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This paper presents a method for estimating the con-
ditional or posterior distribution of the parameters of
deterministic dynamical systems. The procedure con-
forms to an EM implementation of a Gauss–Newton
search for the maximum of the conditional or poste-
rior density. The inclusion of priors in the estimation
procedure ensures robust and rapid convergence and
the resulting conditional densities enable Bayesian
inference about the model parameters. The method is
demonstrated using an input–state–output model of
the hemodynamic coupling between experimentally
designed causes or factors in fMRI studies and the
ensuing BOLD response. This example represents a
generalization of current fMRI analysis models that
accommodates nonlinearities and in which the param-
eters have an explicit physical interpretation. Second,
the approach extends classical inference, based on the
likelihood of the data given a null hypothesis about
the parameters, to more plausible inferences about
the parameters of the model given the data. This in-
ference provides for confidence intervals based on the
conditional density. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

This paper is about the identification of determinis-
tic nonlinear dynamical models. Deterministic here re-
fers to models where the dynamics are completely de-
termined by the state of the system. Random or
stochastic effects enter only at the point that the sys-
tem’s outputs or responses are observed.1 In this paper
we focus on a particular model of how changes in neu-
ronal activity translate into hemodynamic responses.
By considering a voxel as an input–state–output sys-
tem one can model the effects of an input (i.e., stimulus
function) on some state variables (e.g., flow, volume,

1 There is another important class of models where stochastic
processes enter at the level of the state variables themselves (i.e.,
deterministic noise). These are referred to as stochastic dynamical
models.
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deoxyhemoglobin content) and the ensuing output (i.e.,
BOLD response). The scheme adopted here uses Bayes-
ian estimation, where the aim is to identify the poste-
rior or conditional distribution of the parameters,
given the data. Knowing the posterior distribution al-
lows one to characterize an observed system in terms of
the parameters that maximize their posterior probabil-
ity (i.e., those parameters that are most likely given
the data) or, indeed, make inferences about whether
the parameters are bigger or smaller than some spec-
ified value.

The primary aim of this paper is to present the
methodology for Bayesian estimation of any determin-
istic nonlinear dynamical model. However, through
demonstrating the approach using hemodynamic mod-
els pertinent to fMRI, we can also introduce the notion
that biophysical and physiological models of evoked
brain responses can be used to make Bayesian infer-
ences about experimentally induced, regionally specific
activations. This inference is enabled by including pa-
rameters that couple experimentally changing stimu-
lus or task conditions (that are treated as inputs) to the
system’s dynamics. The posterior or conditional distri-
bution of these parameters can then be used to make
inferences about the efficacy of the inputs in eliciting a
measured response. Because the parameters we want
to make an inference about have an explicit physical
interpretation, in the context of the hemodynamic
model used, the face validity of the ensuing inference is
more grounded in physiology. Furthermore, because
the “activation” is parameterized in terms of processes
that have natural biological constraints, these con-
straints can be used as priors in a Bayesian scheme.

The material presented here represents a conver-
gence of work described in two previous papers. In the
first paper (Friston et al., 2002a) we discussed the
utility of Bayesian inference in the context of hierar-
chical observation models commonly employed in
fMRI. This paper focused on empirical Bayesian ap-
proaches in which the priors were derived from the
data being analyzed. In this paper we use a fully
Bayesian approach, where the priors are assumed to be
known and apply it to the hemodynamic model de-
scribed in the second paper (Friston et al., 2000). In
1053-8119/02 $35.00
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Friston et al. (2000) we presented a hemodynamic
model that embedded the Balloon/Windkessel (Buxton
et al., 1998; Mandeville et al., 1999) model of flow to
BOLD coupling to give a complete dynamical model of
how neuronally mediated signals cause a BOLD re-
sponse. In Friston et al. (2000) we restricted ourselves
to single input–single output (SISO) systems by con-
sidering only one input. In this paper we demonstrate
a general approach to nonlinear system identification
using an extension of these SISO models to multiple
input–single output (MISO) systems. This allows for a
response to be caused by multiple experimental effects
and we can assign a causal efficacy to any number of
explanatory variables (i.e., stimulus functions). In sub-
sequent papers we will generalize the approach taken
in this paper to multiple input–multiple output sys-
tems (MIMO) such that interactions among brain re-
gions, at a neuronal level can be addressed. What fol-
lows can be seen as a technical prelude to the latter
generalization.

An important aspect of the proposed estimation
scheme is that it can be reduced, exactly, to the scheme
used in classical SPM-like analyses, where one uses
the stimulus functions, convolved with a canonical he-
modynamic response function, as explanatory vari-
ables in a general linear model. This classical analysis
is a special case that obtains when the model parame-
ters of interest (the efficacy of a stimulus) are treated
as fixed effects with flat priors and the remaining bio-
physical parameters enter as known canonical values
with infinitely small prior variance (i.e., high preci-
sion). In this sense the current approach can be viewed
as a Bayesian generalization of that normally em-
ployed. The advantages of this generalization rest upon
(i) the use of a nonlinear observation model and (ii)
Bayesian estimation of that model’s parameters. The
fundamental advantage, of a nonlinear MISO model
over linear models, is that only the parameters linking
the various inputs to hemodynamics are input or trial
specific. The remaining parameters, pertaining to the
hemodynamics per se, are the same for each voxel. In
conventional analyses the hemodynamic response
function, for each input, is estimated in a linearly
separable fashion (usually in terms of a small set of
temporal basis functions) despite the fact that the (un-
known) form of the impulse response function to each
input is likely to be the same. In other words, a non-
linear model properly accommodates the fact that
many of the parameters shaping input-specific hemo-
dynamic responses are shared by all inputs. For exam-
ple, the components of a compound trial (e.g., cue and
target stimuli) might not interact at a neuronal level
but may show subadditive effects in the measured re-
sponse, due to nonlinear hemodynamic saturation. In
contradistinction to conventional linear analyses the
analysis proposed in this paper could, in principle,
disambiguate between interactions at the neuronal

and hemodynamic levels. The second advantage is that
Bayesian inferences about input-specific parameters
can be framed in terms of whether the efficacy for a
particular cause exceeded some specified threshold or,
indeed, the probability that it was less than some
threshold (i.e., infer that a voxel did not respond). The
latter is precluded in classical inference. These advan-
tages should be weighed against the difficulties of es-
tablishing a valid model and the computational ex-
pense of identification.

This paper is divided into four sections. In the first
we reprise briefly the hemodynamic model and moti-
vate the four differential equations that it comprises.
We will touch on the Volterra formulation of nonlinear
systems to show the output can always be represented
as a nonlinear function of the input and the model
parameters. This nonlinear function is used as the
basis of the observation model that is subject to Bayes-
ian identification. This identification require priors
which, in this paper, come from the distribution, over
voxels, of parameters estimated in Friston et al. (2000).
This estimation was in terms of the Volterra kernels
associated with the model parameters. The second sec-
tion describes these priors and how they were deter-
mined. Having specified the form of the nonlinear ob-
servation model and the prior densities on the model’s
parameters, the third section describes the estimation
of their posterior densities. The derivation is suffi-
ciently simple to be presented from basic principles.
The ensuing scheme can be regarded as a Gauss–New-
ton search for the maximum posterior probability (as
opposed to the maximum likelihood as in conventional
applications). This section concludes with a note on
integration, required to evaluate the local gradients of
the objective function. The evaluation is greatly facili-
tated by the sparse nature of stimulus functions typi-
cally used in fMRI, enabling efficient integration using
a bilinear approximation to the differential equations
that constitute the model. The final section illustrates
applications to empirical data. First, we revisit the
same data used to construct the priors using a single
input. We then apply the technique to a study of visual
attention, first reported in Büchel and Friston (1998),
to make inferences about the relative efficacy of mul-
tiple experimental effects in eliciting a BOLD re-
sponse. These examples deal with single regions. We
conclude by repeating the analysis at all voxels to form
posterior probability maps (PPMs) for different exper-
imental causes.

2. THE HEMODYNAMIC MODEL

The hemodynamic model considered here was pre-
sented in detail in Friston et al. (2000). Although rel-
atively simple it is predicated on a substantial amount
of previous careful theoretical work and empirical val-
idation (e.g., Buxton et al., 1998; Mandeville et al.,
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1999; Hoge et al., 1999; Mayhew et al., 1998). The
model is a SISO system with a stimulus function as
input (that is supposed to elicit a neuronally mediated
flow-inducing signal) and BOLD response as output.
The model has six parameters and four state variables
each with its corresponding differential equation. The
differential or state equations express how each state
variable changes over time as a function of the others.
These state equations and the output nonlinearly (a
static nonlinear function of the state variables that
gives the output) specify the form of the model. The
parameters determine any specific realisation of the
model. In what follows we review the state equations,
the output nonlinearity, extension to a MISO system,
and the Volterra representation.

2.1. The State Equations

Assuming that the dynamical system linking synap-
tic activity and rCBF is linear (Miller et al., 2000) we
start with

ḟin � s, (1)

where fin is inflow and s is some flow-inducing signal.
The signal is assumed to subsume many neurogenic
and diffusive signal subcomponents and is generated
by neuronal responses to the input (the stimulus func-
tion) u(t)

ṡ � �u�t� � �ss � �f�fin � 1�. (2)

�, �s, and �f are parameters that represent the efficacy
with which input causes an increase in signal, the rate
constant for signal decay or elimination, and the rate
constant for autoregulatory feedback from blood flow.
The existence of this feedback term can be inferred
from: (i) poststimulus undershoots in rCBF (e.g.,
Irikura et al., 1994) and (ii) the well-characterized va-
somotor signal in optical imaging (Mayhew et al.,
1998). Both support the notion of local closed-loop feed-
back mechanisms as modeled in Eqs. (1) and (2). Inflow
determines the rate of change of volume through

�v̇ � fin � fout���
(3)

fout��� � �1/�.

Equation (3) says that normalized venous volume
changes reflect the difference between inflow fin and
outflow fout from the venous compartment with a time
constant (transit time) �. Outflow is a function of vol-
ume that models the balloon-like capacity of the ve-
nous compartment to expel blood at a greater rate
when distended (Buxton et al., 1998). It can be modeled
with a single parameter (Grubb et al., 1974) � based on

the Windkessel model (Mandeville et al., 1999). The
change in normalized total deoxyhemoglobin voxel con-
tent q̇ reflects the delivery of deoxyhemoglobin into the
venous compartment minus that expelled (outflow
times concentration)

�q̇ � fin

E�fin, E0�

E0
� fout���q/v

(4)
E�fin, E0� � 1 � �1 � E0�

1/fin,

where E( fin, E0) is the fraction of oxygen extracted from
inflowing blood. This is assumed to depend on oxygen
delivery and is consequently flow dependent. This con-
cludes the state equations, where there are six un-
known parameters, namely efficacy �, signal decay �s,
autoregulation �f, transit time �, Grubb’s exponent �,
and resting net oxygen extraction by the capillary
bed E0.

2.2. The Output Nonlinearity

The BOLD signal y(t) � �(v, q, E0) is taken to be a
static nonlinear function of volume (v) and deoxyhemo-
globin content (q)

y�t� � ��v, q� � V0�k1�1 � q�

	 k2�1 � q/v� 	 k3�1 � v�� (5)

k1 � 7E0 k2 � 2 k3 � 2E0 � 0.2,

where V0 is resting blood volume fraction. This signal
comprises a volume-weighted sum of extra- and intra-
vascular signals that are functions of volume and de-
oxyhemoglobin content. A critical term in Eq. (5) is the
concentration term k2(1 � q/v), which accounts for
most of the nonlinear behaviour of the hemodynamic
model. The architecture of this model is summarized in
Fig. 1 and an illustration of the dynamics of the state
variables in response to a transient input is provided in
Fig. 2. The constants in Eq. (5) are taken from Buxton
et al. (1998) and are valid for 1.5 T. Our data were
acquired at 2 T; however, the use of higher field
strengths may require different constants.

2.3. Extension to a MISO

The extension to a multiple input system is trivial
and involves extending Eq. (2) to cover n inputs

ṡ � �1u�t�1 	 . . . 	 �nu�t�n � �ss � �f�fin � 1�. (6)

The model now has 5 � n parameters; five biophysical
parameters �s, �f, �, �, and E0; and n efficacies
�1, . . . �n. Although all these parameters have to esti-
mated we are only interested in making inferences
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about the efficacies. Note that the biophysical param-
eters are the same for all inputs.

2.4. The Volterra Formulation

In our hemodynamic model the state variables are
X � {x1, . . . , x4}

T � {s, fin, v, q}T and the parameters are

 � {
1, . . . 
5�n}

T � {�s, �f, �, �, E0, �1, . . . , �n}
T. The

state equations and output nonlinearity specify a
MISO model

Ẋ�t� � f�X, u�t��

y�t� � ��X�t��

ẋ1 � f1�X, u�t��

� �1u�t�1 	 . . . 	 �nu�t�n � �sx1 � �f�x2 � 1�

ẋ2 � f2�X, u�t�� � x1 (7)

ẋ3 � f3�X, u�t�� �
1

�
�x2 � fout�x3, ���

ẋ4 � f4�X, u�t�� �
1

�
�x2

E�x2, E0�

E0
� fout�x3, ��

x4

x3
�

y�t� � ��x1, . . . , x4�

� V0�k1�1 � x4� 	 k2�1 � x4/x3� 	 k3�1 � x3��.

This is the state–space representation. The alternative
Volterra formulation represents the output y(t) as a
nonlinear convolution of the input u(t), critically with-
out reference to the state variables X(t) (see Bendat,
1990). This series can be considered a nonlinear con-
volution that obtains from a functional Taylor expan-
sion of y(t) about X(0) and u(t) � 0. For a single input
this can be expressed as

FIG. 1. Schematic illustrating the architecture of the hemodynamic model. This is a fully nonlinear single-input u(t), single-output y(t)
state model with four state variables s, fin, v, and q. The form and motivation for the changes in each state variable, as functions of the others,
is described in the main text.

FIG. 2. Illustrative dynamics of the hemodynamic model. (Top
left) The time-dependent changes in the neuronally induced perfu-
sion signal that causes an increase in blood flow. (Bottom left) The
resulting changes in normalized blood flow. (Top right) The concom-
itant changes in normalized venous volume (v) (solid line) and nor-
malized deoxyhemoglobin content (q) (broken line). (Bottom right)
The percentage of change in BOLD signal that is contingent on v and
q. The broken line is inflow normalized to the same maximum as the
BOLD signal. This highlights the fact that BOLD signal lags the
rCBF signal by about 1 s.
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y�t� � h�
, u� � �0 	 �
i�1

� �
0

�

. . . �
0

�

�i��1, . . . �i�

� u�t � �1� . . . u�t � �i�d�1 . . . d�i (8)

�i��1, . . . �i� �
� iy�t�

�u�t � �1� . . . u�t � �i�
,

where �i is the ith generalized convolution kernel
(Fliess et al., 1983). Equation (8) now expresses the
output as a function of the input and the parameters
whose posterior distribution we require. The Volterra
kernels are a time-invariant characterization of the
input–output behavior of the system and can be
thought of as generalized high-order convolution ker-
nels that are applied to a stimulus function to emulate
the observed BOLD response. Integrating Eq. (7) and
applying the output nonlinearity to the state variables
is the same as convolving the inputs with the kernels.
Both give the system’s response in terms of the output.
In what follows the response is evaluated by integrat-
ing Eq. (7). This means the kernels are not required.
However, the Volterra formulation is introduced for
several reasons. First, it demonstrates that the output
is a nonlinear function of the inputs y(t) � h(
, u). This
is critical for the generality of the estimation scheme
proposed below. (ii) Second, it provides an important
connection with conventional analyses using the gen-
eral linear model (see Section 3.5). (iii) Third, it was
used in Friston et al. (2000) to estimate the parameters
whose distribution, over voxels, constitutes the prior
density in this paper and (iv) finally, we use the kernels
to characterize evoked responses below (see Section 4).

3. THE PRIORS

Bayesian estimation requires informative priors on
the parameters. Under Gaussian assumptions these
prior densities can be specified in terms of their expec-
tation and covariance. These moments are taken here
to be the sample mean and covariance, over voxels, of
the parameter estimates reported in Friston et al.
(2000). Normally priors play a critical role in inference;
indeed the traditional criticism leveled at Bayesian
inference reduces to reservations about the validity of
the priors employed. However, in the application con-
sidered here, this criticism can be discounted. This is
because the priors, on those parameters about which
inferences are made, are relatively flat. Only the five
biophysical parameters have informative priors. In
fact, in the limit of biophysical priors with zero vari-
ance, the procedure reduces to that used for conven-
tional analyses (see Section 3.5) rendering the current
scheme less dependent on the priors than conventional
analyses. Given that only priors for the biophysical

parameters are required these can be based on re-
sponses elicited by a single input.

In Friston et al. (2000) the parameters were identi-
fied as those that minimized the sum of squared dif-
ferences between the Volterra kernels implied by the
parameters and those derived directly from the data.
This derivation used ordinary least square estimators,
exploiting the fact that Volterra formulation Eq. (8) is
linear in the unknowns, namely the kernel coefficients.
The kernels can be thought of as a reparameterization
of the model that does not refer to the underlying state
representation. In other words, for every set of param-
eters there is a corresponding set of kernels (see Fris-
ton et al., 2000, for the derivation of the kernels as a
function of the parameters). The data and Volterra
kernel estimation are described in detail in Friston et
al. (1998). In brief, we obtained fMRI time series from
a single subject at 2 T using a Magnetom Vision (Sie-
mens, Erlangen, Germany) whole-body MRI system,
equipped with a head volume coil. Multislice T*2-
weighted fMRI images were obtained with a gradient
echo-planar sequence using an axial slice orientation
(TE � 40 ms, TR � 1.7 s, 64 � 64 � 16 voxels). After
discarding initial scans (to allow for magnetic satura-
tion effects) each time series comprised 1200 volume
images with 3-mm isotropic voxels. The subject lis-
tened to monosyllabic or bisyllabic concrete nouns (i.e.,
“dog,” “radio,” “mountain,” “gate”) presented at five
different rates (10, 15, 30, 60, and 90 words per
minute) for epochs of 34 s, intercalated with periods of
rest. The presentation rates were repeated according to
a Latin Square design.

The distribution of the five biophysical parameters,
over 128 voxels, was computed for the purposes of this
paper to give their prior expectation 
 and covariance
C
. The expectations are reported in Friston et al.
(2000): Signal decay �s had a mean of about 0.65 per
second giving a half-life t1/2 � ln 2/�s � 1 s consistent
with spatial signaling with nitric oxide (Friston, 1995).
Mean feedback rate �f was about 0.4 per second. The
coupled differential equations (1) and (2) represent a
damped oscillator with a resonance frequency of
	�f � �s

2/4/2� � 0.11 per second. This is the frequency
of the vasomotor signal that typically has a period of
about 10 s (Mayhew et al., 1998). Mean Transit time �
was 0.98 seconds. The transit time through the rat
brain is roughly 1.4 s at rest and, according to the
asymptotic projections for rCBF and volume, falls to
0.73 s during stimulation (Mandeville et al., 1999).
Under steady-state conditions Grubb’s parameter �
would be about 0.38. The mean over voxels was 0.326.
This discrepancy, in relation to steady state levels, is
anticipated by the Windkessel formulation and can be
attributed to the fact that volume and flow are in a
state of continuous flux during the evoked responses
(Mandeville et al., 1999). Mean resting oxygen extrac-
tion E0 was about 34% and the range observed con-
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formed exactly with known values for resting oxygen
extraction fraction (between 20 and 55%). Figure 3
shows the covariances among the biophysical parame-
ters along with the correlation matrix (left-hand
panel). The correlations suggest a high correlation be-
tween transit time and the rate constants for signal
elimination and autoregulation.

The priors for the efficacies were taken to be rela-
tively flat with an expectation of zero and a variance of
16 per second. The efficacies were assumed to be inde-
pendent of the biophysical parameters with zero co-
variance. A variance of 16, or standard deviation of 4,
corresponds to time constants in the range of 250 ms.
In other words, inputs can elicit flow-inducing signal
over wide range of time constants from infinitely slowly
to very fast (250 ms) with about the same probability.
A “strong” activation usually has an efficacy in the
range of 0.5 to 0.6 per second. Notice that from a
dynamical perspective “activation” depends upon the
speed of the response not the percentage change.
Equipped with these priors we can now pursue a fully
Bayesian approach to estimating the parameters using
new data sets and multiple input models.

3. SYSTEM IDENTIFICATION

3.1. Bayesian Estimation

This section describes Bayesian inference proce-
dures for nonlinear observation models, with additive
noise, of the form

y � h�
, u� 	 e (9)

under Gaussian assumptions about the parameters 

and errors e 
 N{0, C�}. These models can be adopted
for any analytic dynamical system due to the existence
of the equivalent Volterra series expansion in Eq. (8).
Bayesian inference is based on the conditional proba-
bility of the parameters given the data p(
�y). Assum-
ing this posterior density is approximately Gaussian
the problem reduces to finding its first two moments,
the conditional mean 
�y and covariance C
�y. We will
denote the ith estimate of these moments by 
�y

(i) and
C
�y

(i) . Given the posterior density we can report its mode,
i.e., the maximum a posteriori (MAP) estimate of the
parameters (equivalent to 
�y) or the probability that
the parameters exceed some specified value. The pos-
terior probability is proportional to the likelihood of
obtaining the data, conditional on 
, times the prior
probability of 


p�
�y� � p�y�
�p�
�, (10)

where the Gaussian priors are specified in terms of
their expectation 
 and covariances C
 as in the pre-
vious section. The likelihood can be approximated by
expanding Eq. (9) about a working estimate of the
conditional mean.

FIG. 3. Prior covariances for the five biophysical parameters of the hemodynamic model in Fig. 1. (Left) Correlation matrix showing the
correlations among the parameters in image format (white � 1). (Right) Corresponding covariance matrix in tabular format. These priors
represent the sample covariances of the parameters estimated by minimizing the difference between the Volterra kernels implied by the
parameters and those estimated, empirically using ordinary least squares as described in Friston et al. (2000).
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h�
, u� � h� 
�y
�i� � 	 J�
 �  
�y

�i� �

(11)
J �

�h� 
�y
�i� �

�

.

Let r � y � h(
�y
(i) ) such that e � r � J(
 � 
�y

(i) ). Under
Gaussian assumptions the likelihood and prior proba-
bilities are given by

p�y�
� � exp�� 1
2 �r � J�
 � 
�y

�i� �� T

� C �
�1�r � J�
 �  
�y

�i� ��

p�
� � exp�� 1
2 �
 � 
�

TC 

�1�
 � 
�.

(12)

Assuming the posterior density is approximately
Gaussian, we can substitute 12 into 10 to give the
posterior density

p�
�y� � exp�� 1
2 �
 � 
�y

�i�1�� TC 
�y
�1�
 �  
�y

�i�1��

C
�y � �J TC �
�1J 	 C 


�1� �1 (13)

 
�y
�i�1� �  
�y

�i� 	 C
�y�J TC �
�1r 	 C 


�1�
 �  
�y
�i� ��.

Equation (13) provides the basis for a recursive esti-
mation of the conditional mean (and covariance) and
corresponds to the E-step in an EM algorithm below.
Equation (13) can be expressed in a more compact form
by augmenting the residual data vector, design matrix,
and covariance components

C
�y � �J� TC� �
�1J� � �1

(13a)
 
�y

�i�1� �  
�y
�i� 	 C
�y�J� TC� �

�1y� �

where

y� � �y � h� 
�y
�i� �


 �  
�y
�i� � , J� � �J

I � , C� � � �C� 0
0 C


� .

Equations (13) and (13a) are exactly the same but Eq.
(13a) adopts the same formulation used in Friston et al.
(2002a) to derive and explain the EM algorithm below.
From the perspective of Friston et al. (2002a) the
present problem represents a single-level hierarchical
observation model with known priors.

The starting estimate of the conditional mean is
generally taken to be the prior expectation. If Eq. (9)
were linear, i.e., h(
 ) � H
 f J � H, Eq. (13) would
converge after a single iteration. However, when h is
nonlinear J becomes a function of the conditional mean
and several iterations are required. Note that in the
absence of any priors, iterating Eq. (13) is formally

identical to the Gauss–Newton method of parameter
estimation. Furthermore, when h is linear, and the
priors are flat, Eq. (13) reduces to the classical Gauss–
Markov estimator, the minimum variance, linear max-
imum-likelihood estimator of the parameters.

The conditional covariance of the parameters is as-
sumed to be Gaussian. The validity of this assumption
depends on the rate of convergence of the Taylor ex-
pansion of h in Eq. (11). Because h is nonlinear the
likelihood density will only be approximately Gauss-
ian. However, the posterior or conditional density will
be almost Gaussian, given a sufficiently long time se-
ries (Fahrmeir and Tutz, 1994, p. 58).

3.2. Covariance Component Estimation

So far we have assumed that the error covariance Ce

is known. Clearly in many situations (e.g., serial cor-
relations in fMRI) it is not. When the error covariance
is unknown, it can be estimated through some hyper-
parameters �j, where Ce � ¥ �jQj. Qj � �C� /��j repre-
sents a basis set that embodies the form of the variance
components and could model different variances for
different blocks of data or indeed different forms of
serial correlations within blocks. Restricted Maximum
likelihood (ReML) estimators of �j maximise the log
likelihood log p(y��) � F(�). This log likelihood obtains
by integrating over the conditional distribution of the
parameters as described in Neal and Hinton (1998).
Under a Fisher-scoring scheme (see Friston et al.,
2002; Harville, 1977) this gives

� �i�1� � � �i� � 	� 2F

�� 2

�1 �F

��

(14)

�F

��j
� � 1

2 tr�PQi 	 1
2 y� TP TQiPy�

	 � 2F

�� jk
2 
 � � 1

2 tr�PQiPQj

P � C� �
�1 � C� �

�1J� C
�yJ� TC� �
�1.

Although this expression may look complicated, in prac-
tice it is quick to implement due to the sparsity structure
of the covariance basis set Qj. If the basis set is the
identity matrix, embodying i.i.d. assumptions about the
errors, Eq. (14) is equivalent to the sum of squared resid-
ual estimator used in classical analysis of variance.

3.3. An EM Gauss–Newton Search

Recursive implementation of Eqs. (13) and (14) cor-
responds to an expectation maximisation or EM algo-
rithm. The E-step (expectation step) computes the con-
ditional expectations and covariances according to Eq.
(13) using the error covariances specified by the hyper-
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parameters from the previous M-step. Equation (14)
corresponds to the M-step (maximum-likelihood step)
that updates the ReML estimates of the hyperparam-
eters by integrating the parameters out of the log-
likelihood function using their conditional distribution
from the E-step (Harville, 1977; Dempster et al., 1977;
Neal and Hinton, 1998). The ensuing EM algorithm is
derived in full in Friston et al. (2002) and can be sum-
marized in pseudo-code as

Initialize

�(1) � �(0)


�y
(1) � 


Until convergence {

E-step

(15)

J � �h�
�y
�i� �/�


y� � �y � h� 
�y
�i� �


 �  
�y
�i� � , J� � �J

I � , C� � � �� � i
�i�Qi 0

0 C

�

C
�y � �J� TC� �
�1J� � �1

 
�y
�i�1� �  
�y

�i� 	 C
�y�J� TC� �
�1y� �

M-step

P � C� �
�1 � C� �

�1J� C
�yJ� TC� �
�1

�F

��j
� � 1

2 tr�PQi 	 1
2 y� TP TQiPy�

	 � 2F

�� jk
2 
 � � 1

2 tr�PQiPQj

� �i�1� � � �i� � 	� 2F

�� 2

�1 �F

��

The convergence criterion, we used, is that the sum of
squared change in conditional means falls below 10�6.

This EM scheme is effectively a Gauss–Newton
search for the posterior mode or MAP estimate of the
parameters. A Gauss–Newton search can be regarded
as a Newton–Raphson method, where the second de-
rivative or curvature of the log-likelihood function is
approximated by neglecting terms that involve the re-
siduals r, which are assumed to be small. The relation-
ship between the E-step and a conventional Gauss–
Newton ascent can be seen easily in terms of the
derivatives of their respective objective functions. For
conventional Gauss–Newton this function is the log
likelihood

l � ln p�y�
�

� � 1
2 �y � h�
��TC �

�1�y � h�
�� 	 const.

�l

�

� ML

�i� � � J TC �
�1r (16)

� 2l

�
 2
� ML

�i� � � J TC �
�1J

 ML
�i�1� �  ML

�i� 	 �J TC �
�1J� �1J TC �

�1r.

This is a conventional Gauss–Newton scheme. By sim-
ply augmenting the log likelihood with the log prior we
get the log posterior

l � ln p�
�y� � ln p�y�
� 	 ln p�
�

� � 1
2 �y � h�
��TC �

�1y � h�
�

� 1
2 �
 � 
� TC 


�1�
 � 
� 	 const.

�l

�

� 
�y

�i� � � J TC �
�1r 	 C 


�1�
 �  
�y
�i� � (17)

� 2l

�
 2
� 
�y

�i� � � J TC �
�1J 	 C 


�1

 
�y
�i�1� �  
�y

�i� 	 �J TC �
�1J 	 C 


�1� �1

� �JTC �
�1r 	 C 


�1�
 �  
�y
�i� ��,

which is identical to the expression for the conditional
expectation in the E-step. In fact Eq. (17) serves as an
alternative derivation of the conditional mean in Eq.
(13). Equation (17) is not sufficient for EM because the
conditional covariance in Eq. (13) is required in the
E-step, to provide the conditional density for the M-
step. However, Eq. (17) does highlight the fact that the
conditional covariance is approximately the inverse of
the log posterior curvature.

An intuitive understanding of the E-step’s update
equation (formulated by one of the reviewers) is that
the change in the conditional estimate is driven by two
terms. The first JTC�

�1r ensures a minimization of the
residuals and the second C


�1(
 � 
�y
(i) ) a minimization

of the difference between the prior expectation and
posterior estimate. The relative strength of these terms
is moderated by the precisions with which the mea-
surements are made and with which the priors are
specified. If the error variance is small, relative to the
prior variability, more weight is given to minimising
the residuals and vice versa.

In summary, the only difference between the E-step
and a conventional Gauss–Newton search is that pri-
ors are included in the objective log probability func-
tion converting it from a log likelihood into a log pos-
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terior. The use of an EM algorithm rests upon the need
to find not only the conditional density but also the
hyperparameters of unknown variance components.
The E-step finds (i) the current MAP estimate that
provides the next expansion point for the Gauss–New-
ton search and (ii) the conditional covariance required
by the M-step. The M-step then updates the ReML
estimates of the covariance hyperparameters that are
required to compute the conditional moments in the
E-step. Technically Eq. (15) is a generalized EM (GEM)
because the M-step increases the log likelihood of the
hyperparameter estimates, as opposed to maximising
it.

3.4. Relationship to Established Procedures

The procedure presented above represents a fairly
obvious extension to conventional Gauss–Newton
searches for the parameters of nonlinear observation
models. The extension has two components: (i) First,
maximization of the posterior density that embodies
priors, as opposed to the likelihood. This allows for the
incorporation of prior information into the solution and
ensures uniqueness and convergence. (ii) Second, the
estimation of unknown covariance components. This is
important because it accommodates nonsphericity in
the error terms. The overall approach engenders a
relatively simple way of obtaining Bayes estimators for
nonlinear systems with unknown additive observation
error. Technically, the algorithm represents a posterior
mode estimation for nonlinear observation models us-
ing EM. It can be regarded as approximating the pos-
terior density of the parameters by replacing the con-
ditional mean with the mode and the conditional
precision with the curvature (at the current expansion
point). Covariance hyperparameters are then esti-
mated, which maximize the expectation of the log like-
lihood of the data over this approximate posterior den-
sity.

Posterior mode estimation is an alternative to full
posterior density analysis, which avoids numerical in-
tegration (Fahrmeir and Tutz, 1994, p. 58) and has
been discussed extensively in the context of generalized
linear models (e.g., Leonard, 1972; Santner and Duffy,
1989). The departure from Gaussian assumptions in
generalized linear models comes from non-Gaussian
likelihoods, as opposed to nonlinearities in the obser-
vation model considered here, but the issues are simi-
lar. Posterior mode estimation usually assumes the
error covariances and priors are known. If the priors
are unknown constants then empirical Bayes can be
employed to estimate the required hyperparameters.
Fahrmeir and Tutz (1994, p. 59) discuss the use of an
EM-type algorithm in which the posterior means and
covariances appearing in the E-step are replaced by
the posterior modes and curvatures (cf. Eq. (15)). Since
C


�1 appears only in the log prior (see Eq. (17)) this

leads to a simple EM scheme for generalized linear
models, where the hyperparameters maximize the ex-
pected log prior. In this paper, we have dealt with the
more general nonlinear problem in which the hyperpa-
rameters influence the likelihood, leading to the GEM
scheme above.

It is important not to confuse this application of EM
with Kalman filtering. Although Kalman filtering can
be formulated in terms of EM and, indeed, posterior
mode estimation, Kalman filtering is used with com-
pletely different observation models—state–space mod-
els. State space or dynamic models comprise a transi-
tion equation and an observation equation (cf. the state
equation and output nonlinearity in Eq. (7)) and cover
systems in which the underlying state is hidden and is
treated as a stochastic variable. This is not the sort of
model considered this paper, in which the inputs (ex-
perimental design) and the ensuing states are known.
This means that the conditional densities can be com-
puted for the entire time series simultaneously (Kal-
man filtering updates the conditional density recur-
sively, by stepping through the time series). If we
treated the inputs as unknown and random then the
state equation of Eq. (7) could be rewritten as a sto-
chastic differential equation (SDE) and a transition
equation derived from it, using local linearity assump-
tions. This would form the basis of a state–space
model. This approach may be useful for accommodat-
ing deterministic noise in the hemodynamic model but,
in this treatment, we consider the inputs to be fixed.
This means that the only random effects enter at the
level of the observation or output nonlinearity. In other
words, we are assuming that the measurement error in
fMRI is the principal source of randomness in our
measurements and that hemodynamic responses per
se are determined by known inputs. This is the same
assumption used in conventional analyses of fMRI data
(see Section 3.5).

3.4. A Note on Integration

To iterate Eq. (15) the local gradients J � �h(
�y
(i) )/�


must be evaluated. This involves evaluating h(
, u)
around the current expansion point with the general-
ized convolution of the inputs for the current condi-
tional parameter estimates according to Eq. (8) or,
equivalently, the integration of Eq. (7). The latter can
be accomplished efficiently by capitalizing on the fact
that stimulus functions are usually sparse. In other
words inputs arrive as infrequent events (e.g., event-
related paradigms) or changes in input occur sporadi-
cally (e.g., boxcar designs). We can use this to evaluate
y(t) � h(
�y

(i) , u) at the times the data were sampled
using a bilinear approximation to Eq. (7).

The Taylor expansion of Ẋ(t) about X(0) � X0 � [0, 1,
1, 1]T and u(t) � 0
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Ẋ�t� � f�X0, 0� 	
�f�X0, 0�

�X
�X � X0�

	 �
i

u�t�i�� 2f�X0, 0�

�X�ui
�X � X0� 	

�f�X0, 0�

�ui
�

has a bilinear form, following a change of variables
(equivalent to adding an extra state variable x0(t) � 1)

Ẋ̃�t� � AX̃ 	 �
i

u�t�iBiX̃

(18)

X̃ � � 1
X�

A � � 0 0

� f�X0, 0� �
�f�X0, 0�

�X
X0� �f�X0, 0�

�X
�

Bi � � 0 0

��f�X0, 0�

�ui
�

� 2f�X0, 0�

�X�ui
X0� � 2f�X0, 0�

�X�ui

� .

This bilinear approximation is important because the
Volterra kernels of bilinear systems have closed-form
expressions. This means that the kernels can be de-
rived analytically, and quickly, to provide a character-
ization of the impulse response properties of the sys-
tem (see Section 4). The integration of Eq. (18) is
predicated on its solution over periods �tk � tk�1 � tk

within which the inputs are constant.

X̃�tk�1� � exp��tk�A 	 �
i

u�tk�iBi�X̃�tk�
(19)

y�tk�1� � ��X�tk�1��.

Equation (19) can be used to evaluate the state vari-
ables in a computationally expedient manner at every
time tk�1 input changes or the response variable is
measured, using the values from the previous time
point tk. After applying the output nonlinearity the
resulting values enter into the numerical evaluation of
the partial derivatives J � �h(
�y

(n))/�
 in the EM algo-
rithm above. This quasi-analytical integration scheme
can be 1 order of magnitude quicker than straightfor-
ward numerical integration, depending on the sparsity
of inputs.

3.5. Relation to Conventional fMRI Analyses

Note that if we treated the five biophysical parame-
ters as known canonical values and discounted all but
the first-order terms in the Volterra expansion Eq. (8)
the following linear model would result

h�u, 
� � �0 	 �
i�1

n �
0

t

�1���u�t � ��id�

� �
i�1

n

�1 � u�t�i (20)

� �0 	 �
i�1

n ���1

��i
� u�t�i��i,

where � denotes convolution and the second expression
is a first-order Taylor expansion around the expected
values of the parameters.2 Substituting this into Eq.
(9) gives the general linear model adopted in conven-
tional analysis of fMRI time series, if we elect to use
just one (canonical) hemodynamic response function
(hrf ) to convolve our stimulus functions with. In this
context the canonical hrf plays the role of ��1/��i in Eq.
(20). This partial derivative is shown in Fig. 4 (top)
using the prior expectations of the parameters and
conforms closely to the sort of hrf used in practice. Now
by treating the efficacies as fixed effects (i.e., with flat
priors) the MAP and ML estimators reduce to the same
thing and the conditional expectation reduces to the
Gauss–Markov estimator

ML � �J TC �
�1J� �1J TC �

�1y,

where J is the design matrix. This is precisely the
estimator used in conventional analyses when whiten-
ing strategies are employed.

Consider now the second-order Taylor approxima-
tion to Eq. (20) that obtains when we do not know the
exact values of the biophysical parameters and they
are treated as unknown

h�
, u� � �0 	 �
i�1

n ����1

��i
� u�t�i�i

	
1

2 �
j�1

5 � � 2�1

��i�
j
� u�t�i��i
j�� .

(21)

This expression3 is precisely the general linear model
proposed in Friston et al. (1998) and implemented in
SPM99: In this instance the explanatory variables
comprise the stimulus functions, each convolved with a
small temporal basis set corresponding to the canonical
hrf � ��1/��i and its partial derivatives with respect to

2 Note that in this first-order Taylor approximation �1 � 0 when
expanding around the prior expectations of the efficacies � 0. Fur-
thermore, all the first-order partial derivatives ��1/�
i � 0 unless
they are with respect to an efficacy.

3 Note that in this second-order Taylor approximation all the sec-
ond-order partial derivatives �2�1/�
i�
j � 0 unless they are with
respect to an efficacy and one of the biophysical parameters.
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the biophysical parameters. Examples of these second-
order partial derivatives are provided in the bottom
panel of Fig. 4. The unknowns in this general linear
model are the efficacies �i and the interaction between
the efficacies and the biophysical parameters �i
j. Of
course, the problem with this linearized approximation
is that any generalized least squares estimates of the
unknown coefficients � � [�1, . . . , �n, �1
1, . . . , �n
1,
�1
2, . . . ]T are not constrained to factorize into stimu-
lus-specific efficacies �i and biophysical parameters 
j

that are the same for all inputs. Only a nonlinear
estimation procedure can do this.

In the usual case of using a temporal basis set (e.g.,
a canonical form and various derivatives) one obtains a
ML or generalized least squares estimate of (functions

of) the parameters in some subspace defined by the
basis set. Operationally this is like specifying priors
but of a very particular form. This form can be thought
of as uniform priors over the support of the basis set
and zero elsewhere. In this sense basis functions im-
plement hard constraints that may not be very realistic
but provide for efficient estimation. The soft con-
straints implied by the Gaussian priors in the EM
approach are more plausible but are computationally
more expensive to implement.

In summary this section has described an EM algo-
rithm that can be viewed as a Gauss–Newton search
for the conditional distribution of the parameters of
deterministic dynamical system, with additive Gauss-
ian error. It was shown that classical approaches to
fMRI data analysis are special cases that ensue when
considering only first-order kernels and adopting flat
or uninformative priors. Put another way the proposed
scheme can be regarded as a generalization of existing
procedures that is extended in two important ways. (i)
First the model encompasses nonlinearities and (ii)
second it moves the estimation from a classical into a
Bayesian frame.

4. AN EMPIRICAL ILLUSTRATION

4.1. Single-Input Example

In this, the first of the two examples, we revisit the
original data set on which the priors were based. This
constitutes a single-input study where the input corre-
sponds to the aural presentation of single words, at
different rates, over epochs. The data were subject to a
conventional event-related analysis where the stimu-
lus function comprised trains of spikes indexing the
presentation of each word. The stimulus function was
convolved with a canonical hrf and its temporal deriv-
ative. The data were high-pass filtered by removing
low-frequency components modelled by a discrete co-
sine set. The resulting SPM{T}, testing for activations
due to words, is shown in Fig. 5 (left) thresholded at
P � 0.05 (corrected).

A single region in the left superior temporal gyrus
was selected for analysis. The input comprised the
same stimulus function used in the conventional anal-
ysis and the output was the first eigenvariate of high-
pass filtered time series, of all voxels, within a 4-mm
sphere, centered on the most significant voxel in the
SPM{T} (marked by an arrow in Fig. 5). The error
covariance basis set Q comprised two bases: an identity
matrix modeling white or an i.i.d. component and a
second with exponentially decaying off-diagonal ele-
ments modeling an AR(1) component (see Friston et al.,
2002b). This models serial correlations among the er-
rors. The results of the estimation procedure are shown
in the right-hand panel in terms of (i) the conditional
distribution of the parameters and (ii) the conditional

FIG. 4. Partial derivatives of the kernels with respect to param-
eters of the model evaluated at their prior expectation. (Top) First-
order partial derivative with respect to efficacy. (Bottom) Second-
order partial derivatives with respect to efficacy and the biophysical
parameters. When expanding around the prior expectations of the
efficacies � 0 the remaining first- and second-order partial deriva-
tives with respect to the parameters are zero.
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expectation of the first- and second-order kernels. The
kernels are a function of the parameters and their
derivation using a bilinear approximation is described
in Friston et al. (2000). The top right panel shows the
first-order kernels for the state variables (signal, in-
flow, deoxyhemoglobin content, and volume). These

can be regarded as impulse response functions detail-
ing the response to a transient input. The first- and
second-order output kernels for the BOLD response are
shown in the bottom right panels. They concur with
those derived empirically in Friston et al. (2000). Note
the characteristic undershoot in the first-order kernel

FIG. 5. A SISO example: (Left) Conventional SPM{T} testing for an activating effect of word presentation. The arrow shows the centre
of the region (a sphere of 4-mm radius) whose response was entered into the Bayesian estimation procedure. The results for this region are
shown in the right-hand panel in terms of (i) the conditional distribution of the parameters and (ii) the conditional expectation of the first-
and second-order kernels. The top right panel shows the first-order kernels for the state variables (signal, inflow, deoxyhemoglobin content,
and volume). The first- and second-order output kernels for the BOLD response are shown in the bottom right panels. The left-hand panels
show the conditional or posterior distributions. That for efficacy is presented in the top panel, and those for the five biophysical parameters,
in the bottom panel. The shading corresponds to the probability density and the bars to 90% confidence intervals.
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and the pronounced negativity in the top left of the
second-order kernel, flanked by two off-diagonal posi-
tivities at around 8 s. These lend the hemodynamics a
degree of refractoriness when presenting paired stim-
uli less than a few seconds apart and a superadditive
response with about 8 s separation. The left-hand pan-
els show the conditional or posterior distributions. The
density for the efficacy is presented in the top panel
and those for the five biophysical parameters are
shown in the bottom panel using the same format. The
shading correspond to the probability density and the
bars to 90% confidence intervals. The values of the
biophysical parameters are all within a very acceptable
range. In this example the signal elimination and de-
cay appears to be slower than normally encountered,
with the rate constants being significantly larger than
their prior expectations. Grubb’s exponent here is
closer to the steady state value of 0.38 than the prior
expectation of 0.32. Of greater interest is the efficacy.
It can be seen that the efficacy lies between 0.4 and 0.6
and is clearly greater than 0. This would be expected
given we chose the most significant voxel from the
conventional analysis. Notice there is no null hypoth-
esis here and we do not even need a P value to make
the inference that words evoke a response in this re-
gion. The nature of Bayesian inference is much more
straightforward and as discussed in Friston et al.
(2002a) is relatively immune from the multiple com-
parison problem. An important facility, with inferences
based on the conditional distribution and precluded in
classical analyses, is that one can infer a cause did not
elicit a response. This is demonstrated in the second
example.

4.2. Multiple Input Example

In this example we turn to a new data set, previously
reported in Büchel and Friston (1998) in which there
are three experimental causes or inputs. This was a
study of attention to visual motion. Subjects were stud-
ied with fMRI under identical stimulus conditions (vi-
sual motion subtended by radially moving dots) while
manipulating the attentional component of the task
(detection of velocity changes). The data were acquired
from normal subjects at 2-T using a Magnetom Vision
(Siemens) whole-body MRI system, equipped with a
head volume coil. Here we analyze data from the first
subject. Contiguous multislice T*2-weighted fMRI im-
ages were obtained with a gradient echo-planar se-
quence (TE � 40 ms, TR � 3.22 s, matrix size � 64 �
64 � 32, voxel size 3 � 3 � 3 mm). Each subject had
four consecutive 100-scan sessions comprising a series
of 10-scan blocks under five different conditions D F A
F N F A F N S. The first condition (D) was a dummy
condition to allow for magnetic saturation effects. F
(Fixation) corresponds to a low-level baseline where
the subjects viewed a fixation point at the center of a

screen. In condition A (Attention) subjects viewed 250
dots moving radially from the center at 4.7° per second
and were asked to detect changes in radial velocity. In
condition N (No attention) the subjects were asked
simply to view the moving dots. In condition S (Sta-
tionary) subjects viewed stationary dots. The order of A
and N was swapped for the last two sessions. In all
conditions subjects fixated the centre of the screen. In
a prescanning session the subjects were given five tri-
als with five speed changes (reducing to 1%). During
scanning there were no speed changes. No overt re-
sponse was required in any condition.

This design can be reformulated in terms of three
potential causes, photic stimulation, visual motion,
and directed attention. The F epochs have no associ-
ated cause and represent a baseline. The S epochs have
just photic stimulation. The N epochs have both photic
stimulation and motion whereas the A epochs encom-
pass all three causes. We performed a conventional
analysis using boxcar stimulus functions encoding the
presence or absence of each of the three causes during
each epoch. These functions were convolved with a
canonical hrf and its temporal derivative to give two
repressors for each cause. The corresponding design
matrix is shown in the left panel of Fig. 6. We selected
a region that showed a significant attentional effect in
the lingual gyrus for Bayesian inference. The stimulus
functions modeling the three inputs were the box func-
tions used in the conventional analysis. The output
corresponded to the first eigenvariate of high-pass fil-
tered time series from all voxels in a 4-mm sphere
centered on 0, �66, �3 mm (Talairach and Tournoux,
1998). The error covariance basis set was simply the
identity matrix.4 The results are shown in the right-
hand panel of Fig. 6 using the same format as Fig. 5.
The critical thing here is that there are three condi-
tional densities, one for each of the input efficacies.
Attention has a clear activating effect with more than
a 90% probability of being greater than 0.25 per sec-
ond. However, in this region neither photic stimulation
per se or motion in the visual field evokes any real
response. The efficacies of both are less than 0.1 and
are centered on 0. This means that the time constants
of the response to visual stimulation would range from
about 10 s to never. Consequently these causes can be
discounted from a dynamical perspective. In short this
visually unresponsive area responds substantially to
attentional manipulation showing a true functional se-
lectivity. This is a crucial statement because classical
inference does not allow one to infer any region does

4 We could motivate this by noting the TR is considerably longer in
these data than in the previous example. However, in reality, serial
correlations were ignored because the loss of sparsity in the associ-
ated inverse covariance matrices considerably increases computation
time and we wanted to repeat the analysis many times (see next
subsection).
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not respond and therefore precludes a formal inference
about the selectivity of regional responses. The only
reason one can say “this region responds selectively to
attention” is because Bayesian inference allows one to
say “it does not respond to photic stimulation with
random dots or motion.”

4.3. Posterior Probabilities

Given the conditional densities we can compute the
posterior probability that the efficacy for any input
exceeds some specified threshold �. This posterior

probability is a function of the threshold chosen and
the conditional moments

1 � ��� � c i
T
�y

�c i
TC
�yci

� , (22)

where � denotes the cumulative density function for
the unit normal distribution and c is a vector of con-
trast weights specifying the linear compound of param-

FIG. 6. A MISO example using visual attention to motion. (Left) The design matrix used in the conventional analysis; (right) the results
of the Bayesian analysis of a lingual extrastriate region. This panel has the same format as Fig. 5.
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eters one wants to make an inference about. For exam-
ple cphotic would be a vector with zeros for all conditional
estimators apart from the efficacy mediating photic
input, where it would be one. Posterior probabilities
were computed for all voxels in a slice through visually
response areas (z � 6 mm) for each of the three effica-
cies. The resulting PPMs are shown in Fig. 7 for a
threshold of 0.1 per second. The left-hand column
shows the PPMs per se and the middle column shows
them after thresholding at 0.9. Voxels surviving this
confidence threshold are those in which one can infer,
with at least 90% confidence, that the parameters are
greater than 0.1 per second. In this slice attention has
little effect with a few voxels in the mediodorsal thal-
amus. Conversely, photic stimulation and motion ex-
cite large areas of responses in striate and extrastriate
areas. Interestingly motion appears to be more effec-
tive particularly around the V5 complex and pulvinar.
For comparison the SPM{F}s from the equivalent clas-
sical analysis are shown on the right. There is a re-
markable concordance between the PPMs and SPMs
(note that the SPM{F} shows deactivations as well as
activations). However, we have deliberately chosen a
threshold that highlights the similarities. Had we cho-

sen a corrected threshold, the PPMs would be (appar-
ently) more sensitive. PPMs represent a potentially
useful way of characterizing activation profiles of this
sort.

5. CONCLUSION

In this paper we have presented a method that con-
forms to an EM implementation of the Gauss–Newton
method, for estimating the conditional or posterior dis-
tribution of the parameters of a deterministic dynam-
ical system. The inclusion of priors in the estimation
procedure ensures robust and rapid convergence, and
the resulting conditional densities enable Bayesian in-
ference about the model’s parameters. We have exam-
ined the coupling between experimentally designed
causes or factors in fMRI studies and the ensuing
BOLD response. This application represents a gener-
alization of existing linear models to accommodate
nonlinearities in the transduction of experimental
causes to measured output in fMRI. Because the model
is predicated on biophysical processes the parameters
have a physical interpretation. Furthermore the ap-
proach extends classical inference about the likelihood

FIG. 7. Posterior probability maps (PPMs) for the study of attention to visual motion. The left-hand column shows the raw PPMs and the
middle column after thresholding at 0.9. Voxels surviving this confidence threshold are those in which one can infer, with at least 90%
confidence, that the parameters are greater than 0.1 per second. The right-hand column contains the equivalent SPM{F}s from a conventional
analysis using the design matrix in Fig. 6 and thresholded at P � 0.001 (uncorrected).
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of the data, to more plausible inferences about the
parameters of the model given the data. This inference
provides confidence intervals based on the conditional
density.

5.1. Limitations

The validity of any Bayesian inference rests upon the
validity of (i) the priors and (ii) the model adopted. In
this work the former concern is ameliorated by virtue
of the fact that inferences are restricted to those pa-
rameters that have relatively uninformative priors. In-
deed in the limit of flat priors, for the efficacies, one
would revert to classical inference. The priors on the
remaining biophysical parameters clearly play a role,
similar to that played by temporal basis functions in
conventional analyses. The more valid they are, the
better the model fit and the smaller the error variance.
It should be acknowledged that the priors used in this
paper are based on the distribution over voxels in a
single subject. Clearly is would be better to use the
distribution over subjects in a single voxel. We chose
this single-subject data set because the experimental
paradigm and acquisition parameters were explicitly
chosen to ensure robust estimation of physiological
parameters (i.e., short TR, restricted field of view, cov-
ering regions known to be aurally responsive, and com-
prising long time series). This experiment was also
repeated using the same subject and emulated fMRI
stimulus-delivery conditions to ensure the linearity of
the stimulus to rCBF coupling (Rees et al., 1996). How-
ever, it is anticipated that the priors will be refined as
more analyses of the sort proposed here are performed.
One particular concern is that the correlations among
the biophysical parameters may reflect artifacts due to
things like slice timing in sequential acquisition; i.e.,
using the distribution over voxels means that the data
sequences and stimulus functions show a variable tem-
poral relationship from voxel to voxel, which may in-
fluence the parameter estimates used to construct the
priors. Because this influence is correlated over voxels,
spurious correlations may be induced in voxel to voxel
estimates. One reason for using the data reported in
Friston et al. (1998) was that the TR was relatively
short and the voxels used were all roughly from the
same slice. Similar coupling among the estimates may
be caused by collinearity when projecting the effects of
priors onto the observation space (note the similarity
among some of the second partial derivatives in the
bottom panel of Fig. 4). Despite these reservations, the
fact that rather tight conditional densities for the effi-
cacies are obtained using data from other subjects and
paradigms suggests that they are sufficiently valid, or
close to the veridical priors, for our purposes.

The validity of the hemodynamic model was estab-
lished, to a certain level, in Friston et al. (2000). How-
ever, it is important to reiterate that biophysical mod-

els of this sort undergo continual refinement and
elaboration. Indeed there are at least two components
of the model that are already being improved (Mayhew
et al., personal communication). First we have as-
sumed that the only cause of flow-inducing signal in-
crease is the experimental input. Clearly oxygen ten-
sion itself is likely to be an important factor. Second we
have followed Buxton et al. (1998) in assuming a fairly
simply form for the coupling between oxygen delivery
and flow that assumes oxygen tension is close to zero.
Alternative formulations that embody the modulatory
effect of oxygen tension on the extraction–flow coupling
are currently being explored within the framework of
the hemodynamic model using optical imaging (Zheng
et al., 2002). These considerations are important from
the perspective of physiology and the interpretation of
the model parameters. However, the main purpose of
this paper was to present the methodology from a sys-
tem identification perspective. In this sense the ap-
proach described above can easily accommodate any
refinements or additions to the hemodynamic model.
Furthermore, if one is only interested in the inference
about stimulus efficacy, the interpretation of the bio-
physical parameters becomes subordinate. It is only
necessary for the model to capture the transduction
dynamics. Any model with 5 degrees of freedom is
likely to be sufficient, provided that the system is only
weakly nonlinear. This can be inferred anecdotally
from the fact that the best results emerge when using
two or three basis functions in classical analyses, using
variants of Eq. (21). A more formal analysis can be
envisaged using variational techniques and this will be
the subject of future work.

The hemodynamic model is only weakly nonlinear.
The nature of its nonlinearity is quite subtle and can be
inferred from the analysis presented in Friston et al.
(2000). In this analysis we showed that a bilinear ap-
proximation to the state equation, followed by an out-
put nonlinearity, was sufficient to account for nonlin-
ear responses observed empirically. Critically the
bilinear approximation precludes interactions (i.e.,
nonlinear effects) among the state variables [see Eq.
(18)]. Furthermore, the inputs enter linearly and do
not interact with the state variables [see Eq. (7)]. This
means that the dynamics of the state variables are
essentially linear. The second-order kernel associated
with the output is due solely to the output nonlinearity.
These observations imply that the hemodynamic model
could be formulated as two parallel first-order convo-
lutions of the input to produce q and v followed by the
static nonlinearity y(t) � �(q, v). Note that this is not
quite the same as the first hemodynamic model pro-
posed by Vazquez and Noll (1996) which comprised a
single convolution followed by a static nonlinearity but
a suitable transformation of the state variables might
make the latter a good approximation. Perhaps the
simplest defence of the model’s validity is that, irre-
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spective of its shortcomings, it is more plausible than
the linear models in current use.

5.2. Extensions

Much of the discussion above has been preoccupied
with nonlinearities in the hemodynamics per se. Inter-
actions at the neuronal level are, of course, prevalent
and motivate the extensive use of factorial designs in
neuroimaging that look explicitly for interactions
among the causes of neuronal responses. These inter-
action terms are simply accommodated in the current
framework by forming additional inputs that enter
linearly into the model. In practice this involves taking
two mean-corrected stimulus functions and multiply-
ing them together. This new stimulus function repre-
sents the interaction at the level of synaptic input or
efficacy. Bayesian inferences about the interaction pro-
ceed in exactly the same way as the main effects.

On a more technical note, we have focused on the
estimation of hyperparameters pertaining to the error
covariance. Exactly the same algorithm can be used to
estimate hyperparameters of unknown priors. The en-
suing empirical determination of priors rests upon a
hierarchical observation model in which variation over
parameter estimates can be used as empirical priors on
the estimates themselves. This hierarchical form for
the model requires many estimates of the parameters
(e.g., repeated measures in multiple sessions) or by
linking the relative variances of different priors. The
extension to hierarchical models is described in general
terms in Friston et al. (2002a).

In this paper we have assumed that each stimulus
function or cause elicits a flow-inducing signal and that
this can be described by a single parameter. Clearly
neuronal activity mediates between the stimulus and
flow-inducing signal. Furthermore the neuronal dy-
namics may themselves differ in form over different
causes or trials. For example, some stimuli may engage
high level processing and evoke late or endogenous
neuronal components whereas others may not, elicit-
ing only early exogenous activity. The current model
can be naturally extended to include neuronal activity
and to embrace a distinction between early or transient
and late or enduring responses. The simplest extension
involves introducing two further state variables x5 and
x6, representing transient and enduring neuronal ac-
tivity in distinct cell assembles within the voxel, to give
a new version of Ẋ(t) � f(X, u(t)) in Eq. (7)

ẋ5 � f5�X, u�t�� � �1u�t�1 	 . . . 	 �nu�t�n � x5/�e

ẋ6 � f6�X, u�t�� � l1u�t�1 	 . . . 	 lnu�t�n � x6/�l

ẋ1 � f1�X, u�t�� � x5 	 x6 � �sx1 � �f�x2 � 1�

ẋ2 � f2�X, u�t�� � x1

ẋ3 � f3�X, u�t�� �
1

�
�x2 � fout�x3, ���

ẋ4 � f4�X, u�t��

�
1

�
�x2

E�x2, E0�

E0
� fout�x3, ��

x4

x3
� . (23)

The model has n new input-specific parameters render-
ing the effect of any experimental cause bidimensional:
�i represent the efficacy of the ith input in evoking an
early response with time constant �e whereas li reflects
the input’s ability to invoke a sustained or enduring
neuronal transient with time constant �l. The two new
parameter �e and �l specify the dynamics of the early
and late neuronal components and could be set at, say,
100 and 500 ms, respectively. Inputs with a larger
efficacy for the late component will produce a slightly
more protracted BOLD response with a peak latency
shift, relative to trials evoking only early responses.
This and related extensions will be developed in a
subsequent paper. Perhaps the most important exten-
sion of the models described in this paper is to MIMO
systems where we deal with multiple regions or voxels
at the same time. The fundamental importance of this
extension is that one can incorporate interactions
among brain regions at the neuronal level. This pro-
vides a very promising framework for the dynamic
causal modeling of functional integration in the brain
and will be the subject of the next paper from our group
pursuing the nonlinear modeling of fMRI time series.
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Software implementation note. The algorithm described in this
paper has been implemented in the development version of the SPM
software (SPM�), which will constitute the next release. Figures 5
and 6 represent the standard graphical output provided by SPM�.
Currently, the analysis is restricted to a selected region or voxel and
is invoked after conventional preprocessing and analysis. At the time
of writing computation time prohibits the routine application to
every voxel to produce PPMs. A standard 128-scan data set requires
about 10–100 s to estimate the conditional densities for each voxel,
taking many hours for the whole brain. However, because Bayesian
inference does not incur a multiple comparison problem it is quite
tenable to perform a conventional SPM analysis and then report the
Bayesian inference at selected maxima. We are currently thinking
about the application of this approach to the dynamics of spatial
modes, which might provide a more computationally tractable way of
making Bayesian inferences over the entire brain.
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