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This paper summarizes our recent attempts to integrate action and perception within a single
optimization framework. We start with a statistical formulation of Helmholtz’s ideas about

neural energy to furnish a model of perceptual inference and learning that can explain a
remarkable range of neurobiological facts. Using constructs from statistical physics it can be
shown that the problems of inferring the causes of our sensory inputs and learning regularities

in the sensorium can be resolved using exactly the same principles. Furthermore, inference
and learning can proceed in a biologically plausible fashion. The ensuing scheme rests on
Empirical Bayes and hierarchical models of how sensory information is generated. The use of
hierarchical models enables the brain to construct prior expectations in a dynamic and context-
sensitive fashion. This scheme provides a principled way to understand many aspects of the
brain’s organization and responses. We will demonstrate the brain-like dynamics that this

scheme entails by using models of bird songs that are based on chaotic attractors with
autonomous dynamics. This provides a nice example of how nonlinear dynamics can be
exploited by the brain to represent and predict dynamics in the environment.

Keywords: Generative models; Predictive coding; Hierarchical; Dynamic; Nonlinear;
Variational; Birdsong.

1 Introduction

The seminal work of Walter Freeman introduced a number of key concepts into

neuroscience. Among these was the notion that the causes of sensory input could be

encoded in a distributed fashion by neuronal dynamics and associated attractors.1 This

paper considers prediction and perceptual categorisation as an inference problem that is

solved by the brain. We assume that the brain models the world as a hierarchy or

cascade of dynamic systems that encode causal structure in the sensorium. Perception

is equated with the optimisation or inversion of these internal models, to explain

sensory data. Given a model of how sensory data are generated, we can use a generic
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approach to model inversion, based on a free-energy bound on the model’s evidence.

The ensuing free-energy principle furnishes equations that prescribe recognition; i.e.,

the dynamics of neuronal representations that represent the causes of sensory input.

Here, we focus on a very general model, whose hierarchical and dynamical structure

enables simulated brains to recognise and predict trajectories or sequences of sensory

states. We first review hierarchical dynamic models and their inversion. We then show

that the brain has the necessary infrastructure to implement this inversion and present

stimulations using synthetic birds that generate and recognise birdsongs.

Critically, the nature of the inversion lends itself to a relatively simple neural

network implementation that shares many formal similarities with real cortical

hierarchies in the brain. The basic idea that the brain uses hierarchical inference has

been described in a series of papers (see Refs. 2 and 3). These papers entertain the

notion that the brain uses empirical Bayes for inference about its sensory input, given

the hierarchical organisation of cortical systems. Here, we generalise this idea to cover

dynamical models and consider how neural networks could be configured to invert

these model and deconvolve sensory causes from sensory input.

This paper comprises six sections. In the second section, we introduce hierarchical

dynamic models. These cover most observation or generative models encountered in

the estimation and inference literature. An important aspect of these models is their

formulation in generalised coordinates of motion; this lends them a hierarchal form in

both structure and dynamics. These hierarchies induce empirical priors that provide

structural and dynamic constraints, which can be exploited during inversion. In the

third section, we consider model inversion in statistical terms. This summarises the

material in Ref. 4. In the fourth section, we show how inversion can be formulated as a

simple gradient ascent using neuronal networks and, in the fifth section, present a

simple empirical experiment that substantiates some of the key predictions of this

formulation. In the final section, we consider how evoked brain responses might be

understood in terms of inference under hierarchical dynamic models of sensory input.

To simplify notation we will use xfff xx  to denote the partial derivative

of the function, f , with respect to the variable x . We also use xx t for temporal

derivatives. Furthermore, we will be dealing with variables in generalised coordinates

of motion, denoted by a tilde;
Txxxx ],,,[~  , where

][ix denotes i-th order

motion.

2 Hierarchical Dynamic Models

Hierarchical Dynamic models are probabilistic models ( , ) ( | ) ( )p y p y p  
based on state-space models. They entail the likelihood, )|( yp of getting some

data, y , given some parameters { , , }x v  and priors on those parameters, )(p .
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We will see that the parameters subsume different quantities, some of which change

with time and some which do not. A dynamic model can be written as

(2.1)

The continuous nonlinear functions f and g of the states are parameterised by  .

The states )(tv can be deterministic, stochastic, or both. They are variously referred

to as inputs, sources or causes. The states )(tx meditate the influence of the input on

the output and endow the system with memory. They are often referred to as hidden

states because they are seldom observed directly. We assume the stochastic

innovations (i.e., observation noise) )(tz are analytic, such that the covariance of
Tzzzz ],,,[~  is well defined; similarly for the system or state noise, )(tw ,

which represents random fluctuations on the motion of the hidden states. Under local

linearity assumptions, the generalised motion of the output or response
Tyyyy ],,,[~  is given by

(2.2)

The first (observer) equation show that the generalised states
Txvu ],~,~[ are

needed to generate a generalised response that encodes a path or trajectory. The second

(state) equations enforce a coupling between orders of motion of the hidden states and

confer memory on the system. We can write these equations compactly as

(2.3)

Where the predicted response
Tgggg ],,,[~  and motion f in the absence of

random fluctuations are

(2.4)
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and D is a block-matrix derivative operator, whose first leading-diagonal contains

identity matrices. Gaussian assumptions about the fluctuations )
~

,0:~()~( zzNzp 
provide the likelihood, )~,~|~( vxyp . Similarly, Gaussian assumptions about state-

noise )
~

,0:~()~( wwNwp  furnish empirical priors, )~|~( vxp in terms of predicted

motion

(2.5)

Here,
][ix means the i-th generalised motion. Here, we have assumed Gaussian

priors )~(vp on the generalised causes, with mean  and covariance
v

~
. The density

on the hidden states )~|~( vxp is part of the prior on quantities needed to evaluate the

likelihood of the response or output. The form of this prior means that low-order

motion constrains high-order motion (and vice versa). It is these constraints that can be

exploited by the brain and are accessed through plausible assumptions about noise.

These assumptions are encoded by their covariances
z and

w or inverses
z and

w (known as precisions). Generally, these covariances factorise;
i i iR    into

a covariance proper and a matrix of correlations
iR among generalised motion that

encodes an autocorrelation function.

2.1 Hierarchical forms

Hierarchical dynamic models have the following form, which generalises the ( 1m )

model above

(2.6)
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Again, ),( )()()( iii vxff  and ),( )()()( iii vxgg  are continuous nonlinear

functions of the states. The innovations
)(iz and

)(iw are conditionally independent

fluctuations that enter each level of the hierarchy. These play the role of observation

error or noise at the first level and induce random fluctuations in the states at higher

levels. The causes Tmvvv ],,[ )()1(  link levels, whereas the hidden states
Tmxxx ],,[ )()1(  link dynamics over time. In hierarchical form, the output of one

level acts as an input to the next. Inputs from higher levels can enter nonlinearly into

the state equations and can be regarded as changing its control parameters to produce

quite complicated generalised convolutions with ‘deep’ (i.e., hierarchical) structure.

The conditional independence of the fluctuations means that these models have a

Markov property over levels, which simplifies the architecture of attending inference

schemes For example, the prediction )~,~(~~ )()()( iii vxgg  plays the role of a prior

expectation on
)1(~ iv , yet it has to be estimated in terms of

( ) ( ),i ix v  . This makes it an

empirical prior.5 See Kass and Steffey6 for a discussion of approximate Bayesian

inference in conditionally independent hierarchical models of static data and Ref. 4 for

dynamic models. In short, a hierarchical form endows models with the ability to

construct their own priors. This feature is central to many inference and estimation

procedures, ranging from mixed-effects analyses in classical covariance component

analysis to automatic relevance determination in machine learning.

2.2 Summary

In this section, we have introduced hierarchical dynamic models in generalised

coordinates of motion. These models are about as complicated as one could imagine;

they comprise causes and hidden states, whose dynamics can be coupled with arbitrary

(analytic) nonlinear functions. Furthermore, these states can have random fluctuations

with unknown amplitude and arbitrary (analytic) autocorrelation functions. A key

aspect of these models is their hierarchical form, which induces empirical priors on the

causes. These recapitulate the constraints on hidden states, furnished by the hierarchy

implicit in generalised motion. We now consider how these models are inverted to

disclose the unknown states generating observed sensory data.

3. Model inversion and variational Bayes

This section considers variational inversion and provides a heuristic summary of the

material in Friston et al.4 Variational Bayes is a generic approach to model inversion

that approximates the conditional density ),|( myp  on some model parameters,  ,

given a model m and data y . This is achieved by optimising the sufficient statistics

of an approximate conditional density )(q with respect to a lower bound on the
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evidence )|( myp of the model itself.7, 8 The log-evidence can be expressed in terms

of a free-energy and divergence term

(3.1)

The free-energy comprises an energy term, G , corresponding to an internal energy,

),(ln),(  ypyU  expected under the density )(q and its entropy, H , which

is a measure of its uncertainty. Eq. (3.1) shows that ),( qyF is a lower-bound on the

log-evidence because the divergence, 0K  is always positive. The objective is to

optimise the sufficient statistics of )(q by maximising the free-energy and

minimising the divergence. This renders ),|()( mypq   an approximate

posterior, which is exact for simple (e.g., linear) systemsa.

3.1 Mean-field and Laplace approximations

Invoking the density, )(q converts a difficult integration problem (inherent in

computing the evidence) into an easier optimisation problem. This rests on inducing a

bound that can be optimised with respect to )(q . To finesse optimisation, one

usually assumes )(q factorises over a partition of the parameters

(3.2)

In statistical physics, this is called a mean-field approximation. Under our

hierarchical dynamic model we will assume, ( ) ( ( )) ( )q q u t q  , where ( )u t are

time-varying generalised states and  are all the other unknown time-invariant

parameters. In a dynamic setting, the conditional density on the states and the free-

energy are functionals of time. By analogy with Lagrangian mechanics, this calls on

the notion of action. Action is the anti-derivative or path-integral of energy. We will

a By convention, the free energy in machine learning is usually the negative of the free-energy in physics.
This means the free-energy increases with log-evidence and has to be maximised.

ln ( | ) ( ( ) || ( | , ))

ln ( , )
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 
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 

 
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denote the action associated with the free energy by F , such that FFt  . We now

seek )( iq  that maximise the free-action. It is fairly easy to show4 that the solution

for the states is a functional of their instantaneous energy, ( ) : ln ( , | )U t p y u  

(3.3)

where ( )V t is their variational energy. The variational energy of the states is simply

their instantaneous energy expected under the conditional density of the parameters. In

contrast, the conditional density of the parameters is a function of their variational

action

(3.4)

)(ln  pU  are the prior energies of the parameters and play the role of

integration constants in the corresponding variational action;
V .

These equations provide closed-form expressions for the conditional or variational

density in terms of the internal energy defined by our model (see previous section).

They are intuitively sensible, because the conditional density of the states should reflect

the instantaneous energy (3.3); whereas the conditional density of the parameters can

only be determined after all the data have been observed (3.4). In other words, the

variational energy involves the prior energy and an integral of time-dependent energy.

In the absence of data, when the integrals are zero, the conditional density reduces to

the prior density.

To further simplify things, we will assume the brain uses something called the

Laplace approximation. This enables us to focus on a single quantity for each

unknown, the conditional mean: Under the Laplace approximation, the conditional

density on the states assumes a fixed Gaussian form ( ( )) ( : , )q u t N u C  with

sufficient statistics ( )t and ( )C t , corresponding to the conditional mean and

covariance; similarly, ( ) ( : , )q N u C   for the parameters. The advantage of

the Laplace assumption is that the conditional precisions (inverse variances) are

functions of the mean (the curvature of the instantaneous energy at the mean for the

states and the curvature of the corresponding action for the parameters). This means we

can reduce model inversion to optimising one sufficient statistic; namely, the

conditional mean.

( )

( ( )) exp( ( ))

( ) ( )
q

q u t V t

V t U t






( )

( ) exp( )

( )
q u

q V

V U t

V V dt U





  

 



 
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3.2 Optimising the conditional means

For the parameters, we envisage the brain uses a simple gradient ascent (see Section 5)

to maximise its variational action, under which (from Eq. 3.4)

(3.5)

Similarly, the trajectory of the conditional mean of the states maximises variational

action, which is the solution to the ansatz

(3.6)

This can be regarded as an augmented form of the gradient ascent ( )uV t  . Here,

 ~~ D is motion in a frame of reference that moves along the trajectory encoded in

generalised coordinates. Critically, the stationary solution, in this moving frame of

reference, maximises variational action. This can be seen easily by noting

0~~   D means the gradient of the variational energy is zero and

(3.7)

This is sufficient for the mode to maximise variational action (by the Fundamental

lemma of variational calculus). Intuitively, this means tiny perturbations to its path do

not change the variational energy and it has the greatest variational action (i.e., path-

integral of variational energy) of all possible paths. This may sound a little complicated

but it is simply a version of Hamilton’s principle of stationary action, which allows the

conditional mean in Eq. (3.6) to converge on a ‘moving target’. At this point the

trajectory of the mean becomes the mean of the trajectory and D   .

3.3 Summary

In this section, we have seen how the inversion of dynamic models can be formulated

as an optimization of free-action. This action is the path-integral of free-energy

associated with changing states. By assuming a fixed-form (Laplace) approximation to

the conditional density, one can reduce optimisation to finding the conditional means

of unknown quantities. For the states, this entails finding a path or trajectory with

stationary variational action. This can be formulated as a gradient ascent in a frame of

V

V V

 


 
 

 







( )uD V t   

( ) 0 0

( )

u u

t

V t V

V V t

   

 
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reference that moves along the path encoded in generalised coordinates. The only thing

we need to implement this recognition scheme is the variational or internal energy,

( ) : ln ( , )U t p y u  , which is specified by the generative model of the previous

section (Eq. 2.5).

4 Hierarchical models in the brain

A key architectural principle of the brain is its hierarchical organisation.9,10 This has

been established most thoroughly in the visual system, where lower (primary) areas

receive sensory input and higher areas adopt a multimodal or associational role. The

neurobiological notion of a hierarchy rests upon the distinction between forward and

backward connections.11,12,13 This distinction is based upon the specificity of cortical

layers that are the predominant sources and origins of extrinsic connections. Forward

connections arise largely in superficial pyramidal cells, in supra-granular layers and

terminate on spiny stellate cells of layer four in higher cortical areas.12,14 Conversely,

backward connections arise largely from deep pyramidal cells in infra-granular layers

and target cells in the infra and supra-granular layers of lower cortical areas. Intrinsic

connections mediate lateral interactions between neurons that are a few millimetres

away. There is a key functional asymmetry between forward and backward connections

that renders backward connections more modulatory or nonlinear in their effects on

neuronal responses.15,16 This is consistent with the deployment of voltage-sensitive

NMDA receptors in the supra-granular layers that are targeted by backward

connections.17 Typically, the synaptic dynamics of backward connections have slower

time constants. This has led to the notion that forward connections are driving and

illicit an obligatory response in higher levels, whereas backward connections have both

driving and modulatory effects and operate over larger spatial and temporal scales.

The hierarchical structure of the brain speaks to hierarchical models of sensory input.

We now consider how this functional architecture can be understood under the

inversion of hierarchical models by the brain.

4.1 Perceptual inference

If we assume that the activity of neurons encode the conditional mean of states, then

Eq. (3.6) specifies the neuronal dynamics entailed by perception or recognizing states

of the world from sensory data. In Friston et al4 we show how these dynamics can be

expressed simply in terms of auxiliary variables
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(4.1)

These correspond to prediction errors on the causes and motion of the hidden states.

Using these errors we can write Eq. (3.6) as

(4.2)

This equation describes how neuronal states self-organise, when exposed to sensory

input. Its form is quite revealing and suggests two distinct populations of neurons;

causal or hidden state-units whose activity encodes )(~ t and error-units encoding

precision-weighted prediction error  ~~
 , with one error-unit for each state.

Furthermore, the activities of error-units are a function of the states and the dynamics

of state-units are a function of prediction error. This means the two populations pass

messages to each other and to themselves. The messages passed within the states, ~D
mediate empirical priors on their motion, while  decorrelate the error-units. The

matrix 1    can be thought of as lateral connections among error-units that

mediate winner-take-all like interactions and increases with higher levels of noise or

uncertainty.

4.1.1 Hierarchical message passing

If we unpack these equations we can see the hierarchical nature of this message passing

(4.3)
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This shows that error-units receive messages from the states in the same level and

the level above, whereas states are driven by error-units in the same level and the level

below (Fig. 1). Critically, inference requires only the prediction error from the lower

level
)(i and the level in question,

)1( i . These provide bottom-up and lateral

messages that drive conditional expectations
)(~ i towards a better prediction, to

explain away the prediction error in the level below. These top-down and lateral

predictions correspond to
)(~ ig and

)(~ if . This is the essence of recurrent message

passing between hierarchical levels to optimise free-energy or suppress prediction

error; i.e., recognition dynamics. In summary, all connections between error and state-

units are reciprocal, where the only connections that link levels are forward

connections conveying prediction error to state-units and reciprocal backward

connections that mediate predictions.

L4

SG

IG

Backward predictions

Forward prediction error

( ) ( ) ( ) ( ) ( 1)

( ) ( ) ( ) ( )

i v i v i T i i v
v

i x i x i T i
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( 1)i x 

( 1)i x 

( 1)i v 

( 2)i v 

Fig. 1: Schematic detailing the neuronal architectures that encode an ensemble density on the states of a
hierarchical model. This schematic shows the speculative cells of origin of forward driving connections that
convey prediction error from a lower area to a higher area and the backward connections that are used to
construct predictions. These predictions try to explain away input from lower areas by suppressing
prediction error. In this scheme, the sources of forward connections are the superficial pyramidal cell

population and the sources of backward connections are the deep pyramidal cell population. The differential
equations relate to the optimisation scheme detailed in the main text. The state-units and their efferents are in
black and the error-units in red, with causes on the right and hidden states on the left. For simplicity, we have

assumed the output of each level is a function of, and only of, the hidden states. This induces a hierarchy over
levels and, within each level, a hierarchical relationship between states, where causes predict hidden states.
This schematic shows how the neuronal populations may be deployed hierarchically within three cortical
areas (or macro-columns). Within each area the cells are shown in relation to the laminar structure of the
cortex that includes supra-granular (SG) granular (L4) and infra-granular (IG) layers.

We can identify error-units with superficial pyramidal cells, because the only

messages that pass up the hierarchy are prediction errors and superficial pyramidal
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cells originate forward connections in the brain. This is useful because it is these cells

that are primarily responsible for electroencephalographic (EEG) signals that can be

measured non-invasively. Similarly, the only messages that are passed down the

hierarchy are the predictions from state-units that are necessary to form prediction

errors in lower levels. The sources of extrinsic backward connections are the deep

pyramidal cells and one might deduce that these encode the expected causes of sensory

states (Fig. 1). Critically, the motion of each state-unit is a linear mixture of bottom-up

prediction error (4.3). This is exactly what is observed physiologically; in that bottom-

up driving inputs elicit obligatory responses that do not depend on other bottom-up

inputs. The prediction error itself is formed by predictions conveyed by backward and

lateral connections. These influences embody the nonlinearities implicit in
)(~ ig and

)(~ if . Again, this is entirely consistent with the nonlinear or modulatory

characteristics of backward connections.

4.1.2 Encoding generalised motion

Equation (4.3) is cast in terms of generalised states. This suggests that the brain has an

explicit representation of generalised motion. In other words, there are separable

neuronal codes for different orders of motion. This is perfectly consistent with

empirical evidence for distinct populations of neurons encoding elemental visual

features and their motion (e.g., motion-sensitive area V5; Ref. 10). The analysis above

suggests that acceleration and higher-order motion are also encoded; each providing

constraints on a lower order, through ~D . Here, D represents a fixed connectivity

matrix that mediates these temporal constraints. Notice that  ~~ D only when

0~  T
u . This means it is perfectly possible to represent the motion of a state that is

inconsistent with the state of motion. The motion after-effect is a nice example of this,

where a motion percept co-exists with no change in the perceived location of visual

stimuli. The encoding of generalised motion may mean that we represent paths or

trajectories of sensory dynamics over short periods of time and that there is no

perceptual instant. One could speculate that the encoding of different orders of motion

may involve rate codes in distinct neuronal populations or multiplexed temporal codes

in the same populations (e.g., in different frequency band.

When sampling sensory data, one can imagine easily how receptors generate

y~:~ )0(  . Indeed, it would be surprising to find any sensory system that did not

respond to a high-order derivative of changing sensory fields (e.g., acoustic edge

detection; offset units in the visual system, etc; Chait et al 2007). Note that sampling

high-order derivatives is formally equivalent to high-pass filtering sensory data. A

simple consequence of encoding generalised motion is, in electrophysiological terms,

the emergence of spatiotemporal receptive fields that belie selectivity to particular

sensory trajectories.
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4.2 Perceptual learning and plasticity

The conditional expectations of the parameters,
 control the construction of

prediction error through backward and lateral connections. This suggests that they are

encoded in the strength of extrinsic and intrinsic connections. If we define effective

connectivity as the rate of change of a unit’s response with respect to its inputs, Eq. 4.2

suggests an interesting anti-symmetry in the effective connectivity between the state

and error-units. The effective connectivity from the states to the error-units is

u
~

~  . This is simply the negative transpose of the effective connectivity that

mediates recognition dynamics;
T

u
~~   . In other words, the effective connection

from any state to any error-unit has the same strength (but opposite sign) of the

reciprocal connection from the error to the state-unit. This means we would expect to

see connections reciprocated in the brain, which is generally the case.10,12 Furthermore,

we would not expect to see positive feedback loops (c.f., Ref. 18). We now consider the

synaptic efficacies underlying effective connectivity.

If synaptic efficacy encodes the parameter estimates, we can cast parameter

optimisation as changing synaptic connections. These changes have a relatively simple

form that is recognisable as associative plasticity. To show this, we will make the

simplifying but plausible assumption that the brain’s generative model is based on

nonlinear functions a of linear mixtures of states

(4.4)

Under this assumption
( ) ji

 correspond to matrices of synaptic strengths or weights

and a can be understood as a neuronal activation function that models nonlinear

summation of presynaptic inputs over the dendritic tree.19 This means that the synaptic

connection to the i-th error from the j-th state depends on only one parameter,
ij ,

which changes according to Eq. (3.5)b

(4.5)

b
The approximate equality follows from the fact we are ignoring uncertainty in the states, when taking the

expected instantaneous energy to get the variational energy of the parameters.

1 2

3 4

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

( )

( )

i ii i i

i ii i i

f a x v

g a x v

 

 

 

 

ij ij

ij ij ij ij

T T
ij i i j

ij ij ij

V a

   

 
 

  

  

    

  

 

    

 
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This suggests that plasticity due to parameter optimisation comprises an associative

term
ij and a decay term mediating priors on the parametersc. The associative term

could be regarded as a synaptic tag,20 which is simply the covariance between

presynaptic input and postsynaptic prediction error, summed over orders of motion. In

short, it mediates associative or Hebbian plasticity. The contribution of the product of

pre and postsynaptic signals j
T
i  ~ is modulated by an activity-dependent term, ia ,

which is the gradient of the activation function at its current level of input (and is

constant for linear models). Critically, updating the conditional estimates of the

parameters, through synaptic efficacies,
ij , uses local information that is available at

each error-unit. Furthermore, the same information is available at the synaptic terminal

of the reciprocal connection, where the i-th error-unit delivers presynaptic inputs to the

j-th state. In principle, this enables reciprocal connections to change in tandem. Finally,

because plasticity is governed by two coupled ordinary differential equations (4.5),

connection strengths should change more slowly than the neuronal states they mediate.

These theoretical predictions are entirely consistent with empirical and computational

characterisations of plasticity.20

4.3 Summary

We have seen that the brain has, in principle, the infrastructure needed to invert

hierarchical dynamic models of the sort considered in previous sections. It is perhaps

remarkable that such a comprehensive treatment of generative models can be reduced

to recognition dynamics that are as simple as Eq. 4.2. Having said this, the notion that

the brain inverts hierarchical models speaks to a range of empirical facts about the

brain:

 The hierarchical organisation of cortical areas.

 Each area comprises distinct neuronal subpopulations, encoding expected

states of the world and prediction error.

 Extrinsic forward connections convey prediction error (from superficial

pyramidal cells) and backward connections mediate predictions, based on

hidden and causal states (from deep pyramidal cells).21

 Recurrent dynamics are intrinsically stable because they are trying to suppress

prediction error.22

 Functional asymmetries in forwards (linear) and backwards (nonlinear)

connections may reflect their distinct roles in recognition.

These observations pertain to the anatomy and physiology of neuronal architectures;

see Friston et al2 for a discussion of operational and cognitive issues. In the next

c
We have assumed Gaussian priors here; i.e., ( ) ( : , )p N      .
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section we consider the sort of empirical evidence that can be garnished in support of

this perspective.

5 A simple experiment

In this section, we describe a simple experiment using functional magnetic resonance

imaging (fMRI) to measure visually evoked responses at different levels in the visual

cortical hierarchy. This experiment was first reported in Harrison et al.23 Here, we

focus on its implications for the functional architecture of neuronal computations

underlying inference. Specifically, the implementation described in the previous

section makes two key predictions. First, differences in responses evoked by

predictable and unpredictable stimuli must be mediated by top-down predictions and

second, the responses evoked at low levels of the visual hierarchy must, in part, be

mediated by the activity of neurons encoding prediction error. In other words, low-

level responses should be greater for unpredictable, relative to predictable stimuli.

Fig. 2: (a) Schematic of
the stimuli used in the brain

imaging experiment to
establish the role of top-
down influences in visual

recognition. The stimuli
comprised random dot
arrays, whose motion was

either incoherent (upper
panel) or coherent (lower
panel). Critically the dot

stimuli were always
separated by more than 3°.
This ensured that no two

stimuli fell within the
classical receptive field of any V1 unit or within the range of its horizontal connections with neighbouring
V1 units. This means that any differences in V1 responses to coherent versus incoherent stimuli must be

mediated by backward connections from higher areas. (b) This schematic quantifies the classical receptive
fields of V2 units and shows that their projection to V1 subsumes several dot stimuli. This means, in
principle, backward influences from V2 can mediate a sensitivity of V1 responses to coherence.

In our experiment we exploited the known anatomy of intrinsic and extrinsic

connections in the visual system to preclude neuronal responses that could be mediated

by lateral interactions within the lowest level; namely striate cortex or V1. We did this

by presenting moving dot stimuli, where the dots were sufficiently far apart to fall

beyond the range of V1 horizontal connections, which extend to about 2 degrees of

visual angle. We used predictable and unpredictable stimuli by changing the coherence

of the dots’ motion. We then simply measured the evoked responses to coherent and

01

V2

V1

Coherent and
predicable

Random and
unpredictable

top-down suppression of
prediction error when coherent?

CRF V1 ~1o

Horizontal V1 ~2o

Feedback V2 ~5o

Feedback V3 ~10o

Classical receptive field V1

Extra-classical receptive field

Classical receptive field V2

?

a b
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incoherent stimuli in V1 and all other parts of the brain. Fig. 2 provides a schematic

detailing the spacing of the dots in relation to the lateral extent of horizontal

connections in V1 and the extent of classical and extra-classical receptive fields in V1

and higher areas.

V2

V1

V5

pCG
pCG

V5

Random
Stationary
Coherent

V1
V5
V2

regional responses (90% confidence intervals)

decreases increases

Fig. 3: This is a summary of the results of the fMRI study described in the previous Figure. The upper

middle panel shows the time course of activity in three regions (striatal cortex V1; motion sensitive area V5
and second order visual area V2). The shaded bars indicate whether motion was coherent (clear) or random
(dark grey). The moving stimuli were interspersed with stationary displays (light grey). A reciprocal activity

profile is clearly evident on comparing the dynamics of V1 and V2, with a marked suppression of V1 activity
during coherent motion. Left panels: these are statistical parametric maps (SPMs) rendered on the cortical
surface showing parts of the brain that exhibited a reduction in activity during predictable or coherent

stimulation. The corresponding parameter estimates modulating a regressor encoding the presence of
coherent visual motion are provided in the middle panel along with their 90% confidence intervals. Right
panels: the corresponding regional activations due to coherence in V2 and posterior cingulate gyrus pCG.

The parameter estimates in the middle panel were derived from the peak voxels of each regional effect
detailed in the SPMs. See Ref. 23 for a fuller description of these results and the experimental paradigm.

The results of this experiment are shown in Fig. 3 which shows, as predicted,

responses in V1 were smaller for predictable coherent stimuli than unpredictable

incoherent stimuli. Furthermore, the reverse pattern was seen in the higher cortical

area, V2. Interestingly, V5 (a motion sensitive area) behaved like a low-level area with

reduced responses to predictable stimuli. This may reflect fast extra-geniculate

pathways that deliver subcortical afferents directly to V5. These results have some

profound implications for computation in the cortex. First, they show that backward

connections mediate evoked responses, even in early visual areas. This is because the

sensory input seen by any V1 neuron is exactly the same for the coherent and

incoherent stimuli. Because we precluded lateral interactions, the only explanation for

differential responses rests upon top-down message passing. This is an important
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result because it discounts theories of perceptual processing (although not necessarily

elemental sensory processing) that rely only on forward connections. These accounts

usually try to maximize the mutual information between the inputs and outputs of any

cortical level by optimizing the forward connections. In this view, the visual system

represents a series of optimized filters, without recurrent dynamics or self-organisation.

In the context of our experimental paradigm, these explanations are clearly inadequate.

The second prediction, namely that predictable stimuli enable prediction error to be

explained away more efficiently and evoke smaller responses was also confirmed. This

is important because it shows that a substantial and measurable proportion of neuronal

activity in V1 might be attributable to prediction error. Clearly, V1 is encoding the

visual attributes it represents (e.g., in the activity of state units); however, the existence

of error units can, in some form, be deduced from these results. This finding

challenges any theory of cortical computations that does not include an explicit

representation of prediction error. On the other hand, it is exactly consistent with the

message passing scheme described above. The only messages required by higher

levels for optimal inference are the prediction errors that have not yet been explained

away. Although there is no mathematical reason why prediction errors (4.1) should be

encoded explicitly by the brain as an auxiliary variable; the physical constraints on

message passing in biological systems and the empirical evidence of the sort reported

here, suggests that they may be.

5.1 Summary

In summary, we have seen how the inversion of a generic hierarchical and dynamical

model of sensory inputs can be transcribed onto neuronal quantities that optimise a

variational bound on the evidence for that model This optimisation corresponds, under

some simplifying assumptions, to suppression of prediction error at all levels in a

cortical hierarchy. This suppression rests upon a balance between bottom-up

(prediction error) influences and top-down (empirical prior) influences. In the final

section, we use this scheme to simulate neuronal responses. Specifically, we pursue the

electrophysiological correlates of prediction error and ask whether we can understand

some common phenomena in event-related potential (ERP) research in terms of the

free-energy principle and message passing in the brain.

6 Attractors in the brain

In this section, we examine the emergent properties of a system that uses hierarchical

dynamics or attractors as generative models of sensory input. We take Walter

Freeman’s idea and examine the emergent properties of a system that uses attractors as

forward models of their sensory input. The example we use is birdsong and the
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empirical measures we focus on are local field potentials (LFP) or evoked (ERP)

responses that can be recorded non-invasively. Our aim is to show that canonical

features of empirical electrophysiological responses can be reproduced easily under

attractor models of sensory input.

We first describe the model of birdsong and demonstrate the nature and form of this

model through simulated lesion experiments. We will then use simplified versions of

this model to show how attractors can be used to categorize sequences of stimuli

quickly and efficiently. Finally, we will consider perceptual learning of single chirps

by simulating a roving mismatch negativity paradigm and looking at the ensuing

electrophysiological responses. These examples cover optimisation of states

(perceptual inference) and parameters (perceptual learning). Throughout this section,

we will exploit the fact that superficial pyramidal cells are the major contributors to

observed LFP and ERP signals, which means we can ascribe these signals to prediction

error; because the superficial pyramidal cells are the source of bottom-up messages in

the brain (see Fig. 1)

6.1 Perceptual Inference

The basic idea here is that the environment unfolds as an ordered sequence of

spatiotemporal dynamics, whose equations of motion entail attractor manifolds that

contain sensory trajectories. Generally these attractors will support autonomous and

probably chaotic dynamics. Critically, the shape of the manifold generating sensory

data is itself changed by other dynamical systems that could have their own attractors.

If we consider the brain has a generative model of these coupled dynamical systems,

then we would expect to see attractors in neuronal dynamics that are trying to predict

sensory input. In a hierarchical setting, the states of a high-level attractor enter the

equations of motion of a low-level attractor in a nonlinear way, to change the shape of

its manifold. This form of generative model has a number of sensible and appealing

characteristics:

First, at any level the model can generate and therefore encode structured sequences

of events, as the states flow over different parts of the manifold. These sequences can

be simple, such as the quasi-periodic attractors of central pattern generators24 or can

exhibit complicated sequences of the sort associated with chaotic and itinerant

dynamics.25,26,27,28,29,30 The notion of attractors as the basis of generative models

extends the notion of generalised coordinates, encoding trajectories, to families of

trajectories that lie on the attractor manifold; i.e., paths that are contained in the flow-

field specified by the control parameters provided by the states of the level above.

Second, hierarchically deployed attractors enable the brain to generate and therefore

predict or represent different categories of sequences. This is because any low-level

attractor embodies a family of trajectories that correspond to a structured sequence.

The neuronal activity encoding the particular state at any one time determines where
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the current dynamics are within the sequence, while the shape of the attractor manifold

determines which sequence is currently being expressed. In other words, the attractor

manifold encodes what is being perceived and the neuronal activity encodes where the

current percept is located on the manifold or within the sequence.

Thirdly, if the state of a higher attractor changes the manifold of a subordinate

attractor, then the states of the higher attractor come to encode the category of the

sequence or dynamics represented by the lower attractor. This means it is possible to

generate and represent sequences of sequences and, by induction sequences of

sequences of sequences etc. This rests upon the states of neuronal attractors at any

cortical level providing control parameters for attractor dynamics at the level below.

This necessarily entails a nonlinear interaction between the top-down effects of the

higher attractor and the states of the recipient attractor. Again, this is entirely

consistent with the known functional asymmetries between forward and backward

connections and speaks to the nonlinear effects of top-down connections in the real

brain.

Finally, this particular model has implications for the temporal structure of

perception. Put simply, the dynamics of high-level representations unfold more slowly

than the dynamics of lower level representations. This is because the state of a higher

attractor prescribes a manifold that guides the flow of lower states. In the limiting case

of the higher level having a fixed point attractor, its fixed states will encode lower level

dynamics, which could change quite rapidly. We will see an example of this below

when considering the perceptual categorisation of different sequences of chirps

subtending birdsongs. This attribute of hierarchically coupled attractors enables the

representation of arbitrarily long sequences of sequences and suggests that neuronal

representations in the brain will change more slowly at higher levels.31,32,33 One can

turn this argument on its head and use the fact that we are able to recognise sequences

of sequences34 as an existence proof for this sort of generative model. In the examples

below, we will try to show how autonomous dynamics furnish generative models of

sensory input, which behave much like real brains, when measured

electrophysiologically.
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Fig. 4: Schematic showing the construction of the generative model for birdsongs. This comprises two
Lorenz attractors where the higher attractor delivers two control parameters (grey circles) to a lower level
attractor, which, in turn, delivers two control parameters to a synthetic syrinx to produce amplitude and

frequency modulated stimuli. This stimulus is represented as a sonogram in the right panel. The equations
represent the hierarchical dynamic model in the form of (2.6).

6.1.1 A synthetic avian brain

The toy example used here deals with the generation and recognition of birdsongs.35

We imagine that birdsongs are produced by two time-varying control parameters that

control the frequency and amplitude of vibrations emanating from the syrinx of a

songbird (see Fig. 4). There has been an extensive modelling effort using attractor

models at the biomechanical level to understand the generation of birdsong.36 Here we

use the attractors at a higher level to provide time-varying control over the resulting

sonograms. We drive the syrinx with two states of a Lorenz attractor, one controlling

the frequency (between two to five KHz) and the other (after rectification) controlling

the amplitude or volume. The parameters of the Lorenz attractor were chosen to

generate a short sequence of chirps every second or so. To endow the generative

model with a hierarchical structure, we placed a second Lorenz attractor, whose

dynamics were an order of magnitude slower, over the first. The states of the slower

attractor entered as control parameters (the Raleigh and Prandtl number) to control the

dynamics exhibited by the first. These dynamics could range from a fixed-point

attractor, where the states of the first are all zero; through to quasi-periodic and chaotic

behaviour, when the value of the Prandtl number exceeds an appropriate threshold

(about twenty four) and induces a bifurcation. Because higher states evolve more

slowly, they switch the lower attractor on and off, generating distinct songs, where

each song comprises a series of distinct chirps (see Fig. 5).

Fig. 5: Results of a Bayesian
inversion or deconvolution of the

sonogram shown in the previous
Figure. (a) Upper panels show
the time courses of hidden and
causal states. Upper left: These
are the true and predicted states
driving the syrinx and are simple

mappings from two of the three
hidden states of the first-level
attractor. The coloured lines

respond to the conditional mode
and the dotted lines to the true
values. The discrepancy is the
prediction error and is shown as a
broken red line. Upper right:
The true and estimated hidden
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states of the first-level attractor. Note that the third hidden state has to be inferred from the sensory data.
Confidence intervals on the conditional expectations are shown in grey and demonstrate a high degree of

confidence, because a low level of sensory noise was used in these simulations. The panels below show the
corresponding causes and hidden states at the second level. Again the conditional expectations are shown as
coloured lines and the true values as broken lines. Note the inflated conditional confidence interval halfway

through the song when the third and fourth chirps are misperceived. (b) The stimulus and percept in
sonogram format, detailing the expression of different frequencies generated over peristimulus time.

6.1.2 Song recognition

This model generates spontaneous sequences of songs using autonomous dynamics.

We generated a single song, corresponding roughly to a cycle of the higher attractor

and then inverted the ensuing sonogram (summarised as peak amplitude and volume)

using the message-passing scheme described in the previous section. The results are

shown in Fig. 5 and demonstrate that, after several hundred milliseconds, the veridical

hidden states and supraordinate causes can be recovered. Interestingly, the third chirp

is not perceived, in that the first-level prediction error was not sufficient to overcome

the dynamical and structural priors entailed by the model. However, once the

subsequent chirp had been predicted correctly the following sequence of chirps was

recognised with a high degree of conditional confidence. Note that when the second

and third chirps in the sequence are not recognised, first-level prediction error is high

and the conditional confidence about the causes at the second level is low (reflected in

the wide 90% confidence intervals). Heuristically, this means that the synthetic bird

listening to the song did not know which song was being emitted and was unable to

predict subsequent chirps.

Fig. 6: Results of simulated lesion studies
using the birdsong model of the previous
figures. The left panels show the percept in
terms of the predicted sonograms and the right

panels show the corresponding prediction error
(at the both levels); these are the differences
between the incoming sensory information and

the prediction and the discrepancy between the
conditional expectation of the second level
cause and that predicted by the second-level
hidden states. Top row: the recognition
dynamics in the intact bird. Middle row: the
percept and corresponding prediction errors

when the connections between the hidden states
at the second level and their corresponding
causes are removed. This effectively removes

structural priors on the evolution of the
attractor manifold prescribing the sensory
dynamics at the first level. Lower panels: the
effects of retaining the structural priors but
removing the dynamical priors by cutting the
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connections that mediate inversion in generalised coordinates. These results suggest that both structural and
dynamical priors are necessary for veridical perception.

6.1.3 Structural and dynamic priors

This example provides a nice opportunity to illustrate the relative roles of structural and

dynamic priors. Structural priors are provided by the top-down inputs that dynamically

reshape the manifold of the low-level attractor. However, this attractor itself contains

an abundance of dynamical priors that unfold in generalised coordinates. Both provide

important constraints on the evolution of sensory states, which facilitate recognition.

We can selectively destroy these priors by lesioning the top-down connections to

remove structural priors or by cutting the intrinsic connections that mediate dynamic

priors. The latter involves cutting the self-connections in Fig. 1, among the causal and

state units. The results of these two simulated lesion experiments are shown in Fig. 6.

The top panel shows the percept as in the previous panel, in terms of the predicted

sonogram and prediction error at the first and second level. The subsequent two panels

show exactly the same information but without structural (middle) and dynamic (lower)

priors. In both cases, the synthetic bird fails to recognise the sequence with a

corresponding inflation of prediction error, particularly at the last level. Interestingly,

the removal of structural priors has a less marked effect on recognition than removing

the dynamical priors. Without dynamical priors there is a failure to segment the

sensory stream and although there is a preservation of frequency tracking, the dynamics

per se have completely lost their sequential structure. Although it is interesting to

compare and contrast the relative roles of structural and dynamics priors; the important

message here is that both are necessary for veridical perception and that destruction of

either leads to suboptimal inference. These simulations address the predictive capacity

of the brain. In this example the predictions rests upon the internal construction of an

attractor manifold that defines a family of trajectories, each corresponding to the

realisation of a particular song. In the next set of simulations we look more closely at

the perceptual categorisation of these songs.

6.2 Perceptual categorisation

In the previous simulations, we saw that a song corresponds to a sequence of chirps

that are preordained by the shape of an attractor manifold that is controlled by top-

down inputs. This means that for every point in the state-space of the higher attractor

there is a corresponding manifold or category of song. In other words, recognising or

categorising a particular song corresponds to finding a fixed location in the higher

state-space. This provides a nice metaphor for perceptual categorisation; because the

neuronal states of the higher attractor represent, implicitly, a category of song.
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Inverting the generative model means that, probabilistically, we can map from a

sequence of sensory events to a point in some perceptual space, where this mapping

corresponds to perceptual recognition or categorisation. This can be demonstrated in

our synthetic songbird by ignoring the dynamics of the second-level attractor and

exposing the bird to a song and letting the states at the second level optimise their

location in perceptual space, to best predict the sensory input. To illustrate this, we

generated three songs by fixing the Raleigh and Prandtl variables to three distinct

values. We then placed uninformative priors on the second-level causes (that were

previously driven by the hidden states of the second-level attractor) and inverted the

model in the usual way. Fig. 7a shows the results of this simulation for a single song.

This song comprises a series of relatively low-frequency chirps emitted every 250

milliseconds or so. The causes of this song (song C in panel b) are recovered after the

second chirp, with relatively tight confidence intervals (the blue and green lines in the

lower left panel). We then repeated this exercise for three songs. The results are shown

in Fig. 7b.
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Fig. 7: (a) Schematic demonstration of perceptual categorisation. This figure follows the same format as

Figures 3. However, here there are no hidden states at the second level and the causes were subject to
stationary and uninformative priors. This song was generated by a first level attractor with fixed control
parameters of (1)

1 16v  and (1)
2 8 3v  respectively. It can be seen that, on inversion of this model, these two

control variables, corresponding to causes or states at the second level are recovered with relatively high
conditional precision. However, it takes about 50 iterations (about 600 milliseconds) before they stabilise.
In other words, the sensory sequence has been mapped correctly to a point in perceptual space after the

occurrence of the second chirp. This song corresponds to song C on the right. (b) The results of inversion
for three songs each produced with three distinct pairs of values for the second level causes (the Raleigh and
Prandtl variables of the first level attractor). Upper panel: the three songs shown in sonogram format

corresponding to a series of relatively high frequency chirps that fall progressively in both frequency and
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number as the Raleigh number is decreased. Lower left: these are the second level causes shown as a
function of peristimulus time for the three songs. It can be seen that the causes are identified after about 600

milliseconds with high conditional precision. Lower right: this shows the conditional density on the causes
shortly before the end of peristimulus time (dotted line on the left). The blue dots correspond to conditional
means or expectations and the grey areas correspond to the conditional confidence regions. Note that these

encompass the true values (red dots) used to generate the songs. These results indicate that there has been a
successful categorisation, in the sense that there is no ambiguity (from the point of view of the synthetic bird)
about which song was heard.

The songs are portrayed in sonogram format in the top panels and the inferred

perceptual causes in the bottom panels. The left panel shows the evolution of these

causes for all three songs as a function of peristimulus time and the right shows the

corresponding conditional density in the causal or perceptual space of these two states

after convergence. It can be seen that for all three songs the 90% confidence interval

encompasses the true values (red dots). Furthermore, there is very little overlap

between the conditional densities (grey regions), which means that the precision of the

perceptual categorisation is almost 100%. This is a simple but nice example of

perceptual categorisation, where sequences of sensory events with extended temporal

support can be mapped to locations in perceptual space, through Bayesian

deconvolution of the sort entailed by the free-energy principle.

6.3 Perceptual learning

In the foregoing examples we have looked exclusively at recognition and perceptual

inference. In the final simulations, we turn to perceptual learning and the optimisation

of parameters or synaptic efficacy. In these examples, we consider that the quantities

controlling the attractor manifolds generating sensory trajectories are represented not

by supraordinate states but by slowly changing parameters. In the brain, these would

correspond to the strength of synaptic connections so that learning corresponds to

optimising these strengths to predict input accurately. To illustrate perceptual learning

we will use a classical paradigm (the mismatch negativity paradigm) in which stimuli

are repeated successively to induce sensory learning. The products of this learning are

disclosed by presenting a deviant stimulus that elicits a greater prediction error than the

standard stimuli. In this model of the mismatch negativity the difference between the

responses evoked by the deviant and standard stimuli correspond to an empirically

determined mismatch response that is usually expressed in ERP research as a negative

going deflection shortly after the N1 component. Here, we attribute this difference to

short-term plasticity that underlies sensory learning on repeated exposure to the same

stimulus. The generative model for the stimuli used a simple linear convolution model

with two hidden states. This does not show autonomous dynamics but is sufficient for

our purposes. The two hidden states are perturbed by a Gaussian bump function

(representing a single cause) and express a damped transient. As above, we use one of
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the hidden states to modulate the frequency of a chirp and the other to modulate its

amplitude (after rectification). This provides a simple model for a single chirp, with a

well defined pitch-glide. Fig. 8 shows an example of a standard chirp used in our

simulated mismatch negativity paradigm. Here, the cause is equivalent to prediction

error at the second level because these had no empirical priors. As above, we assume

that the depolarisation of superficial pyramidal cells subtending the EEG reflects

prediction error at the appropriate level of the cortical hierarchy and focus on changes

in these evoked responses during perceptual learning.

Fig. 8: Results of a deconvolution using a

simple linear convolution model of a single
chirp. The format of this figure corresponds
to Fig. 7. Here, there are no second level

hidden states and the second level causes
were subject to uninformative and static
priors. In this instance, the chirp was

generated with a Gaussian bump function to
elicit a damped oscillation in two (linearly
coupled) hidden states at the first level.

These controlled the frequency and
amplitude of the chirp shown in sonogram
format on the lower right. The prediction

error at the first and second levels are shown
as solid red lines and are taken to model
observed depolarisation in superficial

pyramidal cells that dominate observed EEG
measurements.

6.3.1 A simulated oddball paradigm

The specific experimental paradigm we simulated corresponds to a roving paradigm

where standard stimuli are repeated a small number of times and then one or more of

their attributes is changed. In our example, we changed the stimulus by changing the

parameters coupling the two hidden states to produce a deviant chirp that was

subsequently repeated. After each stimulus we updated the parameters by solving (4.5).

The results of this are shown in Fig. 9. The true and predicted hidden states generating

the chirps are shown on the left. The sonograms of the corresponding percept are

shown in the middle row, clearly indicating the stimulus change after the second chirp.

The right column shows the prediction errors (i.e., observed EEG responses) at both the

first and second levels. This example highlights a number of important features. First,

the distinction between perceptual inference and learning under the free energy

formulation can be seen by the progressive suppression of prediction error; both within
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the peristimulus time and between trials, over peristimulus time. The elimination of

prediction error through self-organising and recurrent dynamics shapes the observed

ERP and can be seen on every trial. If we now compare the third and sixth stimuli, we

see that there has been a reduction in prediction error between homologous points in

peristimulus time. This corresponds to an optimisation of the synaptic connections that

models perceptual learning. This occurs despite the fact that the percept is nearly

identical between the first and fourth presentations of the new or deviant stimulus.

This progressive learning expresses itself in terms of changes in the dynamics of the

hidden states that slowly converge to the true values (left column, Fig. 9). From an

empirical point of view, the most interesting comparison here is between the first and

last presentation of the deviant stimulus. By its fourth presentation this has become a

standard stimulus. Therefore, any differences between the can only be explained by

perceptual learning. We show these differences in greater detail in Fig. 10.

Fig. 9: This shows the results of a simulated roving

oddball paradigm, in which trains or sequences of
simple stimuli are presented and the stimulus is changed
sporadically to elicit an oddball or deviant response.

The left hand panels show the evolution of the hidden
states at the first level as a function of peristimulus
time. These states control the frequency and, after

rectification, the amplitude of the chirp; the
corresponding percepts as shown in the middle panel.
The right hand panels show the evolution of prediction

error at the first and second levels, again as a function
of peristimulus time. The results here are shown for
two occurrences of a previously learned chirp and the

first four responses to a new chirp. The new chirp was
generated by changing the parameters of the equations
of motion of the first level hidden states. The true states

are shown as dotted lines and the conditional
expectations as solid lines. It can be seen, following the
first presentation of the new or oddball stimulus, the

hidden states change and converge to the true states.
This is due to progressive learning and optimisation of
the first-level (control) parameters. This is taken as a

model of perceptual learning that is mediated by short-
term changes in synaptic efficacy. The concomitant reduction in prediction error at the first and second
levels is evident on the right hand panels that demonstrate a suppression of prediction error within trial, over

repetition time, and between trials, over repetitions. Of particular interest here is the difference in responses
to the first and last presentations of the new stimulus that correspond to the deviant and standard responses
respectively. These are considered in more detail in the next figure.

The top panel shows the summed (precision-weighted) prediction error over

peristimulus time for all six stimuli. This shows that the first presentation of the deviant
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stimuli elicits an enormous prediction error, relative to the others. The evoked

responses to the final presentation of the novel stimulus (middle right) correspond to

the response to a standard, whereas the response to its first presentation (middle left)

corresponds to an oddball or deviant response. The differences between these two

responses are shown in the lower panel. These differences correspond to the difference

waveforms studied empirically and show and an interesting dissociation. There is

evidence of an enhanced negativity at around 100 ms that could correspond to the

enhancement of a classical component named the N1 component. This is largely

limited to the lower level. Conversely, at the higher level there is a pronounced

negativity from about 150 to 250 ms that may be the synthetic homologue of the

mismatch negativity. These simulations suggest the interesting possibility that

difference waveforms (in mismatch negativity paradigms) may have components that

are dissociable into early components that arise in lower cortical sources and later

components that are generated by high-level sources. It is interesting to consider how

one would model the P300, another classical surprised-related component that is

normally associated with changes in high-level attributes of sensory streams. One

might imagine that this could be generated by models with a deeper hierarchical

structure.

Fig. 10: These show the results of the simulation depicted in the previous figure, with a focus on the

responses to the oddball and standard stimuli (first and last presentations of the new stimulus in the previous
figure). Upper panel: the sum of squared (precision-weighted) prediction error, accumulated over
peristimulus time, for each of the six successive stimuli. It is evident that the presentation of the oddball
stimulus elicits a large amount of prediction error, which is rapidly attenuated by perceptual learning, so that
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on its second occurrence the prediction error is even lower that the preceding stimulus. Middle panels: these
show the prediction error at the first and second level (broken and solid lines respectively) as a function of

peristimulus time. Lower panel: this is the difference between the simulated evoked responses to the
standard and oddball, showing an enhanced negativity at the first level early in peristimulus time and a later
negativity at the higher or second level. These differences could correspond to an enhanced N1 effect and

the mismatch negativity found in empirical difference waveforms.

7 Conclusion

We have suggested that the architecture of cortical systems speak to hierarchical

generative models in the brain. The estimation or inversion of these models

corresponds to a generalised deconvolution of sensory inputs to disclose their causes.

This deconvolution could be implemented in a neuronally plausible fashion, where

neuronal dynamics self-organised when exposed to inputs to suppress free energy. The

focus of this paper has been on the nature of the hierarchical models and, in particular,

models that show autonomous dynamics. These models may be relevant for the brain

because they enable sequences of sequences to be inferred or recognised. We have

tried to demonstrate their plausibility, in relation to empirical observations, by

interpreting the prediction error, associated with model inversion, with observed

electrophysiological responses. These models provide a graceful way to map from

complicated spatiotemporal sensory trajectories to points in abstract perceptual spaces.

The ideas presented in this paper have a long history, starting with the notion of

neuronal energy;37 covering ideas like efficient coding38 and analysis by synthesis39 to

more recent formulations in terms of Bayesian inversion and predictive coding.22,40,41,42

This work has tried to provide support for the notion that the brain uses attractors to

represent and predict causes in the sensorium43,44,54 first proposed by Walter Freeman

two decades ago.
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Software note

All the schemes described in this paper are available in Matlab code as academic

freeware (http://www.fil.ion.ucl.ac.uk/spm). The simulation figures in this paper can be

reproduced from a graphical user interface called from the DEM toolbox.
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