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Distributed linear solutions have frequently been
used to solve the source localization problem in EEG.
Here we introduce an approach based on the weighted
minimum norm (WMN) method that imposes con-
straints using anatomical and physiological informa-
tion derived from other imaging modalities. The ana-
tomical constraints are used to reduce the solution
space a priori by modeling the spatial source distribu-
tion with a set of basis functions. These spatial basis
functions are chosen in a principled way using infor-
mation theory. The reduced problem is then solved
with a classical WMN method. Further (functional)
constraints can be introduced in the weighting of the
solution using fMRI brain responses to augment spa-
tial priors. We used simulated data to explore the
behavior of the approach over a range of the model’s
hyperparameters. To assess the construct validity of
our method we compared it with two established
approaches to the source localization problem, a
simple weighted minimum norm and a maximum
smoothness (Loreta-like) solution. This involved
simulations, using single and multiple sources that
were analyzed under different levels of confidence
in the priors. © 2002 Elsevier Science (USA)
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INTRODUCTION

The aim of functional neuroimaging is to understand
the functional organization of the brain. This aim in-
corporates several aspects of functional neuroanatomy:
the location of processing areas, the time course or
dynamics of their activities, and the nature of their
interactions. Changes in neuronal activity induce vari-
ations in cerebral metabolism, blood flow, blood vol-
ume, and blood oxygenation (Frackowiak et al., 1997)
and electromagnetic fields (Nunez, 1981; Hämäläinen
et al., 1993; Malmivuo and Plonsey, 1995). Changes in
these hemodynamic and electromagnetic signals can
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be measured by several noninvasive techniques, such
as positron emission tomography (PET), functional
magnetic resonance imaging (fMRI), electroencepha-
lography (EEG), and magnetoencephalography (MEG).

Hemodynamic responses in the brain are recorded by
PET and fMRI with a good spatial resolution, on the
order of millimeters. These indices of neuronal activity
are temporally limited by the latency and slow time
constants of the hemodynamic response. In contrast
direct measurements of the electromagnetic fields
(EEG and MEG) produced by neuronal activity have a
temporal resolution of less than 1 ms.

However, the problem of recovering volume current
sources from superficial electromagnetic measurement
is intrinsicly ill-posed (von Helmholtz, 1853) and the
spatial configuration of neuronal activity cannot be
determined uniquely, based on EEG and/or MEG re-
cordings alone (Nunez, 1981). To remove the non-
uniqueness of this so-called inverse problem, assump-
tions about the solution must be made, so as to obtain
a unique and “optimal” solution according to the crite-
ria employed.

One common approach is to assume that the EEG/
MEG signals are generated by a relatively small num-
ber of focal sources (Miltner et al., 1994; Scherg and
Ebersole, 1994; Scherg et al., 1999; Aine et al., 2000),
each of which can be modeled as a single fixed or
reorientating dipole. The idea is to render the inverse
problem overdetermined by considering fewer un-
known parameters than the independent measure-
ments available. The locations, orientations, and
strengths of these “equivalent current dipoles” (ECD)
can be estimated by minimizing the difference between
the predicted and the actual EEG/MEG measure-
ments. An additional constraint can be derived from
the assumption that the sources are temporally inde-
pendent (Mosher et al., 1992). The fitting procedure
involves a multidimensional, nonlinear optimization
procedure. As the time required to solve the optimiza-
tion problem grows geometrically with the number of
ECDs, the global optimum can be found only for models
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involving very few ECDs. For models with a large
em



number of ECDs, approximate techniques have to be
used, where the solution depends upon the initial esti-
mate of the locations and orientations of the dipoles. In
all ECD-based methods, the solution depends heavily
on the number of dipoles assumed but, in general, the
actual number of ECD cannot be determined a priori.

Another approach is to consider a priori all possible
fixed source locations. The problem of determining the
strength of each dipole (or the two dipole components:
orientation and strength) then becomes a linear one.
This continuous current source model is more biologi-
cally plausible (for sufficiently dense source distribu-
tions) than the ECD model. Given the ill-posed nature
of the inverse problem constraints are required to en-
sure the likelihood of the data or the log posterior of the
conditional estimators has a unique maximum. The
exact nature of these constraints operationally defines
what is meant by a “good” solution. A good solution is
one that jointly maximizes the likelihood of the data
while minimizing a cost function of the constraints.
This cost function can be construed as embodying prior
information such that the “best” estimate maximizes
the log posterior (i.e., the most likely estimate given
the data). When the constraints have been chosen, a
unique solution obtains through minimizing the devi-
ation from these constraints (within the solution space
that minimizes the residuals of the fit). For example,
existing methods use one of the following constraints:
probabilistic (Greenblatt, 1993; Baillet and Garnero,
1997), maximum entropy (Huang et al., 1997), mini-
mum L1-norm (Uutela et al., 1999), (weighted) mini-
mum L2-norm (WMN) (Sarvas, 1987; Hämäläinen and
Ilmoniemi, 1994; Brooks et al., 1999), maximum
smoothness (MS) (“low-resolution electromagnetic to-
mography” or “Loreta”) (Pascual-Marqui et al., 1994;
Pascual-Marqui, 1995, 1999), or optimal resolution
(Backus and Gilbert, 1970; Grave de Peralta Menendez
et al., 1997; Grave de Peralta Menendez and Gonzalez
Andino, 1999). Although they are mathematically trac-
table, not all the above constraints are based on actual
brain physiology and anatomy and they can lead to
relatively poor spatial resolution or biased solutions.

The weighted minimum L2-norm constraint has two
great advantages: the method provides a linear analyt-
ical solution that can be easily and directly computed,
and different kinds of priors (whether framed explicitly
in a Bayesian sense or not) can be employed. Here we
introduce an approach based on the WMN method that
imposes constraints using anatomical and physiologi-
cal information derived from other imaging modalities.
Three assumptions, based on neuroanatomy and spa-
tial coherence, can be made about the sources of brain
electromagnetic activity (Nunez, 1981; Hämäläinen et
al., 1993; Dale and Sereno, 1993): they are located in
gray matter, they are oriented orthogonally to the cor-
tical sheet, and, for a sufficiently dense dipole distri-
bution, they possess locally coherent activity (or
smooth activity along the cortical sheet). In our ap-

proach these constraints are used to reduce the solu-
tion space a priori by modeling the spatial source dis-
tribution with a set of basis functions. Such an
approach has already been applied in the analysis of
fMRI activation studies (Kiebel et al., 2000). These
spatial basis functions are chosen in a principled way
using information theory. The reduced problem is then
solved with a classical WMN method. Further con-
straints can be introduced in the weighting of the
WMN solution using information derived from hemo-
dynamic measures of brain activity as spatial priors
(Rugg, 1998; Liu et al., 1998; Dale et al., 2000). These
constraints are predicated on the conjecture that the
synaptic currents generating EEG/MEG signals also
impose metabolic demands, which lead to a hemody-
namic response measurable by PET or fMRI. It is pos-
sible that the coupling between electromagnetic (EEG/
MEG) and hemodynamic (PET/fMRI) signals is not
necessarily well behaved or deterministic (Rugg, 1999).
Therefore, the prior location information derived from
hemodynamic measurements should be regarded as
probabilistic.

This paper is divided into three sections. In the first
section, the theoretical background and operational
details of our approach are described. In the second
section, the method is demonstrated using a realistic
head model based on a structural MRI. In the third
section, we used simulated data to explore the behavior
of the approach over a range of values of model hyper-
parameters, e.g. different degrees of spatial coherence.
To assess the construct validity of our method we com-
pare it with two established approaches to the source
localization problem, simple weighted minimum norm
and a maximum smoothness (Loreta-like) solution.
This involved an extensive set of simulations using
single and multiple source sets analyzed using, for all
methods, different levels of confidence in certain priors.
This paper focuses on the theory and limiting behavior
in the absence of noise. A companion paper (C. Phillips
et al., unpublished) addresses the issues engendered by
measurement noise.

In the rest of this paper, a, a� , a, and A will, respec-
tively, represent a scalar, a vector of size 3 � 1, a vector
of any size Na � 1, and a matrix; At will designate the
transpose of A.

METHODS

Theory

The General Approach

In the absence of any a priori information, the
sources of the EEG signal can be modeled by a fixed,
uniform, three-dimensional distribution of current di-
poles throughout the entire brain volume. Each cur-
rent dipole represents the coherent electrical activity of
the brain over a small cubic volume. We make three
strong assumptions, based on neuroanatomy and neu-
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rophysiology, about these dipoles: they are located in
the the gray matter, their orientation is perpendicular
to the cortical sheet, and they are spatially coherent.
These constraints are implemented operationally us-
ing information derived from the subject’s structural
MRI (see Extracting the Constraints).

By fixing the orientation of each dipole, the source
localization problem is reduced from a vectorial prob-
lem, where both the orientation and the amplitude of
the dipoles are unknown, to a scalar problem, where
only the amplitudes of the dipoles are unknown. For
instantaneous data, the distributed source localization
problem can be stated as

v � � � L j, (1)

where v (the electric potential at the electrodes) is a
vector of size Ne � 1, � (the additive noise component)
is a vector of size Ne � 1, j (the (unknown) amplitude of
each current dipole) is a vector of size Nj � 1, L (the
lead field linking the current sources, j, to the electrical
potential, v) is a matrix of size Ne � Nj, and the
orientation of the current dipoles is embodied in the
lead field matrix L, so that each element of the vector
j represents only the amplitude of each dipole.

Having fixed the orientation of the dipoles, the two
other anatomical assumptions described above, spatial
smoothness and location within the gray matter, are
used to establish a spatial basis set that models the
source distribution. The two anatomical priors enter as
constraints on the covariance structure of the source
distribution and motivate the selection of the basis set.
This set is calculated in a way that maximizes the
mutual information between the original (and full)
source distribution space and the reduced solution
space spanned by the basis set (see Basis Function set).

If other prior knowledge about the location of elec-
trical activity is available (e.g., from a functional MRI
activation study), it may also help to constrain the
source localization problem. This information can be
regarded as a soft or probabilistic constraint (compared
to the anatomical priors used to determine the spatial
basis function set) and therefore enters during the
second step of the method, i.e. when the solution (con-
strained by the basis functions) is identified by a
weighted minimum L2-norm approach (see Minimum
Norm Solution.

Extracting the Constraints

Gray matter density. First we segment the MR
brain image into its principal partitions: gray matter,
white matter, and cerebrospinal fluid (Ashburner and
Friston, 1997). A gray matter density coefficient is then
determined from the smoothed gray matter image at
each dipole location. The coefficient varies in value
from 0, zero probability that the small cubic volume
(i.e., voxel) surrounding the dipole is in gray matter, to

1, certainty that the dipole is embedded in gray matter.
These coefficients constitute the leading diagonal of
matrix G of size Nj � Nj.

Dipole orientation. Here the orientation of the di-
poles are fixed perpendicular to the interface between
gray and white matter pointing toward the outside of
the brain. This orientation is obtained from the three-
dimensional gradient of the smoothed white matter
volume: The gradient vector field is oriented, at each
location, in the direction of the largest variation of
smoothed white matter density. The smoothing is
anisotropic using a diffusion process (Perona and
Malik, 1990),

�u�r�, t�

�t
� ��c�r���u�r�, t��, (2)

where u(r�, t) is the white matter density at location r�
for the virtual time instant t of the diffusion process (at
time t � 0, u(r�, 0) is the original unsmoothed white
matter volume), c(r�) (the anisotropic diffusion coeffi-
cient) is set to a value corresponding to the gray matter
density at location r� (which remains constant through-
out the diffusion process), and the degree of smooth-
ness is determined by the duration t of the diffusion
process. The definition of u(r�, t) and c(r�) ensures that
white matter image u(r�) is smoothed in the direction of
the highest gray matter density. The gradient �uas(r�) of
the anisotropically smoothed white matter image uas(r�)
is thus oriented perpendicular to the gray and white
matter interface. This ensures that the gradient of the
smoothed white matter image is appropriate for fixing
the orientation of each dipole (cf. the approach of
George et al. (1995)).

Spatial coherence. We then model the spatial co-
herence of the dipoles on the basis of their “connectiv-
ity.” The Nj � Nj matrix D represents this spatial
coherence. As the dipoles are spread on a regular three-
dimensional grid, each dipole has at most 26 nearest
neighbors. Not all neighbor dipoles are necessarily con-
nected to the central one. Connectivity depends on the
brain anatomy; e.g., dipoles located on opposite sides of
a sulcus should not be connected.

The connectivity of a (central) dipole located at r� with
its nearest neighbors located at r� � d�r is assessed
using the orientation of the cortical surface. This ori-
entation is determined by a first order approximation
to the gradient �uas(r�) of the anisotropically smoothed
white matter (uas(r�)) around the central dipole:

�uas�r� � d�r� � �uas�r�� � d�r� 2uas�r��. (3)

This estimated orientation is compared to the empiri-
cal white matter gradient at the neighboring dipole
locations. If the discrepancy is too large, the dipoles are
considered disconnected, as for the case of dipoles on
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opposite sides of a sulcus. Otherwise the dipoles are
considered connected. This gives a sparse connectivity
matrix � with element 1 for a connection or 0 other-
wise. The spatial coherence can be derived from � in a
variety of ways. For example if we assume a simple
spatial regression model for the spread of activity from
one dipole to another, we obtain

D tD � �INj
� ����1�INj

� ����t. (4)

Alternatively we can assume some decreasing function
of path length (e.g., Gaussian), where path length is
the shortest path from one dipole to another based on
�, to generate D.

Basis Function Set

With the matrices G, gray matter density at the
dipole locations, and D, spatial coherence among the
dipoles, a set of spatial basis functions that will allow
the source distribution to be modeled with a substan-
tial reduction in the uncertainty of the solution can be
generated. From The General Approach, the noise-free
problem is

v � Lj, (5)

where j is unknown. To reduce the size of the solution
space from Nj to Nk, where Nk � Nj, j is modeled as �̃,

B tj � k f �̃ � Bk, (6)

where B is a Nj � Nk matrix that maximizes the
mutual information (Jones, 1979) between j and k,

I� j, k� � H� j� � H�k� � H� j � k� � H�k� (7)

because H( j) � H( j � k) where H( j) represents the
entropy of j. If k is multinormal, then

H�k� � ln��Ck�� � �
i

ln��i�, (8)

where Ck � 	kkt 
 � 	Bt jjt B
 � BtCjB is the variance–
covariance matrix of k and the �i are Ck’s eigenvalues.
The expression to maximize is thus

ln�B tCjB� � �
i

ln(�i). (9)

Therefore the matrix B should comprise the eigenvec-
tors of the variance–covariance matrix Cj � 	 jjt
 cor-
responding to the highest eigenvalues �i.

Prior knowledge about j, embodied in D and G1 can
be included by noting

Cj � G t/2D tDG 1/2. (10)

B is obtained from the eigenvector solution of Gt/2

Dt DG1/2 or equivalently by using the singular value
decomposition of DG1/2:

USW t � svd(DG 1/2). (11)

Columns of W corresponding to the highest singular
values S are used to define B (see Step 1: Estimation of
Spatial Basis Functions for the threshold used).

In summary, the distributed source problem is re-
duced to finding the coefficients (k) of a set of spatial
modes (B) or basis functions where, critically, these
modes are chosen to preserve as much information
about the distributed profile as possible. These modes
are simply the eigenmodes or principle components of
the source covariance (Cj) predicted by our assump-
tions about the sources.

Minimum Norm Solution

Given the spatial basis function set B, the instanta-
neous source localization problem (1) can be reformu-
lated as

v � � � LBk � LBk. (12)

To solve this reduced problem, a simple pseudo-in-
verse, e.g., Moore–Penrose pseudo-inverse, could be
applied to LB. However because of the ill-posed nature
of the source localization problem, this unconstrained
solution is generally inadequate. A regularization con-
straint on the solution can be applied to minimize some
weighted norm �Hj� of the current density �̃ � Bk or
some weighted norm �HBk� of the basis coefficients k.
H and HB specify the nature of the regularization
required. Assuming that the noise � is characterized by
the covariance matrix cov(�) � C�, the weighted mini-
mum norm problem or “Tikhonov regularization” (Tik-
honov and Arsenin, 1977) is expressed as

�̂ � arg min
j

��C �
�1/2�Lj � v��� 2 � � 2�Hj� 2} (13)

and, incorporating the basis function coefficients k,

k̂ � arg min
k

��C �
�1/2�LBk � v��� 2 � � 2 �HBk�2�, (14)

where v� � v � � represents underlying signal with
noise. Here � is a hyperparameter that controls the
influence of the constraints relative to minimizing the
error of the fit.

The solution of (14) should provide the best fit to the
data while minimizing the constraint �HBk�2. Such a
solution has the form

k̂ � TB v�f �̂ � BTB v� � Tv�, (15)
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where

TB � LB
t C �

�1LB � �2�H B
t HB���1L B

t C �
�1 (16a)

� �H B
t HB��1L B

t LB�HB
t HB��1L B

t � � 2C��
�1 (16b)

from the matrix inversion Lemma.
There is an important and useful connection with

Bayesian estimates of the sources here, where under
Gaussian assumptions, the conditional expectation or
posterior mean of the sources k is given by

E�k�v�� � LB
t C �

�1LB � Ck
�1� �1L B

t C �
�1 v� (17a)

� CkL B
t LBCkL B

t � C��
�1 v�, (17b)

where Ck is the prior covariance of the sources. Com-
paring Eq. (17) with Eq. (16) provides the motivation
for choosing forms of HB such that HB � Ck

�1/2. We shall
use this result later.

In the particular and theoretical case where the mea-
surements are noise free, i.e., v� � v, the solution of Eq.
(14) is obtained from Eq. (16) by taking the limit �3 0
(Rao and Mitra, 1973), i.e., minimizing the constraint
�HBk�2 after fitting the model perfectly:

TB � �HB
t HB��1L B

t LB�HB
t HB��1L B

t � �1. (18)

In the present paper, we use only noise-free simulated
data; therefore the solutions presented are based on
Eq. (18). Noise dependency will be addressed in a sub-
sequent paper (C. Phillips et al., unpublished), where
we will deal with the estimation of �, which itself is
quite a complicated issue.

Application of the Theory

Head and Source Model

The method described above was applied to simu-
lated data using a realistic head model generated from
a T1-weighted structural MR image, the template MRI
of the SPM99 software package (Wellcome Department
of Cognitive Neurology, 1999). The lead field matrix L,
the solution of the so-called “forward problem,” was
calculated with the “boundary element method” (BEM)
(Hämäläinen and Sarvas, 1989; Ferguson and Stroink,
1997) for a set of 61 approximately equidistant elec-
trodes and 12,300 dipoles within the brain volume
arranged on a regular three-dimensional grid (interdi-
pole distance 4 mm). In the BEM, the head is modeled
as three concentric volumes of isotropic conductivity:
the brain, the skull, and the scalp volume. The dipoles
are distributed within the brain volume.

Step 1: Estimation of Spatial Basis Functions

The MRI was segmented with the segmentation
function of the SPM99 software package (Wellcome
Department of Cognitive Neurology, 1999), and the
gray matter image was averaged over each dipole cubic
volume to provide the gray matter coefficient for the
matrix G. The 12,300 dipoles noted under Head and
Source Model are the dipoles, from the original full
grid, located in voxels with gray matter density greater
than 0.4; i.e., 40% (or more) of the voxel was gray
matter or the probability of the voxel being gray matter
was 0.4 (or more). This density value ensured that each
dipole represents the electrical activity of a small vol-
ume of the brain containing a sufficient amount of gray
matter. Selecting this subset of all potential dipoles
represents a compromise between considering all the
dipoles and considering those that potentially contrib-
ute a substantial signal (i.e., it is pointless to retain
dipoles located in white matter or cerebrospinal fluid).

The numerical approximation of Eq. (2) was used to
smooth the white matter;

u �i, j,k�
t�1 � u �i, j,k�

t � �cN�Nu � cS�Su � cE�Eu

� cW�Wu � cU�Uu � cA�Au� �i, j,k�
t ,

(19)

where c(i, j,k) is the gray matter density at voxel (i, j, k),
u(i,j,k)

t is the white matter density at voxel (i, j, k) at
iteration t, and

�Nu � u�i�1, j,k� � u�i, j,k� cN �
c�i�1, j,k� � c�i, j,k�

2

(20a)

�Su � u�i�1, j,k� � u�i, j,k� cS �
c�i�1, j,k� � c�i, j,k�

2

(20b)

�Eu, �Wu, cE, and cW are defined like �Nu, �Su, cN, and cS

with a variation of the index j and like �Uu, �Au, cU, and
cA with a variation of the index k.

To ensure that the smoothing process is stable, it
is necessary to select � such that 0 � � � 1/8. An
isotropic diffusion process, i.e., with c (i, j, k) � 1 every-
where, approximates a Gaussian function of kernel
� � �2�t. By chosing � to be equal to the interdipole
distance, the number t of iterations is specified to
give the required smoothing. Starting with u0, the
segmented white matter volume, Eq. (19) was ap-
plied iteratively until the desired smoothing was
achieved. The gradient of the smoothed white matter
was then calculated and sampled at the location of
the dipoles. The successive steps of the MRI process-
ing are summarized in Fig. 1.
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Equation (3) was used to determine the connectivity
of neighboring dipoles. The estimated orientation of
neighboring dipoles was compared with their real ori-
entation and if the angle between the orientations was
greater than 	/2, the dipoles were considered discon-
nected. Instead of using Eq. (4), we used a Gaussian
function of path length. This allowed us to parameter-
ize the spatial coherence in a way more useful to our
purposes. The path length was calculated as follows:
For each pair of connected dipoles, a parabolic curve
joining the dipoles and fitting their orientation was
calculated. The length of this curve was used as “path
length.” The distance between two dipoles that were
not directly connected was obtained by looking for the
shortest path (within an upper limit of 30 mm) com-
posed of connected dipoles.

Two degrees of spatial coherence were studied by
using two different Gaussians, � � 10 mm and � � 5
mm. For each of the two D matrices obtained, the
singular vectors of Gt1/2Dt DG1/2 with normalized eigen-
values greater than unity were retained to form the
basis set B. The ensuing spectrum of singular values is
shown in Fig. 2.

The original solution space j of 12,300 dimensions
was reduced to a space k of 621 and 1903 dimensions
for the large (� � 10 mm) and small (� � 5 mm)
coherences, respectively (a reduction of about 95 and
85%). The dimension of the reduced space corre-
sponds to the number of orthonormal basis functions
in B. The solutions based on TB obtained using Eq.
(18) will be referred to as the “Informed Basis Func-
tion” (IBF) solutions of kernel 5 mm (IBF5) or 10 mm
(IBF10).

Step 2: Minimum Norm Solution

The (weighted) minimum norm solution depends on
the specification of the constraints HB that enter into
Eq. (14). As noted under Minimum Norm Solution,
HB � Ck

�1/2. Because the solution space has been re-
duced using the eigenvectors of Cj, the source prior
covariance matrix Ck could simply be its eigenvalues
Ck

�1/2 � S�1, where S is the leading diagonal matrix of
singular values from Eq. (11). This simple form for the
constraints could be used directly.

However, further “soft” priors on the covariance of
the sources can be included by specifying linearly
separable components of the prior source covariance
matrix, in addition to the “hard” constraints used to
determine the spatial basis set. Each of these covari-
ance components is controlled by its own hyperpa-
rameter. There are two additional constraints con-
sidered here.

First, because superficial sources produce a stron-
ger (and more focal) scalp electrical potential than
deeper sources, shallow sources are “penalized” to
ensure that sources are more likely to influence the
electrical potential equally at the electrodes irre-

spective of depth (Pascual-Marqui et al., 1994; Grave
de Peralta Menendez and Gonzalez Andino, 1998;
Pascual-Marqui, 1999). This can be achieved by as-
suming that deeper sources have a larger variance
than superficial sources. The depth is indexed by
the norm of the source’s lead field. Let the co-
variance component of this constraint be the diago-
nal matrix diag(L tL)�1. Using this diagonal matrix is
equivalent to normalizing the column of the lead
field matrix.

A second important constraint may be derived from
fMRI indices of activation that enter as the constraint
�, a leading diagonal matrix with elements that reflect
the prior probability of whether the source is active
(here we allow only values of 0, the variance is left
unchanged, or 1, the variance is increased according to
the value of an hyperparameter). Combining these
components, we obtain the following general expres-
sion:

H B
t HB � �B tCjB��1 (21)

Cj � 
1G t/2D tDG 1/2 � 
2 diag(L tL)�1 � 
3� � · · ·

(22)

This formulation, in which the prior covariances are
some linear combination of covariance components
(structural, depth, and functional), is important be-
cause the hyperparameters 
 can be estimated using
iterative techniques such as the EM algorithm (Demp-
ster et al., 1977). This will be pursued in a subsequent
paper.

In the present case, a slightly modified approach was
followed and Cj was defined by

Cj � diag�L tL ��1�INj
� 
��2. (23)

By ignoring the “hard” constraints associated with 
1

in Eq. (22) and combining the depth and fMRI priors,
we were able to focus on the role of fMRI priors using
a single hyperparameter 
 (cf. Liu et al. (1998)). 
 was
assigned three values, 0, 1, and 4, corresponding to no,
weak, and strong (fMRI) location priors. The ensuing
solutions will be refered to as “without priors” (or
“wp0”), “with weak priors” (or “wp1”), and “with strong
priors” (or “wp4”). This simplification can easily be
interpreted as defining the weighting matrix H that
would be used to constrain the weighted norm of j (see
Minimum Norm Solution) by

�H tH��1 � diag�L tL��1�INj
� 
��2. (24)

By taking 
 equal to 1 or 4, we are actually assuming that
the variance �2 of the a priori active location (defined by
�) is 4 or 25 times larger than those of the other locations
(if the depth constraint was discounted).
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Comparison with Other Methods

The IBF approach described here was compared with
two other commonly employed approaches: a weighted

minimum norm solution and a maximum smoothness
solution.

The WMN solution is simply the solution of the prob-
lem formulated in Eq. (13) given by Eq. (18) where the

FIG. 1. Successive steps of MRI processing. The structural MR image is segmented into the white and gray matter volumes. The dipoles
are placed within the smoothed gray matter volume and the gradient of the anisotropically smoothed white matter volume is sampled at the
dipole locations, providing a distribution of oriented dipoles.

FIG. 2. Spectrum, on a logarithmic scale, of the normalized eigenvalues of the variance–covariance matrix Cj � Gt/2DtDG1/2, for the two
different spatial coherences considered: � � 10 mm (top) and � � 5 mm (bottom).
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matrix B is the identity matrix and so k � j. In the
version of the method employed here, the orientation of
the dipoles was fixed as with the IBF method, so that

only the amplitudes were unknown. The weighting
matrix H was the same as the IBF simulations and is
defined as in Eq. (24): it embodied the depth weighting

FIG. 3. Example of a single active source reconstruction. The original source set is shown at the top. Below are the source reconstructions
(absolute values) obtained with the four solutions presented (IBF10, IBF5, MS, and WMN) without location priors. The amplitude of the
sources was normalized between 0 and 1 for all the solutions.
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and prior knowledge of the location of active sources.
The WMN was used here to calculate three different
solutions with the same range of 
: without priors,
with weak priors, or with strong priors.

The MS solution is also a particular case of Eq. (13)
and (18). The matrix B was again considered the iden-
tity matrix; i.e., k � j, but the orientations of the
dipoles were left free. Strength parameters, jx,i, jy,i, and
jz,i, were estimated for three independent and ortho-
gonal dipoles, oriented along the three main axes e�x,
e�y, and e�z at each source location i such that û� i �
[ jx,i, jy,i jz,i]

t and jf � [ û�1
t

û�2
t . . . û�Ndip

t ]t. A single value ji

for the amplitude of the electrical activity at each
source location i was then obtained by calculating the
norm of the resulting dipole ji � � jx,i

2 � j y,i
2 � j z,i

2 . The
weighting matrix H was defined as a weighted three-
dimensional Laplacian, H � MW. W is a leading
diagonal matrix defined by w R [1 1 1] t, where w �
[(INj R [1 1 1]) diag(L f

tL f)]
1/2, which is equivalent to

depth weighting used for the IBF and WMN solu-
tions. The operator R denotes the Kronecker product
and L f is the Ne � N3Nj lead field matrix correspond-
ing to the orientation-free sources vector j f. The
Laplacian matrix M is a regularized discrete three-
dimensional second-order derivative operator de-
fined as in Pascual-Marqui (1999). This method does
not provide means to include further priors and thus
only one solution was computed.

In short the only difference between the IBF and the
WMN solutions was the use of spatial basis functions
to constrain the solution space. The MS appoach can be
considered an alternative implementation of spatial
constraints through ensuring smoothness. The MS so-
lution embedded the same depth priors but, unlike the
IBF and WMN, does not accomodate functional priors.

RESULTS AND DISCUSSION

Two criteria were used to assess and compare the
performance of the different methods presented in the
previous sections (IBF5, IBF10, WMN, and MS solu-
tions). (1) “Localization error” (LE) is defined as the
distance between the location r� r of the maximum (of
the absolute value) of the reconstructed source distri-
bution jr and the location r�o of the original source set jo:

LE � �r�r � r�o�. (25)

(2) “Root mean square error” (RMSE) is defined as the
norm of the difference between the reconstructed
source distribution jr and the original source set jo,

RMSE � ��
l�1

Nj � jr, l

max(abs( jr))
�

jo, l

max(abs( jo))
� 2

, (26)

where jo,l is the lth element of jo.

The LE provides a measure of the localization accu-
racy of the reconstruction method; a small value of LE
indicates that the location of the original source was
recovered well. The RMSE measures the “goodness of
fit” of the reconstruction; a small value of RMSE indi-
cates a small discrepancy between the original and the
reconstructed source distributions. The RMSE is use-
ful only to further compare two solutions that have
approximately the same LE. Indeed, if both solutions
have almost the same LE, the one with the smaller
RMSE would be prefered as the reconstructed source is
then more focal. A very focal reconstructed source with
a large LE will have a smaller RMSE than a blurred
reconstructed source with a small LE, but the latter
solution, although oversmoothed, provides at least
some location information.

The sources jo were generated at randomly selected
locations within the head model described under Head
and Source Model. Each source comprised a set of
connected dipoles within a 7-mm radius of a “central”
dipole. These constitute locally distributed sources. For
each source jo, the potential at the electrodes was gen-
erated with Eq. (5). Information about prior location
was provided as a sphere of 12-mm radius. Dipoles
within this volume were defined as being a priori active
sources; i.e., the corresponding diagonal elements of �
(see step 2: Minimum Norm Solution) were set to 1.
Our simulations involved changing the strength of the
functional priors and their accuracy in all combina-
tions. We describe simulations of one focal source and
proceed to simlutions of multiple coactive sources.

Simulations with a Single Source

The case of single active sources is considered first.
For each source set, LE and RMSE were calculated for
the IBF5, IBF10, and WMN methods in each of the
following cases: (1) without priors, (2) with priors
(weak and strong) centered on the original source (ac-
curate priors), and (3) with priors (weak and strong)
placed anywhere in the volume (incorrect priors). As
presented under Comparison with Other Methods, no
prior about the location of the sources can be included
in the MS method; therefore the same solution was
used for all the simulations. The results of a typical
simulation are shown in Fig. 3.

Solution without Location Priors

The whole solution space was evaluated by generat-
ing a source set around each of the 12,300 dipoles in
the model. The results obtained for LE are summarized
in Fig. 4, and the mean RMSEs can be found in the
second part of Table 1 (no priors, no mislocation). The
IBF10, IBF5, and MS solutions have approximately
the same localization accuracy, with about 80% of the
sources recovered within 20 mm of their original loca-
tion. The LE of the WMN solution is spread over a
much larger range, and thus, although its RMSE is
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smaller than that of any other method, its poor local-
ization ability makes it a less useful method. The
RMSE of the MS solution is on average larger than
those of the IBF5 and IBF10 solutions. This results
reflects the fact that the MS solution is overly
smoothed. The IBF5 and IBF10 solutions are able to
reconstruct focal activity more accurately. Because less
coherence is imposed on the IBF5 solution, it is less
“blurred” and thus the IBF5 solution yelds somewhat
smaller RMSEs than the IBF10 solution.

Solution with Accurate Location Priors

Because of computational limitations it was not pos-
sible to assess the entire solution space with a priori
location information (a new solution must be calcu-
lated for every set of priors). Therefore a set of 100
randomly selected sources were employed in these sim-
ulations. (For this reason, the results obtained for the
MS solution are slightly different from those obtained
in the previous section). The results for LE with weak
and strong priors are summarized in Fig. 4 and the
mean RMSEs can be found in the second part of Table
1 (no mislocation, weak and strong priors).

The inclusion of prior location information greatly
improved the performance of the IBF5, IBF10, and
WMN solutions, which all outperformed the MS solu-
tion. The IBF5 solution performed best of all, but both
IBF solutions outperformed the WMN solution, partic-
ularly when the prior information was entered as a
weak constraint only. With the IBF solutions, the re-
constructed activity was more focal (smaller RMSE)
and more than 80% of the sources were recovered
within 4 mm of their original location.

Solution with Incorrect Location Priors

A set of 100 locations were randomly selected to
provide prior location information. Corresponding
IBF10, IBF5, and WMN solutions were then produced
for the two levels of location constraint (weak and
strong). Independently, 200 source sets jo were ran-
domly generated and their corresponding electrode po-
tentials calculated. For every combination of prior lo-
cation and original source jo, the source distribution jr

was then reconstructed and the LE and RMSE were
calculated.

The prior mislocation was defined as the distance
between the location of the original source set and the
corresponding prior information. The prior mislocation
was divided into four “bands” of 30-mm width: 1–30,
31–60, 61–90, and 91–120 mm. Within each band of
prior mislocation, a “maximum LE” was calculated,
such that at least 80% of the sources were recovered
within this LE (for simplicity, the LE was also divided
in bands: 0–4, 4–12, 12–20 mm, . . . ). The mean
RMSE for each band of prior mislocation was calcu-
lated also. For reference, the results obtained in the
two previous sections are included in Table 1.

With weak priors, the LE of both IBF10 and IBF5
solutions were similar to the case where no priors were
employed. Thus the prior mislocation had rather little
effect on the solution. In contrast, with strong priors,
the IBF solutions were substantially affected by the
incorrect prior location. This effect was greater for the
IBF5 solution than for the IBF10 solution with the
difference being expressed mainly for smaller prior
mislocations. In general the WMN solution behaved
poorly.

Simulations with Two Simultaneously Active Sources

Here we consider the case of two simultaneously
active source sets of equal strength. Two factors influ-
ence the reconstruction of two sources: the distance
between them and their relative power in measure-
ment space (i.e., at the electrodes). The power of a
source set (at the electrodes) is calculated from the sum
of squares of the electric potential generated at the
electrodes. The power of proximate sources is very sim-
ilar because their leadfields are almost colinear (al-
though the orientation of the sources can still have
some influence on the power of the electric field at the
electrodes) and they might be difficult to distinguish in
the reconstruction because of their proximity. Distant
sources should be more easily distinguishable but their
relative power can vary widely depending on their rel-
ative depth in the brain and their orientation, render-
ing their localization more difficult.

The methods presented in the previous sections
(IBF5, IBF10, WMN, and MS solutions) were applied
to simulated data using different ranges of source sep-
aration and power. The separation was divided into
five “bands” of 30-mm width (as in Solution with Incor-
rect Location Priors for the prior mislocation): 1–30,
31–60, 61–90, and 91–120 mm. The ensuing relative
power of source pairs was used to further stratify the
source configurations into five “bands” according to a
logarithmic scale: 100.0–100.1, 100.1–100.2, 100.2–100.3, and
100.3–100.4, i.e., 1.00–1.26, 1.26–1.58, 1.58–2.00, and
2.00–2.51. One combination of separation and relative
power, separation of 1–30 mm and relative power 2.51–
3.16, was not possible to achieve, and in this case no
results are shown. For each of the other combinations,
100 pairs of sources were selected randomly, data were
generated, and the activity was reconstructed.

The RMSE was calculated with Eq. (26). As two
sources are employed in these simulations, the LE was
calculated as follows. For each pair of sources jo1 and
jo2, centered at location r1 and r2, the original source
set jo was the sum of jo1/ � jo1� and jo2/ � jo2�, and the
potential at the electrodes was then generated using
Eq. (5). The absolute value of the reconstructed activity
jr (for the MS solution, the 2-norm of the three compo-
nents at each location was used instead of the absolute
value) was thresholded at 50% of its maximum, leaving
a set of suprathreshold clusters of active sources. The
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location rb of the maximum of each cluster (cluster
peak) was compared to r1 and r2. According to the
number and location of the maxima, three cases are

possible: (1) only one peak surviving after thresholding
(in this case only one value can be attributed to the LE,
the number of original sources recovered (NRec) is 1,

FIG. 4. Localization error (LE) for the four solutions applied to the simple source simulated data, with and without prior location: none
(top), weak (middle), and strong (bottom). The MS solutions do not incorporate prior location information.
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and the number of spurious reconstructed sources (NS-
pur) is 0), (2) many peaks (�2) but all closer to r1 than
r2 (surviving now only one value (the minimum dis-

tance between rb and r1) can be attributed to the LE,
NRec is 1, and NSpur is equal to the number of clusters
minus 1), and (3) many peaks (�2) that are spread

FIG. 5. Example of reconstructions of two simultaneously active sources. The original source sets are shown at the top. Below are the
source reconstructions (thresholded absolute value) obtained with the four solutions presented (IBF10, IBF5, MS, and WMN) without
location priors. The amplitude of the sources was normalized between 0 and 1 for all the solutions.
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around r1 and r2 surviving (here two values (the min-
imum distance between the rb’s and r1 and r2) can be
attributed to the LE, NRec is 2, and NSpur is equal to
the number of clusters minus 2).

In addition to the LE and the RMSE criteria, the
number of original sources recovered (NRec) and the
number of spurious reconstructed sources (NSpur)
were assessed for each reconstruction method. NRec
provides the number of sources actually recovered
while NSpur indicates how many spurious (and diffi-
cult to interpret) clusters are left after thresholding.
An example of the reconstructed activities is presented
in Fig. 5.

Solution without Location Priors

Here the solutions were calculated without prior
knowledge about the location of active sources. The
number of original sources recovered varied consider-
ably among the methods and for the different degrees
of source separation and relative power. The values of
NRec are summarized in Table 2.

For every method and source separation, the risk of
recovering only one source (NRec � 1) increased with
the relative power of the sources. Overall, the two
sources were recovered in only 48, 47, 40, and 56% of
the cases for the IBF10, IBF5, MS, and WMN solu-
tions, respectively. The values of LE, NSpur, and
RMSE seemed to depend mainly on the number of
sources recovered (NRec � 1 or NRec � 2) and varied
little according to the distance between sources or their
relative power. Therefore, the values of NSpur and
RMSE were averaged over all conditions, separately
for NRec � 1 or NRec � 2. The LE was also averaged
this way but, as under Solution with Incorrect Location
Priors, a “maximum LE” was calculated such that at
least 80% of the sources were recovered within this LE.

When NRec � 2, two values were available for LE, a
“small” one and “large” one. As the order of the sources
within each pair is arbitrary, two “maximum LEs”
were calculated, one for the “small LE” (best case) and
one for the “large LE” (worst case). These results are
summarized in Table 3.

The maximum LEs obtained were smaller than those
observed for single sources (compare the first line of
Table 1 with Table 3, especially for the cases of NRec �
1 and NRec � 2 for the “small” LE). The difference is
due to the way that the LE is measured. Whereas
previously (Solution without Location Priors and Solu-
tion with Accurate Location Priors) only the maximum
of the absolute value of the reconstructed activity was

TABLE 1

LE and RMSE for Different Degrees of Mislocation of the Prior Information

Priors mislocation Priors strength IBF10 IBF5 WMN

Max LE (mm) No mislocation No 20 (86%) 20 (85%) 44 (85%)
Weak 4 (90%) 4 (95%) 28 (85%)
Strong 4 (97%) 4 (100%) 4 (82%)

1–30 mm Weak 20 (86.3%) 20 (80.2%) 44 (84.2%)
Strong 20 (81.8%) 28 (95.8%) 44 (85.5%)

�30 mm Weak 20 (84.6%) 20 (83.0%) 44 (83.5%)
Strong 20 (83.9%) 28 (82.5%) 44 (82.7%)

Mean RMSE No mislocation No 11.0 10.3 3.6
Weak 8.2 5.0 4.7
Strong 6.5 2.7 3.8

1–30 mm Weak 11.0 9.5 3.6
Strong 10.8 8.5 3.6

�30 mm Weak 11.0 9.7 3.6
Strong 10.9 9.1 3.6

Note. For mislocation greater than 30 mm, the maximum LE and mean RMSE varied little and only their average values are calculated.
For comparison the values obtained for the MS solution are the following: within a LE of 20 mm, 91% of the sources were recovered and the
mean RMSE was 16.2.

TABLE 2

Percentage of Source Reconstructions Where Both Sources
Were Recovered (NRec � 2)

Relative
power

Source separation (mm)

1–30 31–60 61–90 91–120

100.0–100.1 78 84 62 56 56 50 65 58
39 66 53 69 51 66 63 67

100.1–100.2 74 76 53 53 51 49 28 25
36 68 51 62 51 68 37 42

100.2–100.3 72 75 46 39 40 41 33 39
41 58 38 54 40 55 37 42

100.3–100.4

n.a. 35 36 30 24 18 18
27 54 22 44 20 39

Note. In each cell of the table, the values in the upper left and
upper right quadrants correspond to the IBF10 and IBF5 solutions,
respectively, and the values in the lower left and lower right quad-
rants correspond to the MS and WMN solutions, respectively.
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used, here maxima of lesser amplitude were also con-
sidered.

As the smoothness of the IBF solutions is less than
that of MS solution, close sources can be better distin-
guished with the former method. The IBF solutions
were less likely to miss a source but also produced
more spurious active sources than the MS solution.
This renders the interpretation of the reconstructed
activity more difficult (even if the clusters are gener-
ally spread around the location of the original sources)
but a higher threshold could be used (with the risk of
missing an original source). The small value of NSpur
(�1) for the MS solution when only one source is re-
covered shows that in many cases a single cluster was
left after thresholding, but there were still a few cases
where there was spurious reconstructed activity.

The figures obtained for the RMSE correspond to
those observed for single sources; see top row of Table
1. The RMSE is slightly larger than those in the pre-
vious simulations but this can be explained by the fact
that there were two active sources instead of one.

Solution with Two Location Priors

In this section, the same set of sources as those
under Solution without Location Priors was used but
the solutions (IBF5, IBF10, and WMN only) were cal-
culated with (weak and strong) prior knowledge about
the location of both active sources. Similarly to the case
without priors (see Solution without Location Priors,
the number of sources recovered (NRec) varied greatly
between conditions (source separation and relative
power) and type of solution. The values of NRec are
summarized in Table 4.

For the IBF5 solution with strong priors, the propor-
tion of cases where only one source of two was recovered
was only slightly reduced, compared to the simulations
without prior location (except for sources separated by
less than 30 mm). Otherwise the risk of recovering only
one source (NRec � 1) is larger when priors are included
than without, as can be seen by comparing Tables 2 and
4. The two sources are more often recovered with strong
priors than with weak priors, especially for distant
sources. Over all, two sources are recovered in 42, 38, and
34% of the cases with weak priors and in 43, 50, and 45%

of the cases with strong priors for the IBF10, IBF5, and
WMN solutions, respectively. The values of LE, NSpur,
and RMSE vary little between conditions (source separa-
tion and relative power) but depend instead on the num-
ber of sources recovered (NRec � 1 or NRec � 2).
Therefore, the values of LE, NSpur, and RMSE were
averaged and presented as described in under Solution
without Location Priors. These results are summarized
in Table 5.

The inclusion of location priors greatly improved the
LE, as was the case in the simulations with one active

TABLE 3

Max LE and Mean Values of NSpur and RMSE
When NRec � 1 or NRec � 2

IBF10 IBF5 MS WMN

max LE (mm) NRec � 1 12 (96%) 12 (98%) 12 (82%) 28 (82%)
NRec � 2 12 (98%) 12 (99%) 12 (92%) 28 (87%)

20 (88%) 20 (90%) 20 (83%) 44 (81%)
Mean NSpur NRec � 1 2.38 5.12 0.53 1.83

NRec � 2 5.50 10.83 1.25 4.39
Mean RMSE NRec � 1 9.93 9.18 14.68 4.31

NRec � 2 12.94 12.01 18.51 4.65

TABLE 4

Percentage of Reconstructed Sources Where Both Sources
Were Recovered (NRec � 2)

Relative
power

Source separation (mm)

1–30 31–60 61–90 91–120

100.0–100.1 61 52 53 56 54 55 63 64
52 62 50 65 51 65 57 72
55 55 38 52 33 47 44 58

100.1–100.2 54 49 43 50 52 53 27 31
47 55 43 61 41 58 26 42
51 49 34 50 34 53 26 38

100.2–100.3 52 43 32 34 39 39 41 43
53 56 26 42 38 45 34 50
49 42 27 32 29 43 37 53

100.3–100.4

n.a.
27 33 26 29 18 23
29 32 20 35 21 31
25 38 21 39 25 29

Note. In each cell of the table, the values in the top row correspond
to the IBF10 solution with weak (left) and strong (right) priors, in the
middle row to the IBF5 solution with weak (left) and strong (right)
priors, and in the the bottom row to the WMN solution with weak
(left) and strong (right) priors, respectively.

TABLE 5

Max LE and Mean Values of NSpur and RMSE
for NRec � 1 and NRec � 2

Priors Nrec IBF10 IBF5 WMN

Max LE (mm) Weak 1 4 (92%) 4 (100%) 12 (86%)
2 4 (97%) 4 (100%) 4 (94%)

12 (94%) 4 (98%) 28 (86%)
Strong 1 4 (98%) 4 (100%) 4 (98%)

2 4 (100%) 4 (100%) 4 (99%)
4 (90%) 4 (100%) 4 (88%)

Mean NSpur Weak 1 0.57 0.16 1.41
2 2.22 0.72 3.34

Strong 1 0.161 0.01 0.76
2 0.75 0.05 1.61

Mean RMSE Weak 1 7.27 5.08 5.34
2 9.97 6.45 6.16

Strong 1 5.95 3.33 4.40
2 7.76 3.45 4.77
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source described under Solution with Accurate Loca-
tion Priors. With weak or strong priors, both IBF solu-
tions reconstructed most of the sources within 4 mm of
their original locations, except in the “worst case” of
the IBF10 solution with weak priors. The LE of the
WMN solution was improved by the inclusion of weak
priors but reached the level of the IBF solutions only
with the use of strong priors. All these values are in
agreement with those obtained for the simulations
with only one active source; see top row of Table 1.

The number of spurious reconstructed sources was
greatly reduced by the introduction of location priors.
There was still some spurious reconstructed activity
but much less than when no priors were included, as
can be seen by comparing Tables 3 and 5. The largest
benefit was obtained for the IBF5 solution. With strong
priors, the IBF5 solution gave almost the ideal values
of NSpur � 0 for NRec � 1 (one source is missing but
there are no spurious sources) and NRec � 2 (the two
sources are recovered without spurious activity). The
WMN solution showed significantly smaller NSpur
only for the strong priors but these values were still
worse than those of the IBF solution.

The RMSE values were also improved by the inclu-
sion of priors and proved to be similar to those obtained
when there was only one active source to reconstruct
(compare Tables 3 and 5).

Summary of Results

In the absence of prior information about location,
the IBF solutions had approximately the same local-
ization ability as the MS solution but the IBF’s RMSE
was smaller. Because less smoothness is imposed on
the IBF solutions than on the MS solution, the former
allow solutions with higher spatial frequencies and
therefore the reconstructed activity for the IBF solu-
tions were more focal. When two sources were active,
the IBF solutions were more likely to recover both
sources but the number of spurious sources was much
larger for the IBF than for the MS solutions, especially
if little smoothing was imposed. The level of smooth-
ness imposed on the solution is the key factor affecting
the regularization of the source localization problem.
Clearly the IBF approach lies somewhere between an
overly smoothed MS solution and an insufficiently con-
strained WMN solution.

When location priors were introduced the LE was
greatly reduced, even with a weak constraint for the
IBF solutions, but the WMN solution required a strong
constraint to reach the level of performance attained by
the IBF solutions. When two sources were considered
the number of spurious sources was also greatly re-
duced, especially with strong priors, rendering the re-
constructed activity more easily interpretable. How-
ever, the risk of missing one source was increased
somewhat, except for the IBF solution with little
smoothing and strong priors. Nevertheless, only the

WMN solution with weak priors missed more sources
than the MS solution. When the priors were included,
the IBF solutions provided better reconstructions than
the WMN solution, and the MS solution was outper-
formed in every case by the three other solutions. The
combination of smoothing and location priors offers the
best regularization of the source localization problem
but, in relation to the case without priors, less smooth-
ing seems to be required.

The case of mislocated priors does not impinge on the
MS solution. With incorrect location priors, the perfor-
mance of the IBF solution depended on the amount of
smoothing imposed. With a large smoothing con-
straint, the results were similar to the case where no
location priors were employed. In constrast the IBF
solution with a small smoothing constraint was more
affected by prior mislocation (especially when the prior
location was strong). The larger smoothing constraint
rendered the solution less sensitive to the bias pro-
duced by the mislocated prior. Therefore the combina-
tion of greater smoothing and weak location priors may
be preferred when there is risk that the location prior
is inaccurate.

In conclusion, the constraints afforded by informed
spatial basis functions ensured that, overall, IBF out-
performed the MS and WMN approaches (in the limit-
ing case of these noise-free simulations).

Discussion

The only way to overcome the intrinsic limitations
(on temporal or spatial resolution) of individual brain
imaging modalities is to combine data obtained from
different techniques within the same analytical frame-
work. Such a combination should provide an optimal
solution that harnesses the strengths of each tech-
nique.

In general, the advantages of a distributed linear
approach to the source localization problem, as pre-
sented under The General Approach, are the following:
a noniterative linear solution is readily available and
calculable, as presented under Minimum Norm Solu-
tion. Unlike ECD approaches, no assumptions are
made about the number of active sources, and sources
can be relatively diffuse. In the framework of a distrib-
uted linear solution, structural information extracted
from MR images, such as source orientation and corti-
cal contiguity, can be combined with the EEG data. It
is also possible to include other sources of data, such as
activation maps from functional MRI (or PET) studies,
to refine the localization without compromising the fine
temporal resolution of EEG data.

Structural information is sometimes obtained for the
EEG source constraints by reconstructing the cortical
surface from an MR image. This is a nontrivial and
difficult process (Dale and Sereno, 1993; Dale et al.,
1999; Fischl et al., 1999; Fischl and Dale, 2000; Goebel
and Max Planck Society, 2000) but, in the present

692 PHILLIPS, RUGG, AND FRISTON



work, the explicit reconstruction of the cortical surface is
avoided by using a user-independent method to extract
anatomical information from MR images. The sources
are not constrained to lie on a folded surface but are
spread on a fully three-dimensional grid. The orientation
of each dipole is directly incorporated in the lead field
matrix. Each oriented dipole can thus be viewed as a
voxel in a three-dimensional volume, the amplitude of a
dipole representing the activity in that voxel.

The approach adopted in the present paper does not
strictly follow the scheme of a distributed linear recon-
struction. The spatial IBF obtained from the anatomi-
cal information allows a two-step approach to imposing
constraints on the source localization problem. Firstly,
the size of the problem is reduced by projecting the
solution space onto the subspace spanned by the spa-
tial IBFs. Secondly, the anatomically constrained prob-
lem is solved. In this paper, a linear solution was
chosen because of its useful properties and ease of use,
but other methods could be employed to estimate the
best combination of spatial basis functions.

The extraction of spatial IBFs is the key element in
the approach presented here. Although systematic, it
has the disadvantage of being time consuming and
computationally demanding. Fortunately, the spatial
IBFs need only be calculated once for a specific head
and source model. Afterward, various hypotheses
about prior location of activation and different data
sets can be studied with the same spatial IBF set but
different “soft” constraints. The introduction of the spa-
tial IBF thus offers a clear separation between the
“hard” constraints relying on anatomy and other more
intuitive “soft” constraints.

In the absence of prior location information, the MS
solution provides source reconstruction with an accuracy
similar to that of the IBF solution. But as its name
suggests, the reconstructed sources may be too smooth. It
is not possible to make full use of anatomical information;
whereas the sources are constrained to the gray matter,
their orientation is left free and the smoothness con-
straint, a simple three-dimensional Laplacian, does not
respect cerebral anatomy. Moreover, no functional infor-
mation about the (possible) location of the activity within
the gray matter can be introduced.

The WMN solution, as employed here, uses only part
of the structural information to constrain the solution:
the orientations of the sources are fixed but no spatial
correlation among them is imposed. In contrast to the
MS solution, the WMN was inefficient without location
priors but was capable of accurate localization with
strong location priors. The solution presented and
tested in Liu et al. (1998), here termed “Surface WMN”
(SWMN), is equivalent to the WMN solution employed
here. The difference between the two solutions lies in
the source model: the sources are spread on the ex-
tracted cortical surface in Liu et al. (1998) instead of on
a three-dimensional grid as in the WMN employed
here. In both WMN and SWMN, no spatial correlation

between the sources is assumed and a priori informa-
tion about the location of the sources, obtained from
fMRI activation maps, was introduced to better con-
strain the problem. The SWMN solution was tested by
Liu et al. (1998) for four values of the relative weight-
ing of the prior location (fMRI activation), 0, 90, 99,
and 100%, which corresponds, in Eq. (24), to values of

 equal to 0, 2.16, 9, and �. In our simulations three
levels were used (
 � 0, 1, or 4), corresponding to
relative weightings of 0, 75, and 96%. By setting 
3 �,
one assumes an infinitely strong confidence in the lo-
cation priors, effectively precluding any activity out-
side those priors. The decision of Liu et al. (1998) to use
a compromise value of 90%, i.e., 
 � 2.16, for the
weighting of the a priori source location is supported by
the results of our simulations. Interestingly, the intro-
duction of some smoothness in the IBF solution means
that a smaller bias or weighting toward the a priori
location can be employed, as good localization results
are already obtained with the IBF solutions and 
 � 1,
unlike WMN. At this value of 
, the solutions were
little affected by location priors that were wrongly lo-
calized.

The solutions used here were tested with two simul-
taneously active sources in an extreme case where both
sources are perfectly synchronized in time and have
exactly the same strength in the source space, al-
though not in the measurement space. Under those
particular conditions and without location priors, the
two sources were recovered efficiently (the WMN solu-
tion is not considered here) in less than 50% of the
cases. Moreover there were always some spurious re-
constructed sources (according to the amplitude
thresholding adopted). Contrary to what might have
been expected, the introduction of location priors did
not improve the recovery of both sources. The location
priors did, however, improve the solution by greatly
reducing the number of spurious sources. If the signals
produced by two sources are almost collinear in the
measurement space, or if the amplitude of the signal
generated by one source is larger than that generated
by the other one, then one source will be generally
“hidden” or “shadowed” by the other. Weak location
priors cannot make the sources more “visible” but will
help by locating the sources more focally.

The solutions presented here were not compared to
ECD approaches. Apart from the moving-ECD solu-
tion, where the iterative fitting procedure has to simul-
taneously optimize the location, orientation, and am-
plitude of the ECDs, the fixed-ECD solutions are
particular cases of the more general linear distributed
solution. ECD-based attempts at localization have
used fMRI (or PET) activation maps as prior con-
straints on the inverse problem: a single ECD is placed
(or “seeded”) at the center of gravity of fMRI (or PET)
regions of activation, or at any location that seems
useful, and then the orientation and amplitude of the
ECDs are fitted to the EEG data, e.g., Opitz et al.
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(1999). In the linear solution framework, the seeded-
ECD solution can be obtained by setting the fMRI
weighting, parameter 
 in Eq. (24), to infinity or equiv-
alently by setting the a priori variance of the sources
outside the fMRI activations to 0.

We have attempted to provide a fairly comprehen-
sive evaluation of the informed basis function ap-
proach, in relation to existing approaches. Within the
parameters space covered by our simulations the in-
formed basis approach out-performed alternatives.
However, one cannot generalize these findings. The
different approaches evaluated all adopt different con-
straints implicit in their respective cost functions. Dif-
ferent cost functions will be appropriate in different
situations and under different assumptions about un-
derlying sources that cause observed data. Our tech-
nique was developed under the assumption that these
sources are distributed and conform to appropriate
anatomical constraints. This is a requirement that we
foresee will be important in the integration of EEG and
fMRI data but may not be important in other applica-
tions in which a smoothness constraint or weighted
minimum approach may be entirely sufficient.

The effect of errors in the solution of the forward
problem on the accuracy of the reconstruction of the
sources was not assessed here. There is no way to
completely characterize this effect in a realistic head
model as the synthetic data are generated with the
same model (or lead field) used to solve the inverse
problem. Although the methods described above apply
to both electroencephalographic and magnetoencepha-
lographic data, only EEG data were used to illustrate
the approach in this article. The results obtained are
directly and easily transferable to MEG data. When
both EEG and MEG data are available simultaneously,
they should be combined and used simultaneously to
solve the source localization problem (Fuchs et al.,
1998; Baillet et al., 1999) as the two kinds of data
contain complementary information.

In conclusion we have demonstrated that the combi-
nation of electrophysiological, structural, and hemody-
namic data, the influence of which is controlled by a set
of hyperparameters, results in more accurate and reli-
able solutions than two commonly used source local-
ization approaches. Future assessments of the IBF ap-
proach will require more realistic data. The use of
simulated EEG data with added neurophysiologically
realistic noise will necessitate the control of the solu-
tion for the noise level (hyperparameter � in Eq. 13 or
14). The value of the hyperparameter � can be esti-
mated systematically by using an iterative restricted
maximum likelihood procedure (Patterson and Thomp-
son, 1971; Harville, 1974). The use of IBF to reduce the
size of the problem should render the iterative process
more tractable. Ultimately the solution proposed here
will need to be evaluated with real data. These devel-
opments and applications are the subject of current
research.
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elektrischer Ströme in köperlichen Leitern mit Anwendung auf die
thierisch-elektrischen Versuche. Ann. Phys. Chem. 89: 211–233,
354–377.

Wellcome Department of Cognitive Neurology. 1999. Statistical
Parametric Mapping, SPM’99. http://www.fil.ion.ucl.ac.uk/spm/
spm99.html.

695BASIS FUNCTIONS FOR EEG SOURCE LOCALIZATION


	INTRODUCTION
	METHODS
	FIG. 1
	FIG. 2
	FIG. 3

	RESULTS AND DISCUSSION
	FIG. 4
	FIG. 5
	TABLE 1
	TABLE 2
	TABLE 3
	TABLE 4
	TABLE 5

	REFERENCES

