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This article is about the dynamical aspects of brain func-
tion. Brain states are inherently labile, with a complexi-
ty and transience that renders their invariant characteris-
tics elusive. The position adopted in this review is that
the best approach is to embrace these dynamical aspects.
Its aim is to introduce the notion of neuronal transients
and the underlying framework. In this framework, issues
such as neuronal coupling, neuronal codes, functional inte-
gration, self-organization, and the special complexity of
brain dynamics can be addressed. A full discussion of these
issues will be found in Friston (2000a, 2000b, 2000c).

The central tenet is that the dynamics of neuronal sys-
tems can be viewed as a succession of transient spatiotem-
poral patterns of activity that mediate perceptual synthe-
sis and adaptive sensorimotor integration. This integra-
tion is shaped by the brain’s anatomical infrastructure,
principally connections, that have been selected to
ensure the adaptive nature of the dynamics that ensue.

Although rather obvious, this formulation embodies one
fundamental point; namely, that any description of brain
dynamics should have an explicit temporal dimension.
In other words, measures of brain activity are only mean-
ingful when specified over periods of time. Appreciating
this fact leads to some compelling insights that place
extant concepts in a more general context. This is partic-
ularly important in relation to fast dynamic interactions
among neuronal populations that are characterized by
synchrony. Synchronization has become popular in the
past years (e.g., Engel and others 1991; Gray and Singer
1989; Eckhorn and others 1988) and yet represents only
one of many possible sorts of interactions.

This article is divided into four sections. In the first,
we review the conceptual basis of neuronal transients.
This section uses a fundamental equivalence, between
two mathematical formulations of nonlinear systems, to
show that descriptions of brain dynamics, in terms of 1)
neuronal transients and 2) the coupling among interact-
ing brain systems, is complete and sufficient. The sec-
ond section uses this equivalence to motivate a taxono-
my of neuronal codes and establish the relationship
among neuronal transients, asynchronous coupling,
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dynamic correlations, and nonlinear interactions. In the
third section, we illustrate nonlinear coupling using
magnetoencephalography (MEG) data. The final section
discusses some neurobiological mechanisms that might
mediate asynchronous transients.

Neuronal Transients

The assertion that meaningful measures of brain dynam-
ics have a temporal domain is neither new nor con-
tentious (e.g., von der Malsburg 1985; Optican and
Richmond 1987; Engel and others 1991; Aertsen and
others 1994; Freeman and Barrie 1994; Abeles and oth-
ers 1995; deCharms and Merzenich 1996). A straight-
forward analysis demonstrates its veracity: Suppose that
one wanted to posit some variables x that represented a
complete and self-consistent description of brain activi-
ty. In other words, everything needed to determine the
evolution of the brain’s state, at a particular place and
time, was embodied in these measurements. Consider a
component of the brain (e.g., a neuron or neuronal pop-
ulation). If such a set of variables existed for this com-
ponent system, they would satisfy some immensely
complicated nonlinear equations

where x is a huge vector of state variables that range
from depolarization at every point in the dendritic tree to
the phosphorylation status of every relevant enzyme,
from the biochemical status of every glial cell compart-
ment to every aspect of gene expression. u(t) represents
a set of inputs conveyed by afferent from other regions.
Equation (1) simply says that the changes in the state
variables are nonlinear functions of the variables them-
selves and some inputs. The vast majority of these vari-
ables are hidden and not measurable directly. However,
there are a small number of derived measurements y that
can be made,

such as activities of whole cells or populations. These
activities could be measured in many ways, for example
firing at the initial segment of an axon or local field
potentials. The problem is that a complete and sufficient
description appears unattainable, given that the underly-
ing state variables cannot be observed directly. This is
not the case. The resolution of this apparent impasse
rests upon two things: 1) a fundamental mathematical
equivalence relating the inputs and outputs of a dynami-
cal system and 2) the fact that these measurable outputs
constitute the inputs to other cells or populations.

A Fundamental Equivalence

Assume that every neuron in the brain is modeled by a
nonlinear dynamical system of the sort described by

Equation (1). Under this assumption, it can be shown that
the output is a function of the recent history of its inputs.

where represents the inputs in the recent past.
Furthermore, this relationship can be expressed as a
Volterra series of the inputs (see Box 1). The critical
thing here is that we never need to know the underlying
and “hidden” variables that describe the details of each
cell’s electrochemical and biochemical status. We only
need to know the history of its inputs, which, of course,
are the outputs of other cells. Because the inputs and
outputs are homologous, we can rewrite Equation (3) so
that all connected brain systems are considered together.

Equation (4) is, in principle, a sufficient description of
brain dynamics and involves the variables  that represent
activity at all times  preceding the moment in question.
These are simply neuronal transients. The degree of tran-
sience depends on how far back in time it is necessary to
go to fully capture the brain’s dynamics. The sensible
nature of Equation (4) can be readily seen. For example,
if we wanted to determine the behavior of a cell in V1 (pri-
mary visual cortex), then we would need to know the activ-
ity of all connected cells in the immediate vicinity over the
last millisecond or so to account for propagation delays
down afferent axons. We would also need to know the activ-
ity in distant sources, like the lateral geniculate nucleus
and higher cortical areas, some 10 or more milliseconds
ago. In short, we need the recent history of all inputs.

Transients can be expressed in terms of firing rates
(e.g., chaotic oscillations; Freeman and Barrie 1994) or
individual spikes (e.g., syn-fire chains, Abeles and oth-
ers 1994, 1995). The analysis above is not just a mathe-
matical abstraction, it has real implications at a number
of levels: For example, the emergence of fast oscillatory
interactions among simulated neuronal populations
depends on the time delays implicit in axonal transmis-
sion and the time constants of postsynaptic responses.
Another slightly more subtle aspect of this formulation
is that changes in synaptic efficacy, such as short-term
potentiation or depression, take some time to be mediat-
ed by intracellular mechanisms. This means that the
interaction between and y(t), that models these activity-
dependent effects in Equation (4), again depends on the
relevant history of activity.

Levels of Description

The above arguments lead to a conceptual model of the
brain that comprises a collection of dynamical systems
(e.g., cells or populations of cells), each representing as
an input-state-output model, where the state remains, for
us, forever hidden. However, the inputs and outputs are
accessible and are causally related where, in this special
case of the brain, the output of one system constitutes
the input to another. A complete description therefore
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comprises the nature of these relationships (the Volterra
series corresponding to the function h) and the neuronal
transients. This constitutes a mesoscopic level of
description that permits a degree of “black-boxness” but
with no loss of information.

The equivalence, in terms of specifying the behavior
of a neuronal system, between microscopic and meso-
scopic levels of description, is critical. In short, the
equivalence means that all the information inherent in
the unobservable microscopic variables that determine
the response of a neuronal system is embodied in the his-
tory of its observable inputs and outputs. Although the
microscopic level of description may be more mechanis-
tically informative, from the point of view of response
prediction, neuronal transients are an entirely equivalent
representation.1

Effective Connectivity and Volterra Kernels

The first conclusion so far is that neuronal transients are
necessary to specify brain dynamics. The second con-
clusion is that a complete model of the influence one
neuronal population exerts over another should take the
form of a Volterra series. This implies that a complete
characterization of these influences (i.e., effective con-
nectivity) comprises the Volterra kernels that are applied
to the inputs to yield the outputs.

Functional integration is usually inferred using corre-
lations among measurements of neuronal activity in dif-
ferent brain systems. However, correlations can arise in
a variety of ways. For example, in multiunit electrode
recordings, they can result from stimulus-locked tran-
sients evoked by a common input or reflect stimulus-

Input-State-Output Systems and Volterra Series

Neuronal systems are inherently nonlinear and lend
themselves to modeling with nonlinear dynamical sys-
tems. However, owing to the complexity of biological
systems, it is difficult to find analytic equations that
describe them adequately. Even if these equations were
known, the state variables are often not observable. An
alternative approach to identification is to adopt a very
general model (Wray and Green 1994) and focus on the
inputs and outputs. Consider the single input–single
output (SISO) system:

The Fliess fundamental formula (Fliess and others
1983) describes the causal relationship between the
outputs and the recent history of the inputs. This rela-
tionship can be expressed as a Volterra series, which
expresses the output y(t) as a nonlinear convolution of
the inputs u(t), critically without reference to the state
variables x(t). This series is simply a functional Taylor
expansion of y(t) in Equation (3) (main text).

were  is the ith order kernel. Volterra series have been
described as a “power series with memory” and are
generally thought of as a high-order or “nonlinear con-
volution” of the inputs to provide an output. See
Bendat (1990) for a fuller discussion.

Volterra Kernels and Effective Connectivity

Volterra kernels are essential in characterizing the
effective connectivity or influences that one neuronal
system exerts over another because they represent the
causal input-output characteristics of the system in
question. Neurobiologically, they have a simple and

compelling interpretation—they are synonymous with
effective connectivity: From B.2,

It is evident that the first-order kernel embodies the
response evoked by a change in input at . In other
words, it is a time-dependant measure of driving effi-
cacy. Similarly, the second-order kernel reflects the
modulatory influence of the input at  on the response
evoked by input at . And so on for higher orders.
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Box 1: Dynamical Systems and Volterra Kernels

1. We have focused on the distinction between microscopic and mesoscopic levels of description. The macroscopic level is reserved for approach-
es, exemplified by synergistics (Haken 1983), that characterize the spatiotemporal evolution of brain dynamics in terms of a small number of
macroscopic order parameters (see Kelso [1995] for an engaging exposition). Order parameters are created and determined by the cooperation of
microscopic quantities and yet, at the same time, govern the behavior of the whole system. See Jirsa and others (1995) for a nice example.
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induced oscillations mediated by synaptic connections
(Gerstein and Perkel 1969). Integration within a distrib-
uted system is better understood in terms of “effective
connectivity.” Effective connectivity refers explicitly to
“the influence that one neural system exerts over anoth-
er, either at a synaptic (i.e., synaptic efficacy) or popula-
tion level” (Friston 1995a). It has been proposed
(Aertsen and Preißl 1991) that “the notion of effective
connectivity should be understood as the experiment-
and time-dependent, simplest possible circuit diagram
that would replicate the observed timing relationships
between the recorded neurons.”

If effective connectivity is the influence that one neu-
ral system exerts over another, it should be possible,
given the effective connectivity and the afferent activity,
to predict the response of a recipient population. This is
precisely what Volterra kernels do. Any model of effec-
tive connectivity can be expressed as a Volterra series,
and any measure of effective connectivity can be
reduced to a set of Volterra kernels (see Box 1). An
important aspect of effective connectivity is its context
sensitivity. Effective connectivity is simply the “effect”
that an input has on the output of a target system. This
effect will be sensitive to other inputs, its own history,
and of course the microscopic state and causal architec-
ture intrinsic to the target population. This intrinsic
dynamical structure is embodied in the Volterra kernels.
In short, Volterra kernels are synonymous with effective
connectivity because they characterize the measurable
effect that an input has on its target. An example of using
Volterra kernels, to characterize context-sensitive
changes in effective connectivity, in shown in Box 2.
This example uses hemodynamic responses to changes
in neuronal activity as measured with functional mag-
netic resonance imaging (fMRI).

Neuronal Codes

Different Sorts of Code

Functional integration refers to the concerted interac-
tions among neuronal populations that mediate percep-
tual binding, sensorimotor integration, and cognition. It
pertains to the mechanisms of, and constraints under
which, the dynamics of one population influences those
of another. It has been suggested by many that function-
al integration, among neuronal populations, uses tran-
sient dynamics that represent a temporal “code.” A com-
pelling proposal is that population responses, encoding a
percept, become organized in time, through reciprocal
interactions, to discharge in synchrony (von der
Malsburg 1985; Singer 1994). The use of the term
encoding here speaks directly to the notion of codes.
Here a neuronal code is taken to be a metric that reveals
interactions among neuronal systems by enabling some
prediction of the response in one population given that

metric in another.2 Clearly, from the previous section,
neuronal transients represent the most generic form of
code because, given the Volterra kernels, the output can
be predicted exactly. Neuronal transients have a number
of attributes (e.g., interspike interval, duration, mean
level of firing, predominant frequency, etc.), and any of
these could be contenders for a more parsimonious code.
The problem of identifying possible codes can be
reduced to identifying the form of the Volterra kernels in
Box 1. If we know their form, then we can say which
aspects of the input will cause a response. Conversely, it
follows that the different forms that the kernels can take
should specify the various codes that might be encoun-
tered. This is quite an important point and leads to a
clear formulation of what can and cannot constitute a
code. We will review different codes in terms of the dif-
ferent sorts of kernels that could mediate them.

Instantaneous versus Temporal Codes

The first kernel characteristic that engenders a coding
taxonomy is kernel depth. The limiting case here is when
the kernels shrink to a point in time. This means that the
only relevant history is the immediate activity of inputs
(all earlier activities are “ignored” by the kernel). In this
case, the activity in any unit is simply a nonlinear func-
tion of current activities elsewhere. An example of this is
instantaneous rate coding.

Rate coding considers spike trains as stochastic
processes whose first-order moments (i.e., mean activi-
ty) describe neuronal interactions. These moments may
be in terms of spikes themselves or other compound
events (e.g., the average rate of bursting; Bair and others
1994). Interactions based on rate coding are usually
assessed in terms of cross-correlations. From the
dynamical perspective, instantaneous rate codes are con-
sidered insufficient. This is because they predict nothing
about a cell, or population, response unless one knows
the microscopic state of that cell or population.

The distinction between rate and temporal coding
(see Shadlen and Newsome 1995; de Ruyter van
Steveninck and others 1997) centers on whether the pre-
cise timing of individual spikes is sufficient to facilitate
meaningful neuronal interactions. In temporal coding,
the exact time at which an individual spike occurs is the
important measure and the spike train is considered as a
point process. There are clear examples of temporal
codes that have predictive validity, for example, the pri-
mary cortical representation of sounds by the coordina-
tion of action potential timing (deCharms and
Merzenich 1996). These codes depend on the relative
timing of action potentials and, implicitly, an extended
temporal frame of reference. They therefore fall into the
class of transient codes, where selective responses to
particular interspike intervals are modeled by temporal-
ly extended second-order kernels. A nice example is
provided by de Ruyter van Steveninck and others (1997)

2. Although the term code is not being used to denote anything that “codes” for something in the environment, it could be used to define some
aspect of an evoked transient that expresses a high mutual information with a stimulus parameter (e.g., Optican and Richmond 1987; Tovee and
others 1993).
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Nonlinear Coupling among Brain Areas

Linear models of effective connectivity assume that
the multiple inputs to a brain region are linearly sepa-
rable. This assumption precludes activity-dependent
connections that are expressed in one context and not
in another. The resolution of this problem lies in adopt-
ing nonlinear models that include interactions among
inputs. These interactions can be construed as a con-
text- or activity-dependent modulation of the influence
that one region exerts over another. These nonlineari-
ties can be introduced into structural equation model-
ing using so-called moderator variables that represent
the interaction between two regions when causing
activity in a third (Büchel and Friston 1997). From a
dynamical point of view, modulatory effects can be
modeled with a Volterra series formulation that
includes second-order kernels. Within these models,
the influence of one region on another has two compo-
nents: 1) the direct or driving influence of input from

the first (e.g., hierarchically lower) region, irrespective
of the activities elsewhere, and 2) an activity-depend-
ent, modulatory component that represents an interac-
tion with inputs from the remaining (e.g., hierarchical-
ly higher) regions. These are mediated by the first- and
second-order kernels, respectively. The example pro-
vided in the figure addresses the modulation of visual
cortical responses by attentional mechanisms (e.g.,
Treue and Maunsell 1996) and the mediating role of
activity-dependent changes in effective connectivity.
The graph shows a characterization of this modulatory
effect in terms of the increase in V5 responses, to a
simulated V2 input, when posterior parietal activity is
zero (broken line) and when it is high (solid lines). This
sort of result suggests that backward parietal inputs
may be a sufficient explanation for the attentional
modulation of visually evoked extrastriate responses.
The estimation of the Volterra kernels and statistical
inference is described in Friston and Büchel (2000).

Box 2: Volterra Kernals and Effectove Connectivity

Fig. 1. Top. Brain regions and connec-
tions composing the model. Bottom.
Characterization of the effects of V2
inputs on V5 and their modulation by
posterior parietal cortex (PPC). The bro-
ken lines represent estimates of V5
responses when PPC activity is zero,
according to a second-order Volterra
model of effective connectivity with
inputs to V5 from V2, PPC and the pulv-
inar (PUL). The solid curves represent
the same response when PPC activity is
1 standard deviation of its between-
condition variation. It is evident that V2
has an activating effect on V5 and that
PPC increases the responsiveness of V5
to these inputs. The insert shows all the
voxels in V5 that evidenced a modulato-
ry effect (P < 0.05 uncorrected). These
voxels were identified by thresholding a
statistical parametric map of the F sta-
tistic testing for the contribution of sec-
ond-order kernels involving V2 and PPC
(treating all other terms as nuisance
variables). The data were obtained with
fMRI under identical stimulus conditions
(visual motion subtended by radially
moving dots) while manipulating the
attentional component of the task
(detection of velocity changes).
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who show that the temporal patterning of spike trains,
elicited in fly motion–sensitive neurons by natural stim-
uli, can carry twice the amount of information than an
equivalent (Poisson) rate code.

Transient Codes: Synchronous 
versus Asynchronous

The second distinction, assuming the kernels have a non-
trivial depth, is whether they comprise high-order terms.
Expansions that encompass just first-order terms are
only capable of meditating linear or synchronous inter-
actions. Higher-order kernels confer nonlinearity on the
influence of an input that leads to asynchronous interac-
tions. Mathematically, if there are only first-order terms,
then the Fourier transform of the Volterra kernel com-
pletely specifies the relationship (the transfer function)
between the spectral density of input and output in a way
that precludes interactions among frequencies, or indeed
inputs. In other words, the expression of any frequency
in a recipient cell is predicted exactly by the expression
of the same frequency in the source (after some scaling
by the transfer function).

Synchronous Codes

The proposal most pertinent to these forms of coding
is that population responses, participating in the encod-
ing of a percept, become organized in time through
reciprocal interactions so that they come to discharge in
synchrony (von der Malsburg 1985; Singer 1994) with
regular periodic bursting. It should be noted that syn-
chronization does not necessarily imply oscillations.
However, synchronized activity is usually inferred oper-
ationally by oscillations implied by the periodic modula-
tion of cross-correlograms of separable spike trains (e.g.,
Gray and Singer 1989; Eckhorn and others 1988) or
measures of coherence in multichannel electrical and
neuromagnetic time-series (e.g., Llinas and others
1994). The underlying mechanism of these frequency-
specific interactions is usually attributed to phase-lock-
ing among neuronal populations (e.g., Aertsen and
Preißl 1991; Sporns and others 1989). The key aspect of
these measures is that they refer to the extended tempo-
ral structure of synchronized firing patterns, either in
terms of spiking (e.g., syn-fire chains; Abeles and others
1995; Lumer and others 1997) or oscillations in the
ensuing population dynamics (e.g., Singer 1994).

Many aspects of functional integration and feature
linking in the brain are thought to be mediated by syn-
chronized dynamics among neuronal populations
(Singer 1994). Synchronization reflects the direct, recip-
rocal exchange of signals between two populations,
whereby the activity in one population influences the
second, such that the dynamics become entrained and
mutually reinforcing. In this way, the binding of differ-
ent features of an object may be accomplished in the
temporal domain, through the transient synchronization
of oscillatory responses. This “dynamical linking”
defines their short-lived functional association.
Physiological evidence is compatible with this theory

(e.g., Engel and others 1991; Fries and others 1997).
Synchronization of oscillatory responses occurs within
as well as among visual areas, for example, between
homologous areas of the left and right hemispheres and
between areas at different levels of the visuomotor path-
way (Engel and others 1991; Roelfsema and others
1997). Synchronization in the visual cortex appears to
depend on stimulus properties, such as continuity, orien-
tation, and motion coherence.

The problem with synchronization is that there is
nothing essentially dynamic about synchronous interac-
tions per se. As argued by Erb and Aertsen (1992), “the
question might not be so much how the brain functions
by virtue of oscillations, as most researchers working on
cortical oscillations seem to assume, but rather how it
manages to do so in spite of them.” To establish dynam-
ic cell assemblies, it is necessary to create and destroy
synchronized couplings. It is precisely these dynamic
aspects that speak to changes in synchrony (e.g.,
Desmedt and Tomberg 1994) and the asynchronous tran-
sitions between synchronous states as the more pertinent
phenomenon. In other words, it is the successive refor-
mulation of dynamic cell assemblies, through nonlinear
or asynchronous interactions, that is at the heart of
“dynamical linking” (Singer 1994).

Asynchronous Codes

An alternative perspective on neuronal codes is pro-
vided by dynamic correlations (Aertsen and others
1994) as exemplified in Vaadia and others (1995). A fun-
damental phenomenon observed by Vaadia and others
(1995) is that, following behaviorally salient events, the
degree of coherent firing between two neurons can
change profoundly and systematically over the ensuing
second or so. One implication is that a complete model
of neuronal interactions has to accommodate dynamic
changes in correlations, modulated on time scales of 100
to 1000 ms. Neuronal transients provide a simple expla-
nation for this temporally modulated coherence or
dynamic correlation. Imagine that two neurons respond
to an event with a similar transient. For example, if two
neurons respond to an event with decreased firing for
400 ms, and this decrease was correlated over epochs,
then positive correlations between the two firing rates
would be seen for the first 400 of the epoch, and then
fade away, emulating a dynamic modulation of coher-
ence. In other words, a transient modulation of covari-
ance can be equivalently formulated as a covariance in
the expression of transients. The generality of this equiv-
alence can be established using singular value decompo-
sition (SVD) of the joint-peristimulus time histogram (J-
PSTH) as described in Friston (1995b). This is simply a
mathematical device to show that dynamic changes in
coherence are equivalent to the coherent expression of
neural transients. In itself it is not important, in the sense
that dynamic correlations are just as valid a characteri-
zation as neuronal transients are and indeed may provide
more intuitive insights into how this phenomenon is
mediated (e.g., Riehle and others 1997). What is impor-
tant is that J-PSTHs can be asymmetric about the lead-
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ing diagonal. This suggests that coupled transients in two
units can have a different patterning of activity. This can
only be explained by asynchronous or nonlinear coupling.

In summary, the critical distinction between synchro-
nous and asynchronous coupling is the difference
between linear and nonlinear interactions among units or
populations.3 If the transient model is correct, then
important transactions among cortical areas will be over-
looked by techniques that are predicated on rate coding
(e.g., correlations, covariance patterns, spatial modes,
etc.) or synchronization models (e.g., coherence analysis
and cross-correlograms). Clearly the critical issue here is
whether there is direct evidence for nonlinear or asyn-
chronous coupling that would render the transient level
of the taxonomy a useful one.

The Evidence for Neuronal Transients 
and Nonlinear Coupling

Why is asynchronous coupling so important? The reason
is that asynchronous interactions embody all the nonlin-
ear interactions implicit in functional integration and it
is these that mediate the diversity and context-sensitive
nature of neuronal interactions. The nonlinear nature of
interactions between cortical brain areas renders the effec-
tive connectivity among them inherently dynamic and con-
textual. Compelling examples of context-sensitive inter-
actions include the attentional modulation of evoked
responses in functionally specialized sensory areas (e.g.,
Treue and Maunsell 1996) and other contextually
dependent dynamics (see Phillips and Singer [1997] for
an intriguing discussion). Whole classes of empirical
phenomena such as extra-classical receptive field effects
rely on nonlinear or asynchronous interactions.

Nonlinear Coupling and 
Asynchronous Interactions

If the temporal structures of coupled transients can be
distinct in two parts of the brain, then the prevalence of
certain frequencies in one cortical area should predict
the expression of different frequencies in another. In con-
trast, synchronization models posit a coupled expression
of the same frequencies. Correlations among different
frequencies therefore provide a basis for discriminating
between synchronous and asynchronous coupling.

Consider time series from two neuronal populations
or cortical areas. Synchrony requires that the expression
of a particular frequency (e.g., 40 Hz) in one time series
will be coupled with the expression of the same fre-
quency in the other. In other words, the modulation of
this frequency in one area can be explained or predicted
by its modulation in the second. Conversely, asynchro-
nous coupling suggests that the power at a reference fre-
quency, say 40 Hz, can be predicted by the spectral den-
sity in the second time series at some frequencies other

than 40 Hz. These predictions can be tested empirically
using standard time-frequency and regression analyses
as described in Friston (2000a). Figure 2 shows an exam-
ple of this sort of analysis, revealing the dynamic
changes in spectral density between 8 and 64 Hz over 16
seconds. The cross-correlation matrix of the time-
dependent expression of different frequencies in the
parietal and prefrontal regions is shown in the lower left
panel. There is anecdotal evidence here for both syn-
chronous and asynchronous coupling. Synchronous cou-
pling, based on the co-modulation of the same frequen-
cies, is manifest as hotspots along, or near, the leading
diagonal of the cross-correlation matrix (e.g., around 20
Hz). More interesting are correlations between high fre-
quencies in one time series and low frequencies in
another. In particular, note that the frequency modula-
tion at about 34 Hz in the parietal region (second time
series) could be explained by several frequencies in the
prefrontal region. The most profound correlations are
with lower frequencies in the first time series (26 Hz).
Using a simple multilinear regression framework, statis-
tical inferences can be made about the coupling within
and between different frequencies (see Friston 2000a for
details). A regression analysis shows that coupling at 34
Hz has significant synchronous and asynchronous com-
ponents, whereas the coupling at 48 Hz is purely asyn-
chronous (middle and right peaks in the graphs), that is,
a coupling between beta dynamics in the premotor
region and gamma dynamics in the parietal region.

The Neural Basis of 
Asynchronous Interactions

In Friston (1997), it was suggested that, from a neurobi-
ological perspective, the distinction between asynchro-
nous and synchronous interactions could be viewed in
the following way. Synchronization emerges from the
reciprocal exchange of signals between two populations,
where each drives the other, such that the dynamics
become entrained and mutually reinforcing. In asyn-
chronous coding, the afferents from one population exert
a modulatory influence, not on the activity of the second
but on the interactions within it (e.g., a modulation of
effective connectivity or synaptic efficacies within the
target population), leading to changes in the dynamics
intrinsic to the second population. In this model, there is
no necessary synchrony between the intrinsic dynamics
that ensue and the temporal pattern of modulatory input.
To test this hypothesis, one would need to demonstrate
that asynchronous coupling emerges when extrinsic con-
nections are changed from driving connections to mod-
ulatory connections. Clearly this cannot be done in the
real brain. However, we can use computational tech-
niques to create a biologically realistic model of inter-
acting populations and test this hypothesis directly.

3. The term generalized synchrony has been introduced to include nonlinear interdependencies (see Schiff and others 1996). Generalized synchrony
subsumes synchronous and asynchronous coupling. An elegant method for making inferences about generalized synchrony is described in Schiff
and others (1996). This approach is particularly interesting from our point of view because it calls upon the recent history of the dynamics through
the use of temporal embedding to reconstruct the attractors analyzed.
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Fig. 2. Time-frequency and regression analysis of MEG time series designed to characterize the relative contribution of synchronous
and asynchronous coupling. Neuromagnetic data were acquired from a normal subject using a KENIKRON 37 channel MEG system
at 1-ms intervals for periods of up to 2 min. During this time, the subject made volitional joystick movements to the left, every 2 sec
or so. Paired epochs were taken from a left prefrontal and left parietal region. Top panels: The two time series (plots) and their corre-
sponding time-frequency profiles (images). The first time series comes from the left prefrontal region. The second comes from the left
superior parietal region. Lower left panel: This is a simple characterization of the coupling among frequencies in the two regions and
represents the [squared] cross-correlations of the time-varying expression of different frequencies from the upper panels. Lower right
panels: These are the results of a linear regression analysis that partitions the variance in the second (parietal) time series into com-
ponents that can be attributed to synchronous (broken lines) and asynchronous (solid lines) contributions from the first (prefrontal) time
series. The upper graph shows the relative contribution in terms of the proportion of variance explained and (lower graph) in terms of
the significance using a semilog plot of the corresponding P values. The dotted line in the latter corresponds to P = 0.05. This exam-
ple was chosen because it illustrates three sorts of coupling (synchronous, asynchronous, and mixed). From inspection of the cross-
correlation matrix, it is evident that power in the beta range (20 Hz) in the second time series is correlated with similar frequency mod-
ulation in the first, albeit at a slightly lower frequency. The resulting correlations appear just off the leading diagonal (broken line) on
the upper left. The proportion of variance explained by synchronous and asynchronous coupling is roughly the same and, in terms of
significance, synchrony supervenes (see upper graph). In contrast, the high correlations, between 48 Hz in the second time series and
26 Hz in the first, are well away from the leading diagonal, with little evidence of correlations within either of these frequencies. The
regression analysis confirms that, at this frequency, asynchronous coupling prevails. The variation at about 34 Hz in the parietal region
could be explained by several frequencies in the prefrontal region. A formal analysis shows that both synchronous and asynchronous
coupling coexist at this frequency (i.e., the middle peak in the graphs).
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Interactions between Simulated Populations

Two populations were simulated using the model
described in Friston (2000a). This model simulates
entire neuronal populations in a deterministic fashion
based on known neurophysiological mechanisms. In par-
ticular, we modeled three sorts of synapses, fast inhibito-
ry (GABA), fast excitatory (AMPA), and slower voltage-
dependent synapses (NMDA). Connections intrinsic to
each population used only GABA and AMPA-like
synapses. Simulated glutaminergic extrinsic connections
between the two populations used either driving AMPA-
like synapses or modulatory NMDA-like synapses.
Transmission delays for extrinsic connections were fixed
at 8 ms. By using realistic time constants, the character-
istic oscillatory dynamics of each population were
expressed in the gamma range.

The results of coupling two populations with unidi-
rectional AMPA-like connections are shown in the top of
Figure 3 in terms of the simulated local field potentials
(LFP). Occasional transients in the driving population
were evoked by injecting a depolarizing current, of the
same magnitude, at random intervals (dotted lines). The
tight synchronized coupling that ensues is evident. This
example highlights the point that near linear coupling
can arise even in the context of loosely coupled, highly
nonlinear neuronal oscillators of the sort modeled here.
Contrast these entrained dynamics under driving con-
nections with those that emerge when the connection is
modulatory or NMDA-like (lower panel in Fig. 3). Here
there is no synchrony and, as predicted, fast transients of
an oscillatory nature are facilitated by the low-frequency
input from the first population that has a lower frequen-
cy (cf. the MEG analyses above). This is a nice example
of asynchronous coupling that is underpinned by nonlin-
ear modulatory interactions between neuronal popula-
tions. The nature of the coupling can be characterized
using the time-frequency analysis (identical in every
detail) applied to the neuromagnetic data of the previous
section. The results for the NMDA simulation are pre-
sented in Figure 4. The cross-correlation matrix resem-
bles that obtained with the MEG data in Figure 2. Both
in terms of the variance and inference, asynchronous
coupling supervenes at most frequencies but, as in the
real data, mixed coupling is also evident. These results
can be taken as a heuristic conformation of the notion
that modulatory, in this case voltage-dependent, interac-
tions are sufficiently nonlinear to account for the emer-
gence of asynchronous coupling.

Modulatory Interactions and Nonlinear Coupling

In summary, asynchronous coupling is synonymous with
nonlinear coupling. Nonlinear coupling can be framed in
terms of the modulation of intrinsic interactions, within
a cortical area or neuronal population, by extrinsic input
offered by afferents from other parts of the brain. This
mechanism predicts that the modulation of fast (e.g.,
gamma) activity in one cortical area can be predicted by
much slower changes in other areas. This form of cou-

pling is very different from coherence or other measures
of synchronous coupling and concerns the relationship
between the first-order dynamics in one area and the
second-order dynamics (spectral density) expressed in
another. In terms of the above NMDA simulation, tran-
sient depolarization in the modulating population causes
a short-lived increased input to the second. These affer-
ents impinge on voltage-sensitive NMDA-like synapses
with time constants (in the model) of about 100 ms.
These synapses open and slowly close again, remaining
open long after an afferent volley. Because of their volt-
age-sensitive nature, this input will have no effect on the
dynamics intrinsic to the second population unless there
is already a substantial degree of depolarization. If there
is, then, through self-excitation and inhibition, the con-
comitant opening of fast excitatory and inhibitory chan-
nels will generally increase membrane conductance,
decrease the effective membrane time constants, and
lead to fast oscillatory transients. This is what we
observe in the lower panel of Figure 3. In relation to the
MEG analyses, the implied modulatory mechanisms,
that may underpin this effect, are entirely consistent with
the anatomy, laminar specificity, and functional role
attributed to prefrontal efferents (Rockland and Pandya
1979; Selemon and Goldman-Rakic 1988).

Conclusion

In this review, we have dealt with some important and
interrelated aspects of brain function. The key steps can
be summarized as follows:

• Starting with the premise that the brain can be repre-
sented as an ensemble of connected input-state-output
systems (e.g., cellular compartments, cells, or popula-
tions of cells), there exists an equivalent input-output
formulation in terms of a Volterra series expansion of
each system’s inputs that produces its outputs (where the
outputs to one system constitute the inputs to another).

• The existence of this formulation suggests that the his-
tory of inputs, or neuronal transients, and the Volterra
kernels are a complete and sufficient specification of
brain dynamics. This is the primary motivation for fram-
ing dynamics in terms of neuronal transients and using
a Volterra formulation to model effective connectivity.

• The Volterra formulation provides constraints on the
form that neuronal interactions and implicit codes must
conform to. There are two limiting cases: 1) when the
neuronal transient has a very short history and 2) when
high-order terms disappear. The first case corresponds
to instantaneous codes (e.g., rate codes), and the second
to synchronous interactions (e.g., synchrony codes).

• High-order terms in the Volterra model of effective con-
nectivity speak explicitly to nonlinear interactions and
implicitly to asynchronous coupling. Asynchronous
coupling implies coupling among the expression of dif-
ferent frequencies.

• Coupling among the expression of different frequencies
is easy to demonstrate using neuromagnetic measure-
ments of real brain dynamics. This implies that nonlin-



Volume 7, Number 5, 2001 THE NEUROSCIENTIST 415

Fig. 3. Simulated local field potentials (LFP) of two coupled populations using two different sorts of postsynaptic responses (AMPA
and NMDA-like) to connections from the first to the target population. The dotted line shows the depolarization effected by sporadic
injections of current into the first population. The key thing to note is that under AMPA-like or driving connections, the second popu-
lation is synchronously entrained by the first. When the connections are modulatory or voltage-dependent (NMDA), the effects are
much more subtle and resemble a frequency modulation. These data were simulated using a biologically plausible model of excitato-
ry and inhibitory subpopulations. The model was deterministic with variables pertaining to the collective, probabilistic behavior of the
subpopulations (cf. a mean field treatment). See Friston (2000a) for details.
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Fig 4. As for Figure 2, but here using the simulated data employing voltage-dependent NMDA-like connections. The coupling here
includes some profoundly asynchronous (nonlinear) components involving frequencies in the gamma range implicated in the analyses
of real (MEG) data shown in Figure 2. In particular, note the asymmetrical cross-correlation matrix and the presence of asynchronous
and mixed coupling implicit in the P value plots on the lower right.
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ear, asynchronous coupling is a prevalent component of
functional integration.

• High-order terms in the Volterra model of effective con-
nectivity correspond to modulatory interactions that can
be construed as a nonlinear effect of inputs that interact
with the dynamics intrinsic to the recipient system. This
implies that driving connections may be linear and
engender synchronous interactions, whereas modulato-
ry connections, being nonlinear, may cause, and be
revealed by, asynchronous coupling.

• Nonlinear coupling among brain systems is essential for
neuronal computation that embodies contextual infor-
mation. Context can be used to instantiate prior expec-
tations through backward and lateral modulatory con-
nections leading to a plausible (generative model or
Bayesian) understanding of perceptual synthesis at a
functional level or, empirically, things like extra-classi-
cal receptive field effects and dynamic correlations.
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