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This paper considers neuronal architectures from a computational perspective

and asks what aspects of neuroanatomy and neurophysiology can be disclosed

by the nature of neuronal computations? In particular, we extend current

formulations of the brain as an organ of inference—based upon hierarchical pre-

dictive coding—and consider how these inferences are orchestrated. In other

words, what would the brain require to dynamically coordinate and contextua-

lize its message passing to optimize its computational goals? The answer that

emerges rests on the delicate (modulatory) gain control of neuronal populations

that select and coordinate (prediction error) signals that ascend cortical hierar-

chies. This is important because it speaks to a hierarchical anatomy of extrinsic

(between region) connections that form two distinct classes, namely a class of

driving (first-order) connections that are concerned with encoding the content

of neuronal representations and a class of modulatory (second-order) connec-

tions that establish context—in the form of the salience or precision ascribed to

content. We explore the implications of this distinction from a formal perspec-

tive (using simulations of feature–ground segregation) and consider the

neurobiological substrates of the ensuing precision-engineered dynamics,

with a special focus on the pulvinar and attention.
1. Introduction
There are many fascinating aspects of cerebral cartography that have been dis-

closed over the past centuries and—presumably—many more that have yet to

reveal themselves. In this paper, we focus on one particular aspect, namely the

imperatives for the coordination of message passing in the brain—and what

those imperatives mandate in terms of cortical (and subcortical) anatomy. We

base our treatment on the assumption that cerebral cartography is an anatomy

of inference. In other words, the brain is a statistical organ predicting worldly

states that generate its sensory inputs. In particular, we focus on predictive

coding as a (biologically plausible) implementation of hierarchical inference

in the brain and see how far this takes us in understanding the orchestration

and contextualization of neuronal dynamics.

In what follows, we briefly review predictive coding with a special focus on

how the brain encodes irreducible uncertainty inherent in the sensory evidence

it samples [1,2]. It transpires that—under predictive coding—this uncertainty or

relative confidence in sensory (and extrasensory) information can be succinctly

encoded by the gain of certain neuronal populations that pass information from

one hierarchal cortical level to the next [2,3]. This immediately brings us into

the realm of cortical gain control and neuromodulation—that may be closely

tied to synchronous gain and the (oscillatory) dynamics associated with binding,

attention and dynamic coordination [4,5]. We then consider the computational

anatomy implied by encoding the confidence or precision of ascending neuronal
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Figure 1. Citations per year, from 1966 to 2014, when searching for TOPIC: (Bayesian) AND TOPIC: (brain) in Web of Science. (Online version in colour.)
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signals that is illustrated with a simple problem, namely

figure–ground segregation in the visual hierarchy. We then

turn to the neurobiology of cortical gain control, using the pul-

vinar as a prime example of a subcortical structure that has

all the equipment necessary for contextualizing hierarchical

inference in cortical hierarchies.
2. The Bayesian brain
Recent advances in theoretical neuroscience have inspired a

paradigm shift in cognitive neuroscience (figure 1). This shift

is away from the brain as a passive filter of sensations towards

a view of the brain as a statistical organ that generates hypo-

theses or fantasies which are tested against sensory evidence

[6]. In this formulation, the brain is, literally, a fantastic organ

(fantastic: from Greek phantastikos, the ability to create mental

images, from phantazesthai). This perspective can be traced

back to Helmholtz and the notion of unconscious inference

[7]. This notion has been generalized to cover deep or hierarchical

Bayesian inference—about the causes of our sensations—

and how these inferences induce beliefs, movement and

behaviour [8–12].

(a) Predictive coding and the Bayesian brain
Modern formulations of Helmholtz’s notion are now among

the most popular explanations for neuronal message passing

and are usually considered under the Bayesian brain hypo-

thesis as predictive coding [12–15]. There is now

considerable (circumstantial) anatomical and physiological

evidence for predictive coding in the brain [15,16]. See

Bastos et al. [17] for a review of canonical microcircuits and

hierarchical predictive coding in perception and Adams et al.
and Shipp et al. [18,19] for an equivalent treatment of the

motor system. In these schemes, neuronal representations in

higher levels of cortical hierarchies generate predictions of

representations in lower levels. These top-down predictions

are compared with representations at the lower level to form

a prediction error (associated with the activity of superficial
pyramidal cells). The ensuing mismatch signal is passed

back up the hierarchy, to update higher representations

(associated with the activity of deep pyramidal cells). This

recursive exchange of signals suppresses prediction error at

each and every level to provide a hierarchical explanation for

sensory inputs that enter at the lowest (sensory) level. In compu-

tational terms, neuronal activity encodes beliefs or probability

distributions over states in the world that cause sensations

(e.g. my visual sensations are caused by a face). The simplest

encoding corresponds to representing the belief with the

expected value of a (hidden) cause or expectation. These causes

are referred to as hidden because they have to be inferred from

their sensory consequences.

In summary, predictive coding represents a biologically

plausible scheme for updating beliefs (or expectations) about

the world using sensory samples (figure 2). In this setting,

neuroanatomy and neurophysiology can be regarded as a bio-

logical embodiment of how sensory signals are generated; for

example, a smiling face generates luminance surfaces that gen-

erate textures and edges and so on, down to retinal input. This

form of hierarchical inference explains a remarkable number of

anatomical and physiological facts as documented elsewhere

[15,17,18]. In brief, it explains the hierarchical nature of cortical

cartography; the prevalence of backward connections and

many of the functional and structural asymmetries in the

extrinsic connections that link hierarchical levels. These asym-

metries include the laminar specificity of forward and

backward connections, the prevalence of nonlinear or modula-

tory backward connections (that embody interactions and

nonlinearities inherent in the generation of sensory signals)

and their spectral characteristics—with fast (e.g. gamma)

activity predominating in forward connections (prediction

errors) and slower (e.g. beta) frequencies emerging as this evi-

dence is accumulated in units that provide descending

predictions [20–22].

At a more macroscopic level, the implicit anatomy of

inference also provides a simple explanation for functional

segregation [23]; in the sense that hierarchically deeper rep-

resentations or expectations (e.g. what and where) are

http://rstb.royalsocietypublishing.org/
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Figure 2. Summary of hierarchical message passing in predictive coding. Neuronal activity encodes expectations about the causes of sensory input, where these
expectations minimize prediction error. Prediction error is the difference between (ascending) sensory input and (descending) predictions of that input. This mini-
mization rests upon recurrent neuronal interactions among different levels of the cortical hierarchy. The available evidence suggests that superficial pyramidal cells
(red triangles) compare the expectations (at each level) with top-down predictions from deep pyramidal cells (black triangles) of higher levels: see Bastos et al. [17]
for a review of this evidence. (a) This schematic shows a simple cortical hierarchy with ascending prediction errors and descending predictions. We have included
neuromodulatory gating or gain control (blue) of superficial pyramidal cells that determines their relative influence on deep pyramidal cells encoding expectations.
(b) This provides a schematic example in the visual system: it shows the putative cells of origin of ascending or forward connections that convey prediction errors
(red arrows) and descending or backward connections (black arrows) that construct predictions. The prediction errors are weighted by their expected precision—
which we have associated with projections from the pulvinar. In this example, the frontal eye fields send predictions to primary visual cortex, which projects to
the lateral geniculate body. However, the frontal eye fields also send proprioceptive predictions to pontine nuclei, which are passed to the oculomotor system
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constrained by sensory information.
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statistically segregated and are combined in a nonlinear way to

contextualize lower-level causes of sensory information (e.g.

colour and form). Indeed, one could argue that the very exist-

ence of slender axonal connections in the brain speaks to the

sparse causal dependencies or laws that endow our sensory

world with statistical regularities (contrast the anatomy of the

brain with the anatomy of the liver). Although hierarchical pre-

dictive coding appears to have broad explanatory power, there

is something missing from this picture. In short, there appears

to be no role for corticothalamic interactions or (recursive)

coupling with other subcortical structures. So, what is lacking

in the above description of predictive coding?
(b) Precision engineering and the encoding of context
One can regard ascending prediction errors as broadcasting

‘newsworthy’ information that has yet to be explained by

descending predictions. However, the brain also has to select

the channels it listens to—by adjusting the volume or gain of

prediction errors that compete to update expectations in

higher levels. Computationally, this gain corresponds to the

precision or confidence associated with ascending prediction

errors; very much in the same way that we assess the statistical
significance of an effect in relation to its standard error. How-

ever, to optimally select the prediction errors—that should be

afforded greater influence—the brain has to estimate or

encode their precision. Having done this, prediction errors

can then be weighted by their precision, so that only precise

information is accumulated and assimilated in high or deep

hierarchical levels.

This broadcasting of precision-weighted prediction errors

may rest on neuromodulatory gain control mechanisms at a

synaptic level [24]. This gain control corresponds to a

(Bayes-optimal) encoding of precision in terms of the excit-

ability of neuronal populations reporting prediction errors

[2,19]. This may explain why superficial pyramidal cells

have so many synaptic gain control mechanisms such

as N-methyl-D-aspartate (NMDA) receptors and classical

neuromodulatory receptors like D1 dopamine receptors

[25–28]. Furthermore, it places excitation–inhibition balance

in a prime position to mediate precision-engineered message

passing within and among hierarchical levels [29]. As noted

above, the encoding of salience or precision can also be

understood in terms of synchronous gain [30] and fast (oscil-

latory) dynamics associated with binding, attention and

dynamic coordination [4,5].

http://rstb.royalsocietypublishing.org/
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The dynamic and context-sensitive control of precision

has been associated with attentional gain control in sensory

processing [2,31] and has been discussed in terms of affordance

and action selection [32–34]. Crucially, the delicate balance of

precision over different hierarchical levels has a profound effect

on inference—and may also offer a formal understanding

of false inference in psychopathology [35]. To illustrate the

potential importance of precision—and implicit synaptic gain

control—we will look at a particular problem from the point

of view of predictive coding and see why neuromodulatory

mechanisms are an integral part of its solution.
Phil.Trans.R.Soc.B
370:20140169
3. Predictive coding and figure – ground
segregation

This section considers the figure–ground segregation problem

where, crucially, a figure is defined texturally—in terms of its

second-order statistics; in other words, a visual object is mani-

fest in terms of its texture or spectral power in the spatial

domain. This segregation problem precludes recourse to first-

order attributes, such as differences in luminance or colour.

In other words, the quantities causing visual impressions are

only defined in terms of their precision (or inverse variance).

This presents an interesting problem for predictive coding

(and the brain) that we use to illustrate the importance of

gain control in finessing the inference problem.

In statistics, this (inverse) problem is usually solved using

some form of variance component estimation; for example,

using covariance constraints in the electromagnetic source

reconstruction problem. Here, we solve the same problem

with predictive coding. In this setting, hidden causes in the

generative model control the precision or variance of subordi-

nate causes generating data. Expectations of these hierarchical

causes are optimized with respect to variational free energy—

using predictive coding. Here, variational free energy is a

proxy for Bayesian model evidence and can be regarded as

the sum of the (squared and precision-weighted) prediction

error. The simulation used to illustrate this solution is trivially

simple but sufficient to make our key point, namely that top-

down predictions have very different effects on prediction

error responses—depending upon whether they encode the

first- or second-order statistical properties of a stimulus.

We simulated a contiguous object, whose texture was

determined by the variance of random fluctuations in lumi-

nance, where this variance was modulated by (Gaussian)

spatial basis functions of retinotopic space. The resulting

signal was mixed with uniform Gaussian observation noise

to produce sensory data. These data were then subjected to

Bayesian inversion using (generalized) predictive coding to

recover the object or figure. The implicit figure–ground seg-

regation basically involves estimating the hidden causes

modulating the spatial basis functions controlling textural

features—in this case, the local variance of stimulus intensity

over sensory channels.

Technically, predictive coding optimizes expectations of

the hidden causes of data that, in this case, include the ampli-

tude of radial basis functions controlling the precision (inverse

variance) of retinotopic signals (see below). In brief, we see that

the resulting figure–ground segregation rests on selectively

attending to sensory input from the figure, relative to the back-

ground. However, this form of attention is distinct from simply

boosting sensory precision (the precision of sensory prediction
errors) as in simulations of the Posner paradigm or biased com-

petition [2]. Here, expectations of hidden causes are optimized

in a way that renders them less precise and therefore more sen-

sitive to ascending sensory (prediction error) input. This

illustrates the importance of the relative precision of sensory

and extrasensory prediction errors in modulating the influence

of ascending sensory information (figure 2).
(a) Simulation details
Three Gaussian basis functions B(2) [ R128�3 of a one-

dimensional retinotopic space (with a separation and standard

deviation of eight channels) were modulated with three hidden

causes v(2) ¼ [8, 8, 0] to generate the log-precision of a visual

signal over 128 visual channels. The resulting log precision

vector p(2)
v [ R128�1 was used to modulate Gaussian fluctu-

ations v(2)
v to generate textured signals by applying a

Gaussian convolution matrix B(1) [ R128�128 (with a standard

deviation of two channels); finally, uniform Gaussian noise

v(1)
v with a precision of 16 was added to the signals to generate

sensory data

s ¼ B(1) � v(1) þ 1
4 � v

(1)
v ,

v(1) ¼ diag( exp (�1
2p

(2)
v )) � v(2)

v

and p(2)
v ¼ 8� B(2) � v(2): (3:1)

This way of generating data rests upon a generative

model of the following form, which is a special case of the

generative models described in the appendix: it is a special

case, because there are no dynamics or hidden states

s ¼ g(1)(v(1))þ exp (�1
2p

(1)
v (v(1))) � v(1)

v

and v(1) ¼ g(2)(v(2))þ exp (�1
2p

(2)
v (v(2))) � v(i)

v :

..

.

9>>>>=
>>>>;

(3:2)

This generative model specifies the neuronal dynamics for

posterior expectations about the hidden causes _m(i)
v that con-

stitute predictive coding (see appendix for details and

figure 3 for the particular equations of the current model),

where A � B W ATB:

_m(i)
v ¼

@g(i)

@m(i)
v
� 1

2~1
(i)
v
@p(i)

v

@m(i)
v

 !
� j(i)

v þ
@tr(p (i)

v )

@m(i)
v
� j (iþ1)

v ,

j (i)
v ¼ exp (p(i)

v ) � 1(i)
v

and 1(i)
v ¼ m(i�1)

v � g(i)(m(i)
v )

9>>>>>=
>>>>>;

(3:3)

These equations provide a relatively simple update scheme,

in which changes in posterior expectations are driven by a

mixture of precision-weighted prediction errors—where pre-

diction errors are defined by the equations of the generative

model. Crucially, prediction errors are affected by descending

predictions in one of two ways: expectations can either gener-

ate predictions of first-order effects, through the functions

g(i)(m(i)
v ). Alternatively, they can generate predictions of pre-

cision, through the functions p(i)
v (m(i)

v ). These effects are

formally distinct: the first-order predictions (of lower expec-

tations) have a negative (driving) effect on the prediction

errors, whereas the second-order predictions (of their pre-

cision) have a positive (modulatory) effect. We can see this

separation clearly in the current example, because the

http://rstb.royalsocietypublishing.org/
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Figure 3. This schematic illustrates the message passing implicit in predictive coding based on the generative model described in the main text—and formulated
mathematically on the lower left. In this scheme, sensory input is conveyed to visual cortex via ascending prediction errors from the lateral geniculate nucleus.
Posterior expectations, encoded by the activity of deep pyramidal cells in primary visual cortex, are driven by ascending prediction errors while, at the same time,
they are subjected to lateral interactions—with second-level prediction errors—that mediate (empirical) priors. Crucially, these constraints are modulated by top-
down predictions of their precision (blue arrows). These predictions are based upon expectations about precision in the highest level that are effectively driven by the
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second-level hidden causes only predict second-order statistics

(log precision), whereas the first-level hidden predict first-

order statistics. This means equation (3.3) can be separated

into first- and second-order updates

_m(1)
v ¼

@g(1)

@m(1)
v
� j (1)

v � j (2)
v ,

j (1)
v ¼ exp (p (1)

v ) � (s� g(1)(m(1)
v ))|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

first-order prediction errors

,

_m(2)
v ¼

@tr(p (2)
v )

@m(2)
v
� 1

2~1
(2)
v
@p(2)

v

@m(2)
v
� j (2)

v � m(2)
v

and j (2)
v ¼ exp (p(2)

v (m(2)
v )) � m(1)

v|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
second-order prediction errors

: (3:4)

The key thing to take from these equations is the difference

between first- and second-order message passing. The first-

order expectations are driven by linear mixtures of first- and

second-order prediction errors that play the role of the

likelihood and (empirical) prior influences. Crucially, the

second-order prediction errors (empirical priors) have more

influence when they are more precise. Similarly, the first-

order predictions enter the first-order prediction errors in a

linear (subtractive) fashion. In contrast, the second-order

expectations are driven by nonlinear (sum of squared) predic-

tion errors and modulate the second-order prediction errors in

a nonlinear fashion. It is this modulation we associate with pre-

cision-engineered message passing and the (attentional)

contextualization of predictive coding. (See figure 3 for a
schematic of this message passing for the simple model

considered here.)

Figure 4 shows the results of a typical simulation. The left

columns show the results of predictive coding and the right col-

umns show the true values generating sensory input. These

inputs were inverted using the generative model that was

used to produce them—but with unknown hidden causes at

the first and second levels. The posterior expectations of

these hidden causes are shown in the lower left panels—

along with their 90% posterior confidence intervals (in grey).

The upper left panel shows the predicted sensory input in

blue, and the sensory prediction error in red.

Figure 5 shows the results of the same simulation but

using a two-dimensional visual input (and a grid of nine

Gaussian radial basis functions). Here, the signal was an

L-shaped feature (with anisotropic smoothness) in the lower

left quadrant that has, effectively, attracted attention. This

attentional ‘spotlight’ is nicely illustrated in terms of the

expected variance (inverse precision) as shown in the

middle panel. Although very simple, this example highlights

the close relationship between attentional selection and

figure–ground segregation based upon second-order stat-

istics. Clearly, we could have used a much more elaborate

generative model; for example, we could have considered

anisotropic Gabor patches when mapping first level hidden

causes to sensory (retinotopic) input (cf. classical receptive

fields). One could also imagine having separate precision

components for vertical and horizontal patches that

themselves were constrained by higher hierarchical levels.

We will illustrate these ideas in future papers. Here, we

http://rstb.royalsocietypublishing.org/
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focus on the basic computational anatomy implied by

these schemes.
(b) Summary
These simulations demonstrate the nature of predictive coding,

when sensory features generated by visual objects are textural

or second-order in nature. They highlight the selective boosting

or sensitivity to signals arising in the vicinity of a visual object

or figure, suggesting a top-down augmentation of featural cues
that is consistent with attentional selection. The abovemen-

tioned examples illustrate a form of precision or gain control

that is intrinsic to the cortical hierarchy and speaks to separate

descending streams of prediction—that predict the first and

second-order attributes of lower-level representations. This

scheme suggests that modulatory or gain control mechanisms

are restricted to backward connections (the forward connec-

tions convey prediction errors, which are linear and driving).

Note also that the descending predictions are effectively

inhibitory, which is consistent with the targeting of

http://rstb.royalsocietypublishing.org/
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inhibitory interneurons (particularly in layer one) by backward

connections in the visual cortex [17]. In contrast, the predicted

precision has an excitatory modulatory effect, consistent with

mediation through voltage-dependent NMDA receptors in

pyramidal cells of the superficial layers [19]. Later, we will

also consider the important role of fast-spiking inhibitory inter-

neurons and chandelier cells (that express NMDA receptors) in

mediating synchronous gain.

Later, we consider general forms of descending precision

control that have been associated with attentional processing.

In this instance, the source of top-down gain control is not
necessarily an intrinsic part of the cortical hierarchy but may

call upon the cortical systems that control precision throughout

the cortical hierarchy. So, what are the cardinal features a neur-

onal system should possess to mediate such precision control?

Precision is a function of hidden causes, which means that

expected precision depends on expected hidden causes that—

like all expectations—we presume are encoded neuronally.

A universal feature of predictive coding is that connections to

populations encoding expectations are from populations encod-

ing prediction errors, and these connections are reciprocated. In

the special case of hidden causes of precision, these projections
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must show substantial (but possibly topographic) convergence

and divergence: it can be seen from equation (3.4) (third equal-

ity) that the expected causes of precision gather information

from each component or set of prediction errors that share

the same covariance or precision. If the sum of (precision-

weighted) squared prediction error is too large then expected

precision falls and, conversely, rises when the sum of

(precision-weighted) squared prediction error is too small.

Furthermore, every prediction error unit contributing to the

sum of squares receives reciprocal connections to modulate

its gain or precision. Neuroanatomically, this suggests systems

that encode and mediate expected precision must

— receive convergent projections from large (possibly topo-

graphically organized) regions of cortex, specifically from

cells encoding prediction error (in supragranular layers);

— reciprocate divergent projections to the same regions;

— mediate some form of gain control over the cells encoding

prediction error; and

— possess bilateral projections to cortical areas with cortico-

cortical connections, to control the relative precision of

their respective prediction errors.

In what follows, we consider corticothalamic systems—in

which the thalamus (pulvinar) provides modulatory gain con-

trol—and what that implies for the cartography of attention

and arousal.

4. Precision, attention and the pulvinar
There are two primary types of relay neurons in the thalamus,

namely core cells and matrix cells [36]. Matrix cells are distribu-

ted widely over the nuclei of the dorsal thalamus and send

thalamocortical axons that terminate principally in the super-

ficial layers of the cortex [36,37]. Furthermore, thalamocortical

signalling is primarily excitatory, but is largely mediated by

inhibitory mechanisms that implement synchronous gain. Tha-

lamocortical oscillations also provide modulatory inputs to the

thalamus via GABAergic neurons that synapse in the reticular

nucleus of the thalamus [38]. It seems natural therefore to con-

sider (a subset of) the corticothalamic system as a candidate for

precision control. In what follows, we review the evidence for

such a role in the pulvinar—drawing on known neuroanatomy,

neurophysiology and recent findings in cognitive neuroscience.

The pulvinar is the largest nucleus in the primate thalamus

and has expanded in size during primate evolution—in paral-

lel with other visual structures [39]. The pulvinar has long been

thought to play a role in mediating visual attention [40,41] per-

haps by registering the saliency of a visual scene [42,43].

Damage to the pulvinar in humans can result in visual hemi-

neglect [44,45], deficits in feature binding [46] or focal attention

[47]. Neurons in the pulvinar exhibit features of selective atten-

tion; as they respond more strongly to behaviourally relevant

stimuli than to unattended stimuli [48], as such, they contribute

to top-down suppression of distractors [49]. Human imaging

studies report pulvinar activation that is consistent with the fil-

tering of distractors [50–52], such that only information

pertaining to the attended target can be decoded from patterns

of activity [53].

Neuroanatomical observations of the pulvinar suggest

that for every direct connection between two cortical regions,

there is a parallel, indirect pathway that goes through the pul-

vinar. This is called the replication principle [41]. For example,

consider the visual maps of ventral pulvinar [54,55] that
receive retinotopically registered connections from the areas

of the ventral visual pathway (V1, V2, V4, TEO and TE).

These form a (diffuse) occipitotemporal gradient from V1 at

one pole of the pulvinar map to area TE at the other. The rela-

tive overlap between the pulvinar fields of any given pair of

areas roughly reflects their mutual level of cortical connec-

tivity: for example, area V4 shares more pulvinar territory,

and has stronger cortical connections with its neighbouring

area TEO, than it does with the more distant area TE [41].

This neuroanatomical architecture of the cortico-pulvino-

cortical pathway is therefore suited for concurrent precision

estimation and to modulate the gain of reciprocal message

passing between cortical hierarchical levels. In particular,

the replication principle is entirely consistent with the control

of the relative precision of prediction errors at different levels

in the cortical hierarchy.

Based on these architectural properties—and the require-

ments of predictive coding—it seems reasonable to hypothesize

that the functional role of the pulvinar is to optimize the gain of

cortical prediction errors according to their expected precision.

To fulfil this role, the pulvinar needs to encode expected precision

and mediate gain modulation. Recent neurophysiological stu-

dies in behaving monkeys indicate that the pulvinar, indeed,

performs these computational operations.

(a) Empirical evidence for precision engineering in the
pulvinar

In terms of encoding precision, it has been recently reported

that approximately 30% of neurons in the pulvinar are sensitive

to the reliability of task-relevant sensory signals, representing

the ‘confidence’ in perceptual decisions [56]. During a percep-

tual decision task, this subset of neurons does not selectively

respond to the content of perception, but exhibits a higher

firing rate when the monkeys behaved as though they were cer-

tain about their perceptual decision. When the monkeys were

given a choice to opt-out, for a smaller reward, a lower firing

rate of these neurons predicted the escape response of the mon-

keys—even when the signal-to-noise ratio in the stimulus was

identical. The firing rate was lower for more difficult trials, and

the deactivation of these neurons by GABA agonist (muscimol)

injection enhanced escape responses—as though the monkeys

lost confidence in their perceptual decision even though their

objective task performance was unimpaired. These findings

support the notion that neurons in the pulvinar encode

expected precision or confidence in information used for

perceptual decisions.

The pulvinar’s contribution to gain control has been

demonstrated in a compelling study of spike-field coherence

[57]. By concurrently recording pulvinar spikes and local

field potentials from V4 and TEO, the authors showed that

the spike-field coherence between the pulvinar neurons and

alpha oscillation in V4 and TEO was enhanced when attention

was directed to the receptive field of the pulvinar neuron. Cru-

cially, conditional Granger causality analysis across the three

regions showed that the pulvinar neurons facilitated the trans-

mission of information between V4 and TE by synchronizing

the alpha oscillation in those cortical regions. This provides

empirical evidence that the pulvinar serves as a gain control

system for corticocortical interaction—via controlling neuronal

synchronization. This synchronous gain control offers a

neurobiological mechanism to adjust effective synaptic gain

transiently across cortical regions [55,58]. Furthermore, it is
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closely related to notions of communication through coherence

(see below) and may reflect an important mechanism for

precision engineering in attention [2].

These studies provide neurophysiological evidence that

the pulvinar neurons encode expected precision, and modu-

late the gain of corticocortical communication. The notion

of precision engineering in the pulvinar offers a coherent

(computational) perspective on how seemingly disparate

aspects of attention (gain modulation) and confidence (uncer-

tainty estimation) are orchestrated. Although the concepts

of salience, confidence and attention may appear distinct,

their intimate relationship can be interpreted as an integral

part of perceptual inference—reflecting the different faces

of precision.

(b) Gain control mechanisms in the cortico-pulvino-
cortical connectivity

There are multiple thalamocortical mechanisms that can

modulate the gain of prediction error in superficial layers of

the cortex. Here, we consider three possible mechanisms

through which the pulvinar contributes to gain control:

(i) induction of phase synchrony across presynaptic neurons

within a cortical region, perhaps achieved by (ii) modulation

of low-frequency (alpha) oscillation across cortical regions

and (iii) modulation of prediction error units in the superficial

layers via diffuse projections.

The first mechanism reflects the fact that synchronized

presynaptic spikes generally make the postsynaptic impact

stronger. Thus, controlling the degree of synchrony at presyn-

aptic neurons can serve as a gain control mechanism [59,60].

This can be achieved by synchronous modulation of subthres-

hold membrane potentials at the gamma frequency [61].

While gamma oscillations can be generated by intracortical

mechanisms, the thalamus plays a role in modulating

gamma oscillations in sensory cortex. For example, it has

been shown that stimulation of the posterior intralaminar

nucleus modulates synchronous gamma oscillations in the

auditory cortex [62]. Extending this notion to the visual

cortex, one may speculate that the pulvinar could modulate

subthreshold gamma oscillation in prediction error neurons

in the cortex, thereby controlling the synchrony of spike

timings of prediction error neurons.

The second mechanism is phase synchronization of distant

cortical areas by the pulvinar [41], invoking the principle of

‘communication through coherence’—that selective communi-

cation can be achieved through coherence between firing rate

oscillation in the sending region and oscillatory gain modu-

lation in the receiving region [63,64]. Corticothalamic

connections play a prominent role in synchronizing oscillations

[65], and the thalamus modulates phase relationships between

cortical regions, thereby modulating the effective synaptic

strengths. For example, Akam & Kullmann [66] demonstrate

flexible signal routing in neural circuits, by exploiting sparsely

synchronized network oscillations and temporal filtering by

feed-forward inhibition.

The core cells in the pulvinar form a loop through layers 3

and 6 of extrastriate cortex [67]. This circuit could serve as an

alpha generator for extrastriate cortex [68], through a mechanism

analogous to the geniculocortical loop through layers 4 and 6 of

V1 [69], and modulate the effectiveness of the output from one

area to another distant cortical region. As discussed earlier,

empirical evidence indicates that spikes from the pulvinar
generate alpha rhythms in the target cortical areas, and induce

corticocortical synchrony in the alpha frequency that facilitates

communication between the synchronized cortical regions [57].

Furthermore, there is evidence in this study [57] and others

[70,71] foralpha–gamma cross-frequency coupling, thus forging

a link between the two mechanisms considered so far.

The third mechanism considers gain control by projections

from the pulvinar to the superficial layers 1–3 of a visual area

(e.g. V1). This diffuse projection, originating from the matrix

cells of the pulvinar, can modulate the activity of prediction

error neurons in the target area—a functional analogy with

the superficial component of backward cortical connections

that we have previously attributed with a role in precision con-

trol [19]. Gain control via this pathway has been empirically

demonstrated. Inactivation of the lateral pulvinar suppressed

responses of superficial V1 neurons to visual input, whereas

excitation of the pulvinar neurons increased the responsiveness

of neurons in the superficial layers with overlapping receptive

fields [72]. Given the organization of cortico-pulvino-cortical

connections (noted above), we predict that the pulvinar neur-

ons sending feedback to superficial layers of any given

cortical area receive information about expected precision via

the descending input from areas at both higher and lower

levels in the cortical hierarchy. This may differ from the cortico-

cortical transmission of precision that we have so far linked

exclusively to backward connections [19].

These candidate mechanisms suggest that the pulvinar has

multiple ways to control the gain in corticocortical communi-

cations. These neuronal implementations of gain control

mechanisms are by no means comprehensive, and are not

mutually exclusive. While all of the mechanisms discussed

here have some empirical support, which mechanism plays a

dominant role in the context of the predictive coding framework

remains to be determined. Nevertheless, these examples col-

lectively point to the pulvinar’s role in gain control in

corticocortical communication.
(c) Precision estimation in the corticothalamic network
The anatomy and laminar specificity of pulvinar projections to

the cortex fits comfortably with the computational architecture

implied by predictive coding (figure 6). We have outlined differ-

ent roles for the core and matrix output neurons (in alpha

generation for the core cells, projecting to the middle layers

and in precision regulation for the matrix cells projecting super-

ficially). The dual afferent projections to the pulvinar from the

cortex derive from layers 5 and 6, thought to act as drivers

and modulators, respectively [73,74]. It is these connections

that should convey the (squared) prediction error to enable

the pulvinar to estimate precision. However, if we consider

the geniculocortical loop with striate cortex as a model for

alpha generation [69] it is the layer 6 outputs to thalamus that

serve this role, pointing to layer 5, perhaps, as the source of

squared prediction error. Note that striate cortex output to pul-

vinar is not duplex, but arises exclusively from layer 5 [75]. All

current analyses of canonical microcircuits place prediction

error units in superficial layers [17–19]. Thus, we suppose that

the principal cells reporting the squared prediction error (i.e.

second-order forward connections) to the pulvinar are a second-

ary stream originating through the strong intrinsic connections

from the superficial layers to layer 5. The particular arrangement

that we arrive at—cortical drivers driving thalamic matrix cells,

and cortical modulators modulating thalamic core cells—
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matches the anatomy reported for connections between frontal

cortex and the ventral anterior thalamic nucleus [76], but the

specificity of contacts existing within pulvinar is unknown.

The message passing implied by predictive coding would

require these layer 5 principal cells to respond, in a U-shaped

fashion, to both high and low levels of prediction error firing

in superficial layers; in other words, be both excited and

disinhibited by (first-order) prediction errors. The notion of

a (second-order) forward-type corticopulvinar stream fits

comfortably with the notion that input from layer 5 is largely

feed-forward and the hypothesis that layer 5 corticothalamic

axons represent the afferent limb of a corticothalamocortical

pathway.

(d) Summary
Here, the key requirements of a neuronal system that could

coordinate precise corticocortical message passing among

functioning segregated areas appears to be fulfilled by corti-

cothalamic loops. A detailed consideration of the pulvinar, in

relation to the computational anatomy of predictive coding,

reveals a consistent picture at the architectural and microcir-

cuit level—particularly with regard to the laminar specificity

of intrinsic and extrinsic connections (and indeed suggests

some new hypotheses about subpopulations and their

connections). Furthermore, the emerging picture ties together

a number of closely related themes, namely the distinc-

tion between driving and modulatory connections, cortical

gain control, synchronous gain, communication through

coherence and desynchronization of alpha rhythms. All of

these physiological phenomena have been implicated
in attentional processing and the encoding of salience or

confidence, which we associate with precision control.
5. Conclusion
In this paper, we have considered how inferences about first-

order content and second-order context are orchestrated in hier-

archical predictive coding, highlighting the importance of

modulatory effects by second-order representations—such as

precision and saliency—in optimizing inference. We have con-

sidered the neurobiological substrates of precision engineering

in the brain, with a special focus on the pulvinar and attention.

In this proposal, inference about the (first-order) content of per-

ception was ascribed to corticocortical message passing,

whereas parallel corticothalamocortical connections contextua-

lize (second-order) corticocortical processing via precision-

weighted gain control of ascending prediction errors. This

proposal offers a formal understanding of attentional functions

and the encoding of expected precision by the pulvinar.

More generally, the notion of hierarchical inference in the

brain provides a potentially important link between structure

and function: if the brain transcribes causal structure from the

world, then this (hierarchical) structure should be embodied in

cortical architectures. Predictive coding provides a particular

process theory for this transcription and calls for an under-

standing of microscopic (laminar-specific) message passing in

canonical microcircuits—that is consistent with macroscopic car-

tography defined by extrinsic connections. The particular

contribution of this paper is to highlight the context-sensitive

and dynamic aspects of functional anatomy—distinguishing
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between the neuronal processing of (first-order) content and

(second-order) context. The implications for the future of cer-

ebral cartography are manifest at a number of levels, namely a

fuller understanding of the asymmetries between forward and

backward connections—and the distinction between streams

responsible for perceptual synthesis per se and those (presum-

ably more diffuse) streams that contextualize perceptual

processing, enabling the selection and coordination of precise

information. The formal constraints offered by schemes like pre-

dictive coding highlight the need to characterize cortical

interactions at the level of cortical layers and the orchestration

of cerebral processing through centrifugal exchanges with

subcortical structures.
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Appendix A
This brief description of generalized predictive coding is

based on Feldman & Friston [2]. A more technical description

can be found in Friston et al. [77]. This scheme is based on

three assumptions

— The brain minimizes a free energy of sensory inputs

defined by a generative model.

— The generative model used by the brain is hierarchical,

nonlinear and dynamic.

— Neuronal firing rates encode the expected state of the

world under this model.

Free energy is a quantity from statistics that measures the

quality of a model in terms of the probability that it could

have generated observed outcomes. This means that mini-

mizing free energy maximizes the Bayesian evidence for the

generative model. The second assumption is motivated by

noting that the world is both dynamic and nonlinear, and

that hierarchical causal structure emerges inevitably from a

separation of spatial and temporal scales. The final assump-

tion is the Laplace assumption that leads to the simplest

and most flexible of all neural codes.

Given these assumptions, one can simulate a whole variety

of neuronal processes by specifying the particular equations

that constitute the brain’s generative model. In brief, these

simulations use differential equations that minimize the free

energy of sensory input using a generalized gradient descent.

_~m(t) ¼ D~m(t)� @ ~mF(~s, ~m): (A 1)

These differential equations say that neuronal activity encod-

ing posterior expectations about (generalized) hidden states

of the world ~m ¼ (m, m0, m00, . . . ) reduce free energy—where

free energy F(~s, ~m) is a function of sensory inputs

~s ¼ (s, s0, s00, . . . ) and neuronal activity. This is known as gen-

eralized predictive coding or Bayesian filtering. The first term is

a prediction based upon a differential matrix operator D that

returns the generalized motion of expected hidden states

D~m ¼ (m0, m00, m000, . . . ). The second (correction) term is usually

expressed as a mixture of prediction errors that ensures the

changes in posterior expectations are Bayes-optimal
predictions about hidden states of the world. To perform

neuronal simulations under this scheme, it is only necessary

to integrate or solve equation (A 1) to simulate the neuronal

dynamics that encode posterior expectations. Posterior

expectations depend upon the brain’s generative model of

the world, which we assume has the following hierarchical

form:

s ¼ g(1)(x(1), v(1))þ exp (� 1
2p

(1)
v (x(1), v(1))) � v(1)

v ,

_x(1) ¼ f (1)(x(1), v(1))þ exp (� 1
2p

(1)
x (x(1), v(1))) � v(1)

x ,

..

.

v(i�1) ¼ g(i)(x(i), v(i))þ exp (� 1
2p

(i)
v (x(i), v(i))) � v(i)

v ,

_x(i) ¼ f (i)(x(i), v(i))þ exp (� 1
2p

(i)
x (x(i), v(i))) � v(i)

x

..

.

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

(A 2)

Equation (A 2) describes a probability density over the sensory

and hidden states that generate sensory input. Here, the hidden

states have been divided into hidden states and causes (x(i), v(i))

at the ith level within the hierarchical model. Hidden states and

causes are abstract variables that the brain uses to explain or

predict sensations—like the motion of an object in the field of

view.

In these models, hidden causes link hierarchical levels,

whereas hidden states link dynamics over time. Here, ( f (i), g(i))

are nonlinear functions of hidden states and causes that generate

hidden causes for the level below and—at the lowest level—sen-

sory inputs. Random fluctuations in the motion of hidden states

and causes (v(i)
x , v(i)

v ) enter each level of the hierarchy. Gaussian

assumptions about these random fluctuations make the model

probabilistic. They play the role of sensory noise at the first

level and induce uncertainty at higher levels. The amplitudes

of these random fluctuations are quantified by their precisions

that may depend upon the hidden states or causes through

their log-precisions (p(i)
x , p(i)

v ).

Given the form of the generative model (equation (3.2))

we can now write down the differential equations (equation

(A 1)) describing neuronal dynamics in terms of (precision-

weighted) prediction errors. These errors represent the

difference between posterior expectations and predicted

values, under the generative model (using A � B W ATB and

omitting higher-order terms):

m_~
(i)
x ¼D~m(i)

x þ
@~g(i)

@~m(i)
x

� 1
2~1

(i)
v
@~p(i)

v

@~m(i)
x

 !
�j(i)

v

þ @~f
(i)

@~m(i)
x

� 1
2~1

(i)
x
@~p(i)

x

@~m(i)
x

 !
�j(i)

x þ
@tr(~p(i)

v þ ~p(i)
x )

@~m(i)
x

�DTj(i)
x ,

m_~
(i)
v ¼D~m(i)

v þ
@~g(i)

@~m(i)
v

� 1
2~1

(i)
v
@~p(i)

v

@~m(i)
v

 !
�j(i)

v

þ @~f
(i)

@~m(i)
x

� 1
2~1

(i)
x
@~p(i)

x

@~m(i)
v

 !
�j (i)

x þ
@tr(~p(i)

v þ ~p(i)
x )

@~m(i)
v

�j (iþ1)
v ,

j (i)
x ¼exp(~p(i)

x ) �~1(i)
x ,

j (i)
v ¼exp(~p(i)

v ) �~1(i)
v ,

~1(i)
x ¼D~m(i)

x �~f
(i)

(~m(i)
x , ~m(i)

v )

and ~1(i)
v ¼ ~m(i�1)

v �~g(i)(~m(i)
x , ~m(i)

v )

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(A 3)
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This produces a relatively simple update scheme, in which

posterior expectations ~m(i) are driven by a mixture of predic-

tion errors ~1(i) that are defined by the equations of the

generative model.

In neural network terms, equation (A 3) says that error-

units compute the difference between expectations at

one level and predictions from the level above (where j (i)

are precision-weighted prediction errors at the ith level of

the hierarchy). Conversely, posterior expectations are driven

by prediction errors from the same level and the level

below. These constitute bottom-up and lateral messages

that drive posterior expectations towards a better prediction

to reduce the prediction error in the level below. In neuro-

biological implementations of this scheme, the sources of

bottom-up prediction errors are generally thought to be

superficial pyramidal cells, because they send forward

(ascending) connections to higher cortical areas. Conversely,
predictions are thought to be conveyed from deep pyra-

midal cells by backward (descending) connections, to target

the superficial pyramidal cells encoding prediction

error [16,17].

Note that the precisions depend on the expected hidden

causes and states. We have proposed that this dependency

mediates attention [2]. Equation (A 3) tells us that the (state-

dependent) precisions modulate the responses of prediction

error units to their presynaptic inputs. This suggests some-

thing intuitive—attention is mediated by activity-dependent

modulation of the synaptic gain of principal cells that

convey sensory information (prediction error) from one corti-

cal level to the next. This translates into a top-down control of

synaptic gain in principal (superficial pyramidal) cells and

fits comfortably with the modulatory effects of top-down

connections in cortical hierarchies that have been associated

with attention and action selection.
370:201401
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