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Abstract This work reports an empirical examination of
two key issues in theoretical neuroscience: distractibility in
the context of working memory (WM) and its reward depen-
dence. While these issues have been examined fruitfully
in isolation (e.g. Macoveanu et al. in Biol Cybern 96(4):
407–19, 2007), we address them here in tandem, with a
focus on how distractibility and reward interact. In particu-
lar, we parameterise an observation model that embodies the
nonlinear form of such interactions, as described in a recent
neuronal network model (Gruber et al. in J Comput Neuro-
sci 20:153–166, 2006). We observe that memory for a target
stimulus can be corrupted by distracters in the delay period.
Interestingly, in contrast to our theoretical predictions, this
corruption was only partial. Distracters do not simply over-
write target; rather, a compromise is reached between target
and distracter. Finally, we observed a trend towards a reduced
distractibility under conditions of high reward. We discuss
the implications of these findings for theoretical formula-
tions of basal and dopamine (DA)-modulated neural bump-
attractor networks of working memory.

1 Introduction

The purpose of this work was to test the predictions of a
recent computational model of working memory and its mod-
ulation by dopaminergic neurotransmission. In what follows,
we motivate an experimental protocol and statistical model-
ling of our data by reviewing working memory and the role of
dopamine. We then describe the essential aspects of a recent
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neuronal (attractor) model of working memory. This model
accounts for an interesting psychophysical effect, namely
deviance–distraction, and its modulation by dopamine. We
use this model as the basis for a psychophysical study and
ask whether quantitative deviance–distraction relationships
can be accounted for by the model and whether the effects
of reward are consistent with the effects of dopamine in the
model.

1.1 Working memory

In cognitive psychology, working memory (WM) refers to
the capacity for temporarily storing and manipulating infor-
mation. The concept of working memory has largely replaced
or subsumed the older concept of short-term memory, which
describes a capacity for passive maintenance. An influen-
tial conceptual model of working memory from cognitive
psychology (Baddeley and Hitch 1974), motivated primar-
ily from dual-task paradigms, postulates three components
of WM; (1) a supervisory (central executive) system, con-
trolling information transfer between (2) a phonological and
(3) a visuospatial short-term storage system.

There is a broad, complementary literature examining the
anatomical, cellular and neurochemical mechanisms behind
these cognitive capacities. Following important early dem-
onstrations of dopamine (DA)-dependent memory (Williams
and Goldman-Rakic 1995), it is now clear that DA is impli-
cated in both spatial (e.g. Miyoshi et al. 2002) and phono-
logical (Jacobsen et al. 2006) WM (though, owing to the
more substantial literature, our focus will be on visuospatial
tasks). Experimental pharmacological lesions of the DA
system lead to impaired spatial WM performance (Miyoshi
et al. 2002). In contrast, lower doses lead to an enhancement
(e.g. Muller et al. 1998). In order to understand the neuro-
anatomical locations where such drugs influence behaviour,
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some experimenters have turned to direct application of DA
agonists or antagonists (Zahrt et al. 1997). For example,
direct application of DA to the prefrontal cortex (PFC)
impairs spatial WM (Zahrt et al. 1997).

In a parallel avenue of enquiry, the relation between basal
ganglia (BG) activity and WM has been examined in both
humans (Lewis et al. 2004) and animal models (Kermadi
and Joseph 1995; Kalivas et al. 2001). As in the PFC, these
studies have uncovered systematic alterations of BG activity
that are specifically related to WM tasks. While these studies
have not used direct pharmacological manipulations of DA
during WM tasks, it has been noted that striatal neurons are
influenced strongly by DA (Nicola et al. 2000). Furthermore,
it has long been known from anatomical work that the stria-
tum receives important DA afferents (Lynd-Balta and Haber
1994). It is unclear how modulatory actions of DA in BG
interact with the effects of DA in the PFC to influence WM
(though see below for one account).

In this work we draw upon computational models in neuro-
science. While these inevitably rely on untested heuristics or
simplifying assumptions, these models generate predictions
at the level of observable variables, which we then exploit in
the empirical work reported here.

1.2 The effects of dopamine (DA)

Gruber et al. (2006) use a network model to simulate the inter-
action of distraction and dopamine on working memory. The
model consists of four modules: three associated with PFC
and one associated with the BG of the striatum. The model
architecture can be seen in Fig. 1. In particular, the model
posits a capacity in PFC both for independent transient mul-
timodal stimulus representation (e.g. visual, auditory) and
for working memory. The content of working memory at a
given time after a sensory stimulus is determined by direct
feedforward connections from sensory representations and
by the inherent properties of the working memory network
itself. Key to the model is the input from the striatum, which
is also subject to DA modulation.

Visual activity is passed to the PFC working memory
network and the striatum. Neurons in the striatum are
modelled individually using a biophysically grounded
single-compartment model (for details see Gruber et al.
2003). The PFC working memory network is implemented as
a line attractor. As well as taking afferents from the
sensory areas directly, the PFC memory network receives
connections indirectly via the striatum. PFC cells with
similar preferences are coupled positively (Gaussian con-
nectivity) in a manner that decreases as their receptive fields
become increasingly dissimilar. At close range, these excit-
atory inputs dominate inhibition by the single inhibitory unit
and become self-sustaining. The asymptotic regimes of such
a network are well understood (e.g. Brody et al. 2003). In
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Fig. 1 Model architecture assumed by Gruber et al. (2006)

particular, for sufficiently strong input, the network can effi-
ciently encode a stimulus with only a subset of the neurons.
Moving between different stimuli (e.g. tones or locations)
corresponds to changing the initial states of activity in the net-
work. Importantly, any value of a continuous stimulus param-
eter finds its own unique asymptotic activity: in other words,
the attractor of the network is a continuous line in activity
space, which remembers the last stimulus-related input.

Gruber et al. (2006) examined the response of this net-
work to distracting stimuli, which follow a target in time
(e.g. after a 1 s interval) and potentially interfere with its rep-
resentation in working memory. In particular, they present
the above network with two stimuli in temporal succession
and ask what influence the second (distracter) has on the
extant representation of the first (target). For stimuli of fixed
intensity and duration the authors derive the relation between
distracter distance and the deviance of WM from the true tar-
get parameter: the distraction–deviation (DD) curve. Figure 2
illustrates the qualitative form of these DD curves. Charac-
teristically, it adopts a positive slope for a segment about the
origin, indicating corruption of working memory. This illus-
trates that, for distracters in this critical range, memory is
pulled towards the distracter. Beyond this critical range the
relation rapidly falls off to independence, indicating that
the target is retained perfectly in working memory despite the
distraction.

Finally, Gruber et al. (2006) documents the effect of neu-
romodulation, principally the induction of cellular bistability
in the BG (see Gruber et al. 2003), on dynamic properties of
the network. A key finding from these simulations is that the
nonlinear DD relation is modulated in a nonlinear fashion by
DA (see Fig. 3). In particular, while the general form of the
relation holds (positive slope around zero and falling off rap-
idly to independence), the range over which perfect deviation
occurs is contracted under high DA. This can be understood
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Fig. 2 The DD-curve under basal conditions
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Fig. 3 Modulation of the DD-curve. The inner curve has contracted
under high DA

intuitively as follows: under high DA, BG cells activated by
the target are caught in the up-state and fire consistently. This
consistent input by specific units from the BG stabilises the
mnemonic PFC activity profile. More importantly, cells not
strongly activated by the target are caught in a down-state
for the duration of DA-dependent modulation and become
insensitive to subsequent distracters.

In the Gruber et al. (2006) simulations, unity slope of the
DD1 occurs when (1) the PFC network is not modulated by
the inputs from the striatum, (2) when only the PRF net-
work is modulated by DA and (3) when the distracters are
presented for a sufficiently long time.

1 i.e. perfect overwriting of target location by distracter location.

1.3 Experimental approach

In this work we examine the predictions of Gruber et al.
(2006) empirically. We are interested in the slope of the DD
curve over small deviations (is it unity or is WM only partly
corrupted by the distracter?) and whether the range of DD
is affected by reward. Because the model predictions regard
visual working memory for spatial location in isolation, we
need a task that engages this and only this system (in isolation
from other working and long-term memory systems). With
such a task, one might gain information about the nature of
WM and its modulation from the shape of the DD-curve.

We hoped to use experimentally controlled visual inputs
to reproduce the sensory inputs in the Gruber network and
to measure WM status (‘bump location’) via a behavioural
response solicited from the subject. As a slight extension of
the predictions, we anticipated that definitive effects may be
expressed more acutely around the capacity for spatial WM
(Macoveanu et al. 2007; Fougnie and Marois 2006).

2 Methods

2.1 Subjects and procedure

Fourteen healthy subjects (eight men, six women) aged
between 22 and 37 years were briefed as to the task require-
ments and familiarised with the task during an introductory
training session lasting about 15 min. Subjects were seated
650 mm from a black computer display onto which stim-
uli were presented sequentially. Subjects initiated each trial
by pressing a touch pad. In the testing (but not the training)
sessions of individual trials were preceded by a one second
cue, indicating the potential value of the trial (1 pound or
0.01 pounds) conditional upon subjects being ’accurate’ in
reporting the location of a target. The task then required fix-
ation on a central cross onto which the mouse cursor was
locked for most of the trial. A white ring at three visual
degrees surrounded the fixation at all times during a trial.
After a 250 ms pause, a set of four stimuli (small filled circles)
were presented at random locations around the circumference
of the ring for 1 s. We chose to present multiple targets in
light of observations in Macoveanu et al. (2007). Following a
3 s interval, a single distracter stimulus, physically identical
to those from the target set, was presented close to one of the
targets. The distracter was presented at one of nine locations
spaced evenly on the interval [−0.4900, 0.4900] radians on
either side of the target. After a 1 s pause, the white fixa-
tion cross was extinguished, indicating that fixation was no
longer necessary and that the mouse cursor was free. Subjects
were then required to report the location of the target as accu-
rately as possible with the mouse cursor (the closest target
to the distracter). Subjects were able to report any location.
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For simplicity we analyse their responses in radians (i.e. their
response along the perimeter of the unit circle). We did not
provide feedback to subjects on a trial-by-trial basis, in the
hope that subjects performance would not change systemat-
ically during the task, by some feedback-dependent learning
mechanism.

Fixation was used to facilitate comparison between this
study and others in other literature. Fixation affords the
experimenter some control over the retinal coordinates of
the stimuli. It also reduces the impact of expectations or
creative cognitive strategies used by subjects in order to
optimise their task performance. After the training session,
we acquired two replications over all conditions (i.e. nine lev-
els of deviances). We randomised (the rows of) the
standard form of our design matrix to prevent confounds
(e.g. with time-dependent fatigue, etc).

2.2 Pre-processing

Any response greater than one radian in absolute value from
the target was excluded before any of the subsequent analy-
ses. This was to exclude trials in which subjects had identified
and reported the wrong item from the target set (i.e. an item
that was not the closest to the distracter as instructed). As
we shall report below, removing these outliers leads to good
normality in the within-subject averages.

3 Modelling and results

In this section, we present an analysis of subjects’ responses
that rests on a highly nonlinear observation model. This
model is parameterised so that we can test hypotheses about
formal features of the DD curve, namely the slope at zero
deviance and the range over which DD is expressed. Because
of its nature, we adopt a Bayesian inversion scheme, using a
grid-based approximation to the conditional or posterior den-
sity of the models parameters. Although the primary focus
of this paper is on the empirical evaluation of the model
described above, the analysis of this section represents a dem-
onstration of how to test formal models of psychophysical
data in a more general setting.

Due to the intractability of the differential equations in
Gruber et al., there is no closed-form theoretical equation for
the modulated ‘sleepy-S’ function. We are therefore required
to find some convenient proxy for this function that respects
both the form of the modulated sleepy-S shaped relation and
has interpretable and mechanistically meaningful parame-
ters. Many functions that might be prima facie reasonable
do not fully meet these requirements. For example, while the
first derivative of a Gaussian has a sleepy-S form, it is not
possible to independently parameterise the slope and length
of the sleepy-S shape (i.e. these two properties will always
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Fig. 4 Dependence of the DD-curve on parameters

be related). Of all possible closed-form functions to model
the experimentally measured response deviations, the ana-
lytic expression y = xce−γ x8 + ε is among the simplest (see
below). The exponent of x controls how fast the function
falls to zero after the peak/trough; the higher the exponent,
the sharper the descent. Exponents of 8 or more (i.e. relatively
sharp descent), resemble the form of the DD curve predicted
by Gruber et al. In the results presented below, we have set
the exponent to 8. Results are very similar for other high
exponents (e.g. 10, 12). The form of this model can itself
be optimised using the model evidence, as discussed later.
For positive γ , response deviance y (i.e. distraction) follows
the characteristic sleepy-S relationship to the distance x of a
distracter from the target (see Fig. 4).

We summarise the influence of other variables by the addi-
tive independent Gaussian error ε, with unknown variance
σ 2. More formally, our likelihood model for responses can
be written

p(y|θ) =
N∏

n=1

N (yn;µn, σ 2)

θ = γ1, . . . , γN , c, σ

y = y1, . . . , yN ,

where subscripts range over both between- and within-
subject replications (N = 497). In this report, we ignore
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random effects due to subjects and focus on the responses
pooled over all trials. The predicted deviance is

µn = xnce−γn x8
n .

To accommodate our interest in reward-related modula-
tion of γn we define

γn(a, b, zn) = ea+bzn ,

where z indicates low (0.01 pounds) or high (1 pound) reward
for a given trial. As illustrated above, the unknown parameter
c defines the slope of the deviating segment of this relation
(see Fig. 4). For example, c = 1 implies exact corruption of
target by distraction, 0 < c < 1 indicates some compromise
between the two, c = 0 corresponds to complete indepen-
dence between deviance and distraction and 0 > c implies
bias in the opposite direction (e.g. overcompensation). The
positive scale parameter γ controls the range of deviations
and is subordinate to two parameters (a, b), which control
the basal range of deviance and any reward-dependent mod-
ulation of this range; this means a contraction of this range
for 0 < b, and an extension for b < 0.

We chose to perform inference within the Bayesian for-
malism and access a probability distribution over all free
model parameters θ = {a, b, c, σ } in light of the data, via
Bayes theorem. This formalism requires the careful defini-
tion of prior densities p(θ) = p(a)p(b)p(c)p(σ ) on the
parameter set. {α, β} are ‘nuisance parameters’ which are
not of scientific interest to us per se. We therefore integrate
uncertainty over their values into our quantities of interest, as
described below. We placed an uninformative uniform prior
in the positive range.

An informative prior over either one of {a, b} is required
to ensure these parameters are jointly identifiable; i.e. under
general (bivariate) priors over these parameters, the joint pos-
terior over {a, b} may be improper (fail to integrate to one).2

Because of our interest in b, we therefore examined a vari-
ety of priors that constrain a. In particular, we examined
informative priors that place high probability in the range
which yields the sleepy-S functional forms at a plausible
scale, as predicted by Gruber et al. (2006) (i.e. a subset of the
a domain). We expected that any working memory deviations
would occur well within the broad experimental range of one
radian. As Fig. 4 (lower panel) illustrates, in the absence of b,
this corresponds to constraining log(γ ) = a roughly within
the range a ≈ 3 to a ≈ 30. Providing most prior mass is in
this range, we observed that the posterior on b was relatively
insensitive to the precise form of the prior on a. In the results
below we constrained a with an informative Gaussian prior
of p(a) = N (a; 15, 5).

2 While a unique bivariate mode was always well defined in bivariate
plots, one axis through the joint posterior surface was seen to not decay
to zero.

Due to our interest in hypotheses regarding {b, c}, we
specify uninformative uniform priors on these quantities.
Any information in the marginal posteriors of these parame-
ters must therefore come from the data.

At a higher level of abstraction one might test the model
form itself (in contrast to testing the parameters under an
assumed model). A key property of the Bayesian approach
adopted in this work is that any alternative analytic model can
be compared with a reference model, via a relative evidence
measure3 (cf. a Bayes factor or odds ratio). In practice, this
entails approximating the model evidence as the sum over
the posterior grid array as described below. By formulating
our model inversion with the evidence framework, we could
exploit model comparison to optimise the form of the model
itself (by integrating out dependencies on the parameters of
any particular form). This is a more principled approach than
cross-validation and obviates the need to assess generalisa-
tion errors and the like. We will illustrate this elsewhere; in
this work there is no obvious competing alternative model.
However, formal hypotheses about the relationship between
distraction and deviance can be identified with special set-
tings of our chosen model (e.g. parameter b and/or c is zero).
This can be reformulated in term of model selection through
optimising the evidence.4

Under this model, there is no closed form for the joint
posterior

p(θ |y) ∝ P(y|θ)p(θ).

We therefore evaluate numerically the posterior at each of
61 × 61 × 61 × 61 points over a regular lattice in the four-
dimensional domain (a, b, c, σ ) ∈ [−30, 30] × [−30, 30] ∗
[−5, 5] × [0, 0.8].

Figure 5 shows the conditional model fit, as specified by
the marginal maximum a posteriori (MAP) estimates of θ =
{a, b, c, σ } (see below) together with data for high-reward
(red) and low reward (blue).

Inference proceeds via the marginal posteriors on the
parameters of interest. Figure 6 illustrates the marginal pos-
terior over the slope parameter c. This plot indicates strong
evidence (98.9% posterior probability) that behavioural
responses to distraction were biased positively in the direc-
tion of the target. Interestingly, the maximum a posteriori
(MAP) estimate of c is 0.4 and there is a substantial proba-
bility (approx. 89.3%) that c < 1.

To assess the predicted effect of reward on the DD curve
we evaluated the marginal density of the reward modulation

3 The scalar value of the integrated/average/marginal likelihood.
4 Certain (null) settings of the parameters (b = 0, c = 0) effectively
contract the full model to a simpler one (respectively, an unmodulated
sleep-S function and no functional dependence whatever). Parameter
inference is therefore conceptually equivalent to model selection using
relative evidence.
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Fig. 5 Conditional model fit, as specified by the marginal MAP
estimates of the model parameters, together with data. The inner curve
describes the high-reward condition
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Fig. 6 The marginal posterior over the slope parameter c. We see very
strong evidence that the slope is greater than zero (i.e. there is a devi-
ance–distracter effect). Interestingly we can be 89.2% certain that this
slope is less than one; this is the value predicted by a winner-takes-all
mechanism

parameter b (Fig. 7). We found moderate evidence (85.5%
posterior probability) that behavioural responses to distrac-
tion were contracted into a smaller range in trials with high
potential reward (1 pound as opposed to 0.01 pounds). This
contraction is consistent with the modulatory role of DA in
the model reviewed above.

4 Discussion

We have examined empirical predictions of a theoretical
model that portrays working memory as a prefrontal cortex
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Fig. 7 The marginal posterior over the reward modulation parameter
b. We see moderate evidence (85.5% posterior probability) that behav-
ioural responses to distraction were contracted into a smaller range in
trials with high potential reward (1 pound as opposed to 0.01 pounds)

attractor network with additional dopaminergic modulatory
inputs from the basal ganglia. The model predicts a specific
form for the relation between distracters and deviance in
WM from the target. It also predicts a dopaminergic mod-
ulation of this relation, as described in Fig. 4. To relate
model predictions to real data we assume, largely on the
basis of experimental evidence in monkeys and rodents, that
more dopamine is released in trials associated with larger
reward. In particular, we cued potential reward and the tar-
get in sequence and assumed that dopamine is elevated by
target presentation per se.5 We propose a simple observation
model whose parameters can be adjusted to provide a phe-
nomenological fit to the predictions of Gruber et al. (2006).
We showed, with high confidence, that responses in a visual
working memory task deviate from target in the direction of
the distracters, as expected. More interestingly, our results
suggest that this distractibility is characterised by a com-
promise between target and distracter: there is a substantial
inductive probability (89.3%) that the target is not simply
replaced by the distracter but that information about the tar-
get is partially retained. We also observed a trend in the direc-
tion of reward-dependent modulation of this distractibility:
high potential reward appeared to induce a contraction of the
range of distractibility. We anticipate that this effect may be
easier to confidently quantify under a higher reward incentive
(more that 1 pound) and in tasks with lower motor noise.

We turn now to the interesting observation that memories
of the target are, at least partially, robust to distraction, and

5 This is relevant because the timing of dopaminergic and glutamater-
gic inputs do seem to impact on the behaviour of the model proposed
by Gruber et al. (2006).
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attempt to reconcile this with the theoretical considerations
in the introduction. We examine what properties of modified
bump attractors might create this effect, or alternatively
whether some hitherto neglected attribute of working mem-
ory [e.g. capacity (Fougnie and Marois 2006) or active WM
stimulus processing (Baddeley 2000)] might mediate the
observed robustness.

Some simple modifications to the standard bump attrac-
tor model could account for the sub-unity slope of the DD
curve. In the modelling literature, the term line attractor
usually refers to attractors in the state space of neuronal
firing, where the memory of an item (e.g. position) is encoded
in the firing rate of neurons (cf. rate coding). The case consid-
ered here is a bump attractor network, where the information
is encoded by the position of the activity bump
(cf. place coding). The degree to which a bump is pulled from
its original position, encoding the target stimulus, depends
not only on the distance of the distracter from the bump,
but also on the duration of the distracter presentation. With
brief distracters, the bump may only be moved partially to
the distracter position. This would yield a slope for the
DD curve below one. In short, the “stickiness” of the bump
could interact with distracter duration to determine DD
slope. We are grateful to our reviewers for emphasising that
‘stickiness’ depends on the intrinsic properties of the neu-
ronal units involved. For example, for units with sharper
nonlinearity, the bump would be stickier than for graded
nonlinearities. Alternatively, short-term plasticity between
the synapses inside the bump may automatically decrease
the slope. Such plasticity might be expected to occur in
real neuronal networks, as it can substantially attenuate
random drift that would otherwise corrupt the target encod-
ing.6 Renart et al. (2003), for example, showed that the
incorporation of activity-dependent synaptic weights stabi-
lises the bump in the face of threats the attractor’s con-
tour (here biophysical heterogeneities between cells; also
see Zhang (1996) in the context of head direction cells).

It should be noted that our model constrained putative
reward effects to be expressed in terms of the range over
which distractibility occurred (parameter b). In contrast, the
slope parameter c is assumed constant, under both high-
and low-reward conditions. This form of model precludes
any reward-dependent modulation of the curvature of the
DD function. This constraint prevents the observation of
a dependence of the slope on dopamine, as suggested by

6 Note that in this scheme the distracter and the target itself can change
the fixed point. When there is internal noise, there is no line attractor,
but a small number of fixed points (see Tsodyks and Sejnowski 1995).
A stimulus that arrives has to change the structure of these fixed points,
such that one of them is close to it. This could be done for instance by
the short-term plasticity mechanism mentioned above. The distracter
plays the same role, but has to deal with a set of fixed points, one of
which is much stronger than the rest.

extended line attractor models. As noted by one of our review-
ers, a DD slope much less than 1 can emerge from line
attractor models when inputs to cortex from the basal ganglia
are included (see Figs. 4b and 5c in Gruber et al. 2006); thus
(modified) line attractor models do not necessarily exhibit
strict winner-takes-all properties. The action of the basal gan-
glia is to break the symmetry of the attractor in a memory
and salience (reward)-specific manner. In the context of these
observations, it may be that our results are entirely consis-
tent with an extended Gruber et al. model. These issues could
be addressed thorough Bayesian model comparison among
models in which DA does and does not affect the slope.

Strictly speaking, Gruber et al. (2006) model the case
where WM capacity is limited to one item (i.e. one spatial
location). Under basal conditions in this scheme, either the
target is preserved in WM or the distracter supervenes. In
contrast, the large psychological literature on the capacity
of WM (Fougnie and Marois 2006; see Owen 2004 for a
review) suggests that many items can be retained simulta-
neously. One could extend the model to include this capac-
ity, for example, using an independent set of networks (each
resembling that in Gruber et al. 2006) with some central exec-
utive that selects and loads them to capacity. Under these
conditions one might imagine that, until capacity is reached,
one representation (distracter) would not need to replace
another. In contrast, with all networks occupied, the distracter
must compete with an extant representation and thus perturb
it according to the model predictions.7 This is partly why
we used four visual targets in this paradigm. Perhaps our
observation of a ‘compromise’ memory is more consistent
with the idea that multiple items are stored in some inher-
ently co-dependent form. As discussed next, the inclusion
of multicapacity in a manner consistent with empirical data
may be difficult to reconcile within the attractor network
framework.

In general, we expect working memory to perform diverse
transformations on a maintained target set. It is unclear
exactly what quantities are necessary for the distracted-
WM task we report here. For simplicity, the Gruber model
(2006) assumes stationarity of the spatial reference frame for
representations throughout any one trial (e.g. absolute eye-
centred coordinates). Given the functional architecture of
working memory (Baddeley 2000), one might envisage that
this memory task is completed via functionally diverse
processes; for example, the distracter may be encoded

7 This possibility should be addressed in further work. A priori, one
might argue that multiple co-loaded items may be more robust to
distracters than a single item. This could happen when the multiple
items constrain each other to fixed relative positions. Hence the per-
turbed item is pinned by its neighbours and cannot move over all the
way to the distracter. Ultimately, realistic multi-item models will also
need to account for the capacity limitations observed empirically (e.g.
Fougnie and Marois 2006).
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relative to the target location (i.e. using a dynamic reference
frame). Alternatively, subjects may extract abstract geomet-
rical relations within the target stimuli set (or between that set
and some aspect of the subjects perceptual reference frame)
to encode them efficiently in a more abstract frame of refer-
ence (e.g. the stimuli form the vertices of a diamond, whose
geometry might even be verbally encoded cf. the ‘phono-
logical loop’, Baddeley 2000). In debriefing, some subjects
did indeed volunteer that they had used such strategies (e.g.
visually and/or verbally encoding stimuli as a ‘diamond pat-
tern’). It is unclear whether such capacities can be considered
computationally separable from the static representations in
Gruber et al. (2006). To the extent that they are, their con-
trol in further experiments may result in better isolation of
the passive WM described in their model. Alternatively, one
might anticipate that it is inherently difficult to separate static
representations from the transformations performed on them
(see, for example, Machens et al. 2005). Either way, it is plau-
sible that these variables play a role in the robustness of WM.

As we have seen, the predictions of Gruber et al. (2006)
depend on a hierarchy of assumptions. At a computational
level, it presupposes the bump attractor framework as the
mechanism employed by WM. At the functionalist level,
it embodies a tacit hypothesis of modularity between the
well-documented attributes of WM; namely that the phe-
nomenology of single-item WM generalises to multi-item
WM and that passive WM can be described in isolation
from dynamic stimulus recoding/transformations. At a
cellular level, it specifies the presence/absence of internal
noise, short-term plasticity and neuromodulatory factors etc.
The WM response to external distracters under basal and
rewarded conditions clearly depends on assumptions at all
of these levels. Further work is needed before it is clear
which level must be developed to accommodate the sub-unity
distraction phenomenon observed in our data.
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