tasks where the agent has

no detailed knowledge of the environment, e.g.,

foraging in open and changing environments,

possibly with other agents. These difficult problems

have limited the application of the MDP framework to

tasks with definitive and detailed representations,

such as navigation in grid-based mazes. In open

environments, epistemic behaviors have been largely

described with heuristic (Brooks, 1991; Itti & Koch,

2001) or stochastic processes such as Lévy flight

(Beer, 1995; Viswanathan et al., 1999). However,

modeling these problems within the active inference

framework may reveal the formal nature of these

processes and their neuronal correlates.

Bayesian Reinforcement Learning (e.g., Cao &

Ray, 2012) also provides a principled approach to

the exploration-exploitation trade-off and explicitly

models uncertainty about the quality of alternative

policies. Because active inference tackles both the

problems of learning and of exploration under

partial observations in a coherent manner, it would

be interesting to see if Bayesian reinforcement

learning could be formulated in terms of active

inference. This may be useful, because the current

scheme offers computational efficiency, by

exploiting variational Bayesian techniques (c.f.,

Furmston & Barber, 2010), accommodates formal

constraints on the structure of policies, and comes

with a biologically plausible process theory.

Applications

While these are clearly interesting theoretical issues, the

purpose of this paper is also pragmatic. The simulations

presented in this paper all use one (Matlab) routine that

only requires the specification of the generative model

in terms of its ðA;B;C;DÞ 1 θ parameters. Crucially,

integrating this scheme, for any given set of choices and

outcomes, provides a generative model of empirical

choice behavior. This means, one can estimate the

parameters that are unique to a particular subject

(human or animal) using standard (meta-Bayesian)

schemes (Daunizeau et al., 2010). These parameters

include the sensitivity to particular outcomes, beliefs

about experimental contingencies, and the overall

confidence (and confidence in confidence) encoded by

a subject’s hyperpriors over precision, e.g.,

ðc; a; α; βÞ 1 θ. This enables a cognitive and possibly

physiological phenotyping of subjects using behavioral

and physiological responses respectively. Furthermore,

one could use Bayesian model comparison to assess

whether subjects use expected utility, risk-sensitive

control, or full active inference. Indeed, we have

shown that the choice behavior and fMRI responses in

the dopaminergic midbrain area are better explained in

terms of KL control, relative to expected utility using

this approach (Schwartenbeck, FitzGerald, Mathys,

Dolan, & Friston, 2014). We hope to pursue a similar

approach to exploration and decision-making under

uncertainty in future work.
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APPENDIX A

Lemma (predictive free energy): Under a generative

model Pðsτ ; oτjπÞ ¼ Qðsτjoτ; πÞPðoτjmÞ and policy π,

the negative free energy of the approximate posterior

predictive density is " : τ > t

QτðπÞ ¼ )EQðsτ jπÞ½H ½PðoτjsτÞ%%
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Predicted uncertainty

)D½Qðoτ jπÞjjPðoτjmÞ%
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Predicted divergence

A1:1

Proof: The expected free energy of the approximate

posterior predictive distribution over hidden states

(under policy π at τ > t in the future) is the

expected energy minus its entropy (where the energy

of a hidden state Gðsτ ; πÞ is itself an expectation over

outcomes):

Gðsτ ; πÞ ¼ ) EPðoτ jsτÞ½lnPðoτ ; sτ jπÞ%

FτðπÞ ¼ EQðsτ jπÞ½Gðsτ; πÞ% ) H ½Qðsτ jπÞ%
A1:2

This means the quality or value of the policy is:

QτðπÞ¼ )FτðπÞ

¼ EQðoτ ;sτ jπÞ½lnPðoτ ;sτ jπÞ) lnQðsτ jπÞ%

¼ EQðoτ ;sτ jπÞ½lnQðsτ joτ ;πÞþ lnPðoτ jmÞ) lnQðsτ jπÞ%

¼ EQðoτ ;sτ jπÞ½lnQðoτ jsτ ;πÞþ lnPðoτ jmÞ) lnQðoτ jπÞ%

¼ )EQðsτ jπÞ½H ½Pðoτ jsτÞ%%
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Predicted uncertainty

)D½Qðoτ jπÞjjPðoτ jmÞ%
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Predicted divergence

Q sτ jπð Þ¼ EQðstÞ½Pðsτ jst;πÞ%

Q oτ jπð Þ¼ EQðsτ jπÞ½Pðoτ jsτÞ%

Q oτ ;sτ jπð Þ¼ Pðoτ jsτÞQðsτ jπÞ

A1:3

Where Qðoτjsτ; πÞ ¼ Pðoτ jsτÞ is the (predictive)

likelihood of the (predictive) generative model

Remarks: Intuitively, the generative model of future

states encodes beliefs that certain outcomes in the

future are surprising (irrespective of the current state

or policy), while future hidden states (given those

outcomes) are surprising when they are not

predicted. This generative model is defined in terms

of a posterior (predictive) distribution over hidden

states and a prior over outcomes. This contrasts with

the usual construction of a generative model of past

outcomes, in terms of a likelihood and prior over

hidden states. Heuristically, this reflects the fact that

current outcomes are caused by past transitions

among hidden states but future outcomes can cause

current state transitions (through policy selection).

Note that when τ ¼ t, the outcome is observed and

the expected free energy reduces to the free energy of

approximate posterior beliefs about hidden states:

GðstÞ ¼ ) lnPðot ; stÞ

Ft ¼ EQðstÞ½GðstÞ% ) H ½QðsτÞ%
A1:4

Optimizing this free energy corresponds to Bayes

optimal state estimation; however, because this free

energy functional has no concept of the future it

cannot support purposeful behavior or active

inference.

APPENDIX B

The variational updates are a self-consistent set of

equalities that minimize variational free energy. Let

~x ¼ ~st; ~u; γ denote the hidden variables and x
_
¼

s
_

t; π
_
; γ
_

denote their sufficient statistics. Using the

dot notation A + B ¼ ATB, the variational free energy

can be expressed in terms of its energy and entropy

(with Bða0Þs
_

0 ¼ D):

Fð~o; x
_
Þ ¼ ) EQ½lnPð~o;~xjmÞ% ) H ½Qð~xjx

_
Þ%

¼ s
_

t + ðln s
_

t ) lnA + ot ) lnðBðat)1Þs
_

t)1ÞÞ

þ π
_
+ ðln π

_
) γ

_
QÞ þ βγ

_

þ αðln α) ln γ
_
) ln β ) 1Þ

EQ½lnPð~o;~x mj Þ% ¼ EQ½lnPðot jstÞ þ lnPðstjst)1; at)1Þs
_

t)1

þ lnPð~ujγÞ þ lnPðγjβÞ%

¼ s
_

t + ðlnA + ot þ lnðBðat)1Þs
_

t)1ÞÞ

þ γ
_
Q + π

_
þ ðα) 1ÞðψðαÞ ) ln β

_

Þ ) βγ
_

þ α ln β ) lnΓðαÞ

H ½Qð~x x
_
-
- Þ% ¼ α) ln β

_

þ ln ΓðαÞ

þ ð1) αÞψðαÞ ) π
_
+ ln π

_
) s

_

t + ln s
_

t

A2:1

Differentiating the variational free energy with respect

to the sufficient statistics gives

@F

@s
_

t

¼ 1þ ln s
_

t ) lnA + ot ) lnðBðat)1Þs
_

t)1Þ ) γ
_
+ !

s
_Q + π

_

@F

@π
_
¼ 1þ ln π

_
) γ

_
+Q

@F

@γ
_
¼ β )Q + π

_
) β

_

A2:2
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Finally, we obtain the variational updates by solving

for zero and rearranging to give:

ln s
_

t ¼ lnA + o
_

t þ lnðBðat)1Þs
_

t)1Þ ) 1

ln π
_
¼ γ

_
+Q) 1

β
_

¼ β )Q + π
_

A2:3

For simplicity, we have ignored the derivative of

value with respect to the hidden states (numerically,

this simplification appears to make little difference in

the Markov decision processes considered in this and

previous papers). Including this term leads to an

additional term in the (Bayesian filter) updates of

expected states corresponds to an optimism bias

(Friston et al., 2014).

The variational updates for precision can be

multiplied by ð1) λÞ and rearranged to give:

β
_

¼ λβ
_

þ ð1) λÞðβ )Q + π
_
Þ A2:4

This effectively slows the updates to provide a more

time-resolved model of the implicit (e.g., dopamine)

dynamics. In this paper, we used λ ¼ 1
4
.
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Abstract: Free energy models of learning and acting do not

only care about utility or extrinsic value, but also about

intrinsic value, that is, the information value stemming

from probability distributions that represent beliefs or

strategies. While these intrinsic values can be interpreted

as epistemic values or exploration bonuses under certain

conditions, the framework of bounded rationality offers a

complementary interpretation in terms of information-

processing costs that we discuss here.

In the information-theoretic model of bounded

rationality (Braun, Ortega, Theodorou, & Schaal,

2011; Ortega & Braun, 2011, 2013), a bounded

rational decision-maker has a prior strategy P0ðaÞ and
a probabilistic model P0ðsjaÞ about the states s 2 S that

might result from taking action a 2 A. The decision-

maker plans to optimize a real-valued utility function

U : S# A! R that can be evaluated for any ðs; aÞ
pair. As the decision-maker is bounded, the posterior

strategy PðaÞ after deliberation can only deviate from

the prior strategy P0ðaÞ by a certain number of bits of

information, that is DKLðPðaÞjjP0ðaÞÞ 5 K. Similarly,

the decision-maker might have model uncertainty

(Hansen & Sargent, 2008) and thus consider any

model PðsjaÞ that is within a given deviation from the

prior model P0ðsjaÞ, that is,DKLðPðsjaÞjjP0ðsjaÞÞ 5 C.

Mathematically, the bounded rational decision-

maker behaves as if solving the following variational

problem

max
PðaÞ

ext
PðsjaÞ

X

a

PðaÞ
X

s

PðsjaÞ

Uðs; aÞ )
1

α
log

PðaÞ

P0ðaÞ
)

1

β
log

PðsjaÞ

P0ðsjaÞ

/ 0 (1)

with the solution P-ðsjaÞ ¼ P0ðsjaÞexpfβUðs; aÞg=
ZβðaÞ and P-ðaÞ ¼ P0ðaÞexpf

α
β
logZβðaÞg=Zα, where

α 2 Rþ and β 2 R are the boundedness parameters of

the constrained decision problem and Zα; ZβðaÞ are

normalizing constants. For β < 0 we have the extremum

operator ext¼ min and for β > 0 we have ext¼ max.

The perfectly rational expected utility maximizer is

obtained in the limit α!1 (perfect choice of action)

and β ! 0 (perfect trust in prior beliefs).

We now attempt to derive Equation (5) in the

Discussion Paper by Friston et al. (this issue) from

(1) to gain further insight into their assumptions. The

expression (1) can be rewritten as

max
PðaÞ

ext
PðsjaÞ

X

a

PðaÞ

)
1

β
DKL½PðsjaÞjjPdesðsjaÞ% )

1

α
log

PðaÞ

P0ðaÞ
)

1

β
logZβðaÞ

/ 0

;

(2)

where we have defined the desired target probability

PdesðsjaÞ ¼ P0ðsjaÞexpfβUðs; aÞg=ZβðaÞ in which

ZβðaÞ is a normalizing constant that depends on the

action. Here, the utility is expressed as an

informational difference between the actual and the

desired distribution over observations. Accordingly,

the utility-maximizing decision-maker of Equation (1)

can be equivalently thought to minimize surprise as

described by Equation (2). To obtain Equation (5) of

the Discussion Paper, we must make two additional

assumptions: (1) we neglect the cost of action

selection (α!1); and (2) we assume that PdesðsjaÞ ¼
PdesðsÞ does not depend on the action a, which is the

case, for example, in active inference models where© 2015 Taylor & Francis
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PdesðsÞ is thought to represent the decision-maker’s

preferences over outcomes. Then, the variational

problem in Equation (2) becomes equivalent to

Equation (5) of the Discussion paper, that is,

) DKL½PðsjaÞjjPdesðsÞ%

¼ EPðsjaÞ½logPdesðsÞ%
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

extrinsic)value

þ H ½PðsjaÞ%
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

intrinsic)value

; (3)

which is to be maximized with respect to PðsjaÞ. From
the point of view of bounded rationality, maximizing the

intrinsic and extrinsic values corresponds to choosing an

action that maximizes the expected utility, but subject to

minimizing the information costs of deviating from a

prior strategy and a prior belief model.

Since both actions and observations follow essentially

the same variational principle, the distinction between

extrinsic and epistemic value does not hinge on the

presence of hidden or observable states, but appears

already in the simplest scenario with a single action

variable a with

max
PðaÞ

X

a

PðaÞ UðaÞ )
1

α
log

PðaÞ

P0ðaÞ

/ 0

¼ max
PðaÞ

X

a

PðaÞ ~UðaÞ þ
1

α
H ½PðaÞ%

 !

(4)

where we have defined a modified utility
~UðaÞ :¼ UðaÞ þ 1

α
logP0ðaÞ. Written in this form, the

free energy value of the policy PðaÞ consists of an

expected utility and an entropy. While this could be

interpreted as searching for a policy that “leaves options

open” or encourages exploration, the bounded rational

interpretation is that the decision-maker has limited

resources and cannot deviate too much from the prior.

If the prior P0ðaÞ is not explicitly considered in ~U , from

the point of view of bounded rationality it is still implied

as a uniform prior. The information processing costs

given by the informational deviation from the (implicit)

prior can also be interpreted in computational terms as a

sampling complexity (Daniel, 2014; Ortega, Braun, &

Tishby, 2014). In summary, the bounded rationality

approach offers a different perspective on epistemic

value in terms of intrinsic information processing costs.
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Abstract: Contrary to Friston’s previous work, this paper

describes free energy minimization using categorical

probability distributions over discrete states. This alternative

mathematical framework exposes a fundamental, yet

unnoticed challenge for the free energy principle. When

considering discrete state spaces one must specify their

granularity, as the amount of information gain is defined over

this state space. The more detailed this state space, the lower

the precision of the predictions will be, and consequently, the

higher the prediction errors. Hence, an optimal trade-off

between precision and detail is needed, and we call for

incorporating this aspect in the free energy principle.

Keywords: free energy; predictive coding; prediction

error minimization; information gain.

“If you take care of the small things,
the big things take care of themselves.
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You can gain more control over your life by
paying closer attention to the little things.”
Emily Dickinson, 1830–1886

There is much value in Dickinson’s advice. In this

commentary, we are particularly interested in the

epistemic value of detailed predictions (“paying

closer attention to the little things”) for free energy

minimization (“gaining more control over your life”).

We will show that specifying the granularity of state

spaces is crucial for minimizing free energy: When

the granularity is too low, little information is gained

from correct predictions; if it is too high, prediction

errors will be needlessly high.

In the target article, Friston and colleagues bring the

exploration-exploitation trade-off under the free energy

minimization regime, by assuming that the agent’s prior

beliefs are such that they expect to minimize future free

energy and plan their actions accordingly. Formally,

they describe their theory using partially observable

Markov decision processes (POMDPs) with discrete

states and actions; consequently, the generative models

are described using categorical probability distributions.

This approach overlooks the fact that “state” and

“action” in these models depend on the granularity (or

level of detail) of the state space and the actions

operating on them. Given that the required granularity

cannot be assumed to be fixed, as it may be context

dependent, any discrete free energy account will also

need to address the question of how the right level of

detail is determined.

For example, one may plan to shop for groceries. The

action “shop for groceries” is fairly abstract and may be

describedmore in detail as “first pick up some croissants

at the bakery, then head for the produce market to get

vegetables, and don’t forget to buy cat food”. Note that

the more detailed we make these predictions, the more

information they carry; however, they are also more

prone to prediction errors. When one expects to buy

this-and-that flavour of cat food from brand such-and-

so, then any other flavour or brand would result in a

prediction error. If, on the other hand, we expect merely

“to buy cat food”, then as long as we end up buying

some brand or flavour of cat food, regardless which one,

there would be no prediction error. Hence, increasing

the level of detail of predicted and actual outcomes will

—everything else being equal—increase average

uncertainty, simply because it will increase the entropy

of the probability distribution over possible outcomes.

A now classic objection of the free energy principle is

that it seems to predict that organisms would seek shelter

in a dark cave to defer from any sensory experiences and

hence minimize prediction errors (Thornton, 2010). Even

though a satisfactory answer may have been given to this

objection (Friston, Thornton & Clark, 2012), we raise a

novel problem that seems to generalize that idea and

follows naturally from the consideration of the level of

detail: Consider that one stands in the middle of Times

Square during rush hour, one can minimize prediction

errors by simply predicting that “stuff happens around

me” and interpret the sensory inputs accordingly. This

very low level of detail of expected and actual outcomes

will, by definition, lead to low free energy (prediction

errors), simply because there are fewer categories in the

probability distribution.

The example illustrates that predicting and

interpreting all our sensory experiences as “stuff

happens” is equally ineffective as staying in a dark

cave forever. Arguably, an individual that makes more

fine-grained predictions, e.g., by discriminating

between cars that are parked and cars that are

driving, will be more successful in the long run.

Making more fine-grained predictions than “stuff

happens” induces potential uncertainty and excessive

prediction errors, but it allows us to benefit by making

more informative predictions. In contrast, to assess

whether we should wait or whether we can walk the

street, it is seldom beneficial to make predictions that

are too detailed. It is of little use to predict the car

type and brand in order to prevent getting run over.

The added information from such a prediction is

outweighed by the increased prediction error when

the prediction turns out to be wrong. These

considerations show that somehow a trade-off needs

to be made between precision and detail.

As Friston et al. acknowledge, hyperpriors on the

(expected) precision are crucial for weighting

prediction errors (Clark, 2013; Friston, 2010). As we

highlighted with our examples, it is necessary to

extend the notion of hyperpriors to govern also level

of detail, as precision is a property of predictions at

every level of detail. Such an enhanced theory may

shed light on why and how we are able to make

predictions that trade off information gain and

prediction error, and how this fits in with free

energy minimization.
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The Free-Energy Principle (FEP) provides a powerful

normative framework to explain perception and

behavior. The all-encompassing ambition of the

endeavor becomes clear by the diversity of topics

covered from the “predictive coding” interpretation

of perception to the more recent focus on behavior

and “active inference.” However, for the broader

audience of the uninitiated, the goal of FEP, its

theoretical framework, and leverage may still be

elusive. We will try to identify some of the

challenges FEP is facing from the perspective of the

partially initiated, focusing on the somewhat equivocal

role that “goals” (as priors) have in the theory.

The main contribution in Friston et al. (this issue)

stems from reconciling two apparently opposed views

on the dopaminergic response as reflecting either reward

prediction (e.g., Schultz, 1998) or surprise (Redgrave &

Gurney, 2006). This putative reconciliation follows from

“casting reward or utility in terms of log-probabilities”

which allows for measuring them with a common

“information currency.” This step allows an elegant

blending of goal-directed and uncertainty-reducting

behavior without the use of specific parameters to

control the exploitation/exploration trade-off. However,

as the paper acknowledges, this has already been done in

risk-sensitive control (Van den Broek, Wiegerinck, &

Kappen, 2010; Ortega & Braun, 2011), thus, this

paper’s main contribution can also be seen as

extending risk-sensitive control to a model that

includes non-observable states. However, even if that is

a significant step forward from a computational

perspective, one may ask what does the prior step of

casting goals as probabilistic priors entail? Is it a

falsifiable statement? And what leverage would this

reformulation give us in terms of explanations and

predictions? To provide a counter example, the bottom-

up embodied Distributed Adaptive Control (DAC)

theory of the brain bootstraps goals from the

foundation of the self (Verschure, Pennartz, & Pezzulo,

2014); that is, goals emerge from needs that emerge to

reduce drives. DAC expands across a number of layers

(reactive, adaptive, and contextual) providing the system

with the means to achieve goals that ultimately serve

drive reduction, sustaining the physically instantiated

self from feeding to fighting and from reproducing to

self-realization. Here a large and variable set of goals

emerges, in turn comprising a multitude of states:

Perception, value, and action. In contrast, FEP seems

to replace all drives with a single one: The minimization

of surprise. If one now looks at where goals, formulated

as probabilistic priors, originate, FEP’s single drive

claim might be a trompe-l’oeil: Instead of explaining

goals, it adds an additional meta-goal. Hence, the

elegance of FEP comes for a price in terms of its

assumptions and this cost is not sufficiently considered.

In addition, FEP seems to strive toward the super power

of explaining everything. This, however, will make it

transcend the obligation of each theory to be testable.

Hence, with FEP the devil is in the priors.

Ever since Helmholtz’s work, we can look at the

brain as a prediction machine. We can note, however,

that Plato has already struggled with the issue of beliefs

as predictions in his Theaetetus (369 BC). Be that as it

may, the question now becomes: If computation can be

unified to such an extent in terms of FEP, why is the

brain so diverse in its implementation of prediction-

based mechanisms? The specific predictive

mechanisms that have been identified seem to differ

markedly across brain areas. For instance, prediction

in neocortical area A1 is mediated through recurrent

inhibition (Sánchez-Montañés, Konig, & Verschure,

2002), the hippocampus seems to use attractor

dynamics in coupled excitatory neurons for the same

purpose (Rennó-Costa, Lisman, & Verschure, 2014),

and the cerebellum relies on a well-defined tri-synaptic

nucleo-olivo-cortical loop to adjust its predictions based

on negative feedback (Herreros & Verschure, 2013), to

mention three distinct neuronal systems where

prediction modulates plasticity that we have directly
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studied in the context of the DAC theory. This

variability in the implementation in distinct systems

raises the fundamental question of how this apparent

conflict between the synthesis of a unified

computational framework of FEP and the diversity of

computational realizations in biology can be resolved.

Even if active inference succeeds in providing a unified

explanation of behavior, then FEP will still have to

backtrack and explain why evolution has de-unified its

implementation or it will be shown to be incomplete.

Concepts such as predictive coding, sensory

prediction-based motor control, risk-sensitive control,

and planning as inference have huge explanatory

power, and may end up reshaping our understanding

of the brain and directing future neuroscience research.

Free energy seems to provide a canvas integrating all of

them, but at present it is still difficult to see which is its

specific contribution. For instance, if such a

contribution stems from the self-consistent prior at the

heart of the active inference formulation, namely that

“any system that does not (believe it will) minimize the

long-term average of surprise does not (believe it will)

exist,” how can the neuroscience community benefit

from this insight or actually anyone who has the wish to

explain natural phenomena and derive predictions from

that explanation? In addition, FEP also faces the risk of

panpsychism by expanding the explanation to “any

system.”

In summary, the free energy and active inference

theories anticipate a Copernican shift in theoretical

neuroscience where commonly accepted concepts in

the twentieth century, like the perceive-think-act cycle

and the classical interpretation of a neuron’s receptive

field, are to be replaced by a more powerful

framework. It is, however, not about claiming to

have found a descendent of Copernicus, but rather

whether one has better explanatory and predictive

power combined with an enhanced ability to control

nature. We expect that in the future, as FEP and active

inference is applied to more scenarios, it will

eventually jump to the domain of controlling real-

world artifacts, as that is, we believe, the definitive

test for any theory of behavior and, as such, it will

facilitate the identification of the value of FEP in

understanding mind and brain.
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Abstract: The solution to the exploration-exploitation

dilemma presented essentially subsumes exploitation into

an information-maximizing model. Such a single-

maximization model is shown to be (1) more tractable

than the initial dual-maximization dilemma, (2) useful in

modeling information-maximizing subsystems, and (3)

profitably applied in artificial simulations where

exploration is costless. However, the model fails to resolve

the dilemma in ethological or practical circumstances with

objective outcomes, such as inclusive fitness, rather than

information outcomes, such as lack of surprise.
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The exploration-exploitation dilemma presents the

conflict between the need to obtain new

knowledge and the need to use that knowledge to

improve outcomes or performance (Laureiro-

Martínez, Brusoni, & Zollo, 2010). Friston et al.

(this issue) “offer a solution to the exploration-

exploitation dilemma that rests solely on the

minimization of expected free energy.” The

minimization of expected free energy is initially

described as maximizing extrinsic value while

maximizing information gain. Although this may

initially appear to simply restate the well-known

dilemma, a further operationalization of this “free

energy” definition leads to a model where the

problem of maximizing two outcomes is re-cast as

maximizing one of the two outcomes, namely

information gain. Expected value can be expressed

in terms of information—and expected information

gain has value. In other words, information and

value have the same currency and can be combined

into a single “free energy” imperative. Thus, the

minimization of expected free energy is also referred

to as minimizing surprise, or equivalently, as

maximizing Bayesian model evidence.

How then is the exploitation half of the exploration-

exploitation dilemma subsumed within a purely

information-gain model? This is done by expressing

“(extrinsic) reward in terms of (epistemic) information

gain. . . .” Specifically, “preferred outcomes are simply

outcomes one expects, a priori, to be realized through

behavior. . . .” Thus, by definition, a surprising outcome

—one where information was lacking—cannot be

preferred. This results in a resolution of the

exploration-exploitation dilemma by giving primacy to

information gain. Where contingencies are unknown,

“epistemic value is maximized until there is no further

information gain, after which exploitation is assured

through maximization of extrinsic value.” Such an

information-centric model must still account for the

need of action. This is done by noting that action is

important, because information gain requires sampling

the world to resolve uncertainty.

Resolving the dual-priority conflict by subsuming

one priority within the other provides enormous

advantages for mathematical tractability and

theoretical simplicity. It will also be readily

confirmed by observations from those parts of a

system designed to accomplish one of the two

priorities. However, such a resolution works only if

the simplifying assumptions are valid. Specifically, if

preferred outcomes are synonymous with expected

outcomes, then information gain becomes the

primary goal. The model breaks down, however, if

the preferred outcomes are objectively distinct from

information (i.e., where an outcome may be defined

separately from its informational characteristics). If

the outcome is, e.g., calories, survival, reproduction,

or inclusive fitness, then surprise is no longer

independently relevant except to the extent that it

impacts those external outcomes. In such cases, the

optimal tradeoff between exploitation and

exploration depends entirely upon environmental

circumstances, and no one strategy will be, a

priori, preferred.

Is it possible to construct a simulation in which

exploration (information maximization) is the

dominant goal? Yes. This is done by creating a

situation in which there are no returns to further

exploitation. The two-move foraging simulation in

Friston et al. (this issue) does this by ending the

game (via a trap door) after the first exploitation

move. Unlike the typical ethological circumstances

where each exploration move comes at the cost of a

foregone exploitation move, this simulation prohibits

two exploitation moves, and thus makes the initial

exploration move costless. Clearly, when exploration

is costless, an information-maximizing model will

dominate, as in the simulated trials. Just as clearly,

such a simulation provides no relevant information

for the actual underlying dilemma.

Is it possible to identify information-maximizing

neural processes in nature? Yes. This is done by

analyzing processes that are themselves information-

maximizing functions. Thus, we would fully expect

that information-maximizing processes, such as active

vision based upon salience or message-passing

schemes, would fully conform to an information-

maximizing model. However, in the more holistic

exploration-exploitation dilemma, relative

preferences for information-seeking as compared

with immediate experiential outcomes (calories,

temperature, sex) may change depending upon the

current condition of relevant homeostatic processes

(hunger, cold, lust). Thus, relative dopaminergic

gains for novel information may change relative to

gains for experienced sensation depending upon state

conditions (Gros, 2010) that themselves may reflect

changing environmental circumstances, leading back

to the core environmental-dependent exploration-

exploitation dilemma where no single a priori model

dominates and prior preferences are likely to be

highly context-dependent. Active inference provides

an excellent approach to modeling information

maximizing systems—and can be applied in

220 COMMENTARIES

] _̀̂a b̂c dce fghijjke lblfm d lnk od pq brst utvwvm d xr d ye d lwsz{



simulations—but does not explicitly address the real

world exploitation-exploration dilemma inherent in an

agent’s context-sensitive preferences.
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Abstract: Metacognition concerns our monitoring and

control of mental operations (knowing what you know).

Much thinking about metacognition is liable to fall foul of

the classic homunculus problem: Nobody can specify who

or what does the “metacognition.” We describe how the

Active Inference and Epistemic Value (AIEV) model

offers an operationalization of epistemic behaviors which

can explain two example metacognitive phenomena:

Control and monitoring of word learning, and the search

for unretrieved information in the feeling of knowing.

Curiosity drives a search forward, but it is held in check

by considering the utility of what is retrieved from memory.

Nelson and Narens (1990) proposed the most widely

cited account of metacognition (knowing what you

know). In their framework, flows of information

between an object level and a meta-level are

characterized as representing monitoring and control

of cognitive processes. The processes at play in such

flows are not well specified (but see Fleming, Dolan,

& Frith, 2012) and fall foul of the classic homunculus

problem: Nobody can specify who or what does the

“metacognition” in their framework. In Friston et al.’s

paper we see a concrete operationalization of

epistemic behaviors that can explain metacognitive

phenomena; an inference-making machine based on

the principle of minimizing uncertainty and the

efficient expenditure of resources. We briefly outline

these ideas here, but the topic in general warrants a

much more developed examination.

A common task in assessing metacognition is to

learn a set of words over repeated trials. We infer that

attention is orientated toward items studied for the

first time because they are novel: Study times are

longer for items seen for the first time than at

subsequent repetitions. If we ask participants to

make an explicit declaration of their metacognitive

evaluation, they will give higher predictions of

subsequent performance for the items they have seen

more frequently. Importantly, more study time will be

allocated to items thought to be difficult to remember

or which are poorly learned. But a bi-directional

relationship also exists: It is because we study

something for longer, or that learning is non-fluent

that we rate things as difficult to remember (e.g.,

Koriat, Ma’ayan, & Nussinson, 2006).

According to Friston et al., there is an epistemic

value to divergences between expected and observed

behaviors in an ongoing task such as this. Friston

et al.’s system is intrinsically metacognitive:

“valuable policies will search out observations, cues,

or signs that resolve uncertainty about the state of the

world.” The formation and retention of “valuable”

policies explains the acquisition, adaption, and

implementation of mnemonic strategies (as opposed

to, for instance, trial-and-error learning), whereas the

search for cues and signs is the process of monitoring

the operations of the cognitive system. The

metacognitive system acts on epistemic feelings (see

Moulin & Souchay, 2013) to reduce inefficiencies

in the system—which are either unknowns or

uncertainties about current or future performance

based on current goals. In sum, active inference is

not random—because it is “tailored” toward goals

and receives feedback through Bayesian processes—

we argue that this process encapsulates the flows of

information captured in metacognitive notions of

control and monitoring. Technically speaking, the

active inference scheme described in the target article

is quintessentially metacognitive, because epistemic

value (the opportunity to minimize uncertainty) of

prior beliefs is a function of posterior beliefs about© 2015 Taylor & Francis
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uncertainty. In other words, at the heart of planning

through inference, there is a quantity (expected free

energy) that rests upon beliefs about beliefs.

In our word-learning example, the principle of

minimizing uncertainty will signal when the

processing fluency for a word in a list differs from

what is expected, and an efficient maximization of

information gain will allocate study time

appropriately (it will also “know” when to give up

when learning is impossible). Thus, Friston et al.’s

AIEV framework describes how feedback systems

operate to regulate human learning.

One of the strengths of the AIEVapproach is that it

draws upon Markov decision processes where states

are not directly observable and where there is, in

short, missing data. The state of “unknowns” in

metacognition is a pivotal point, as pointed out by

Fleming et al. (2012, p. 1285):

Object-level representations are often concerned with
presence of stimuli in the world; they rarely deal in
absence . . . . In contrast, “knowing I do not know” is
a meta-level representation of the absence of object-
level memory. Investigating this putative function
may benefit from greater integration with work
quantifying epistemic behaviour—by sampling
information over time, an agent can adaptively
reduce its uncertainty, achieving a balance between
the additional cost of exploration and the benefit of
gaining further information

In the Feeling of Knowing (FOK) phenomenon

(e.g., Souchay, Isingrini, & Espagnet, 2000) people

can accurately gauge the state of their memory

system, even when the searched for information

cannot be retrieved. When asked “Who was the

director of the film Black Swan?” we may find

ourselves unable to answer, but a set of

information may trigger decision-making as the

search for the answer unfolds in time. This search

for the answer is well represented by the epistemic

feeling of curiosity, and the drive to reduce

uncertainty. The FOK is a dynamic state, and

according to the AIEV view, based on a series of

exploratory searches for information inherent in

Markovian processes. The production (or not) of

information whilst searching promulgates or

terminates the search—and ultimately this can be

output as an explicit declaration: I don’t know/It’s

on the tip-of-my-tongue/Darren Aronofsky. A

certain excitation of the memory system exists at

such times, but when the epistemic value of search

is small, such as when retrieving irrelevant or

repetitive information, the search will be

terminated. Curiosity drives the search forward,

but it is held in check by considering the utility

of what is retrieved from memory (in comparison

with what is expected). Thus, the Friston et al.

article goes a long way to answering a critical

question in metacognition—what is it we know

when we think we do not know something? We

imagine that the answer to this question is that we

are aware of an epistemic process akin to that

described in the AEIV model.
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Abstract: Elucidating the cognitive, affective, and reward

processes that take place during music listening is the aim

of a growing number of researchers. Several authors have

used the Bayesian brain framework and existing models of

reward to interpret neural activity observed during musical

listening. The claims from Friston and colleagues regarding

the role of dopamine, as well as the demonstration that

salience-seeking behavior naturally emerges from

minimizing free energy, will be of potential interest to

those seeking to understand the general principles

underlying our motivation to hear music.

In a previous perspective piece (Schwartenbeck,

FitzGerald, Dolan, & Friston, 2013), it was suggested

that the Free Energy Principle formalisms in their

current state might not be sufficient “to explain all

aspects of higher level activities, such as the

appreciation of fine arts.” Nevertheless, one cannot help

but wonder what the appropriate formalisms would look

like. The current article summons similar interest. Not

least because the specific claims made are of

considerable relevance to the psychological and neural

underpinnings of music listening.

A first claim of interest is that of the role of

dopamine. Dopamine has been associated with

rewarding aspects of music listening via evidence of

recruitment of dopaminergic areas and through direct

observation of its release during the anticipation and

experience of peak emotional responses (e.g.,

Salimpoor, Benovoy, Larcher, Dagher, & Zatorre,

2011). Interpretations of such data have been made

variously in the context of the Incentive Salience

Theory and/or in the context of the Reward

Prediction Error hypothesis (Gebauer, Kringelbach,

& Vuust, 2012; Salimpoor et al., 2011). The claims

in Friston et al. (this issue) that dopamine may be

thought of as confidence or belief in an action and as

strongly related to so-called value would appear to be

more in line with the Incentive Salience hypothesis.

How this precise account of dopamine may be used to

interpret its presence (or not) during enjoyable (or not)

acts of musical listening is an interesting question.

Perhaps the most pertinent claim raised by Friston et

al., however, is that salience-seeking behavior naturally

emerges from the general objective of minimizing free

energy. Here it is interesting to note that appreciation of

artworks necessitates knowledge accumulation—and

this on several time scales. In music, while some

knowledge acquisition is implicit (for example,

learning the norms of one’s native tonal system),

others (for instance, learning the structure and form of

less popular musical styles) may require more effort.

While it is clear that some caution is in order, the attempt

of Friston et al. to demonstrate that free energy

maximizes intrinsic or epistemic value or, in other

words, exploratory actions, may have implications for

music listening specifically and art consumption more

generally.

Indeed, it is worth noting that the term Epistemic

emotions (encompassing emotions like interest,

curiosity, and fascination) has been used to describe

the affective states engaged while contemplating visual

art and music. Further, epistemic emotions have been

argued to be distinct from so-called Utilitarian

emotions in not being triggered by concern for

wellbeing or survival (Scherer, Coutinho, Cochrane,

& Fantini, 2013). Interestingly, this claim of a

relationship between feelings of interest and art

consumption resonates with Berlyne’s seminal work

on curiosity, arousal, and experimental aesthetics

(1960). It also resonates with the notion that

resolving uncertainty through epistemic or explorative

acts “makes the world interesting and exploitable.”

At this point, it is useful to emphasize why music

listening entails beliefs about policies or action. Here,

it is important to remember that attending to music is

an active process, and one that we carry out in the hope

of resolving any uncertainties elicited by the unfolding

musical narrative. An ambitious but relevant question

is how future accounts could conceptualize extrinsic

and intrinsic value or exploitation and exploration in

the context of music listening. One working

assumption could be that there is no extrinsic value

to be sought in music, therefore leading the agent to

always maximize intrinsic value. Another assumption,

however, could be that an exploration act involves

shifting attention to one of the many possible streams

in a complex piece of music, in the knowledge that,

once resolved, the given stream along with others

already resolved can be “exploited” to bring about

explicit value in terms of correct predictions.

In closing, various attempts have already been

made to use predictive coding as a framework with

which to interpret the role of dopamine in the

context of music listening (Gebauer et al., 2012).

Accordingly, the new claims by Friston et al.

regarding the role of dopamine will be of interest

to several workers in the field of music research.

Further, while one can certainly agree that the

formalisms are at present relatively underspecified

for some tasks, it is interesting to consider the

patterns that seem to be emerging. In its

justification of behaviors with intrinsic value and

only long-term benefits, Friston et al.’s free energy

formalisms provide support for psychological

accounts of the importance of interest, curiosity,

and exploratory behavior.
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