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We characterised the pathophysiology of seizure onset in terms of slow fluctuations in synaptic efficacy using EEG
in patients with anti-N-methyl-D-aspartate receptor (NMDA-R) encephalitis. EEG recordings were obtained from
two female patients with anti-NMDA-R encephalitis with recurrent partial seizures (ages 19 and 31). Focal
electrographic seizure activity was localised using an empirical Bayes beamformer. The spectral density of recon-
structed source activity was then characterised with dynamic causal modelling (DCM). Eight models were com-
pared for each patient, to evaluate the relative contribution of changes in intrinsic (excitatory and inhibitory)
connectivity and endogenous afferent input. Bayesianmodel comparison established a role for changes in both ex-
citatory and inhibitory connectivity during seizure activity (in addition to changes in the exogenous input). Seizures
in both patients were associated with a sequence of changes in inhibitory and excitatory connectivity; a transient
increase in inhibitory connectivity followed by a transient increase in excitatory connectivity and a final peak of
excitatory–inhibitory balance at seizure offset. These systematic fluctuations in excitatory and inhibitory gain
may be characteristic of (anti NMDA-R encephalitis) seizures. We present these results as a case study and replica-
tion to motivate analyses of larger patient cohorts, to see whether our findings generalise and further characterise
the mechanisms of seizure activity in anti-NMDA-R encephalitis.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

Anti-N-methyl-D-aspartate receptor (NMDA-R) antibody encephali-
tis was discovered in 2007 in several females with ovarian teratoma
presenting with psychiatric and dys-autonomous symptoms. The dis-
ease has also been described in the paediatric population. It is an auto-
immune disease with auto-antibodies targeting the NMDA-R (Dalmau
et al., 2011). A multicentre study in the UK identified anti-NMDA-R en-
cephalitis in 4% of patients with encephalitis (Granerod et al., 2010),
which usually develops through specific phases (Iizuka et al., 2008).
The prodromal phase can entail headache, fever, nausea, vomiting, diar-
rhoea, or upper respiratory-tract symptoms. Within 2 weeks, patients
develop psychiatric symptoms; ranging from cognitive impairment to
psychosiswith delusions andhallucinations. There is often a rapid disin-
tegration of language. This disease often progresses with neurological
symptoms that can include reduced consciousness, oro-lingual-facial
dyskinesia, seizures and dysautonomia. At this stage, the patient often
requires treatment in an intensive care unit. The frequency and intensi-
ty of seizures usually decrease as the disease evolves; however, changes
or Neuroimaging at UCL — 12

. This is an open access article under
in medication and sedation can trigger status epilepticus at any given
point of the disease process (Dalmau et al., 2007). The disease is often
associatedwith tumours in the adult population,most often ovarian ter-
atomas in female adults. The cause of anti-NMDA-R encephalitis (partic-
ularly in the paediatric population), when not associated with tumours,
is unknown (Florance et al., 2009). Treatment usually comprises im-
mune therapy, together with removal of any coexisting tumour. With-
out treatment the disease can improve slowly over several years but
relapses are not uncommon (Iizuka et al., 2008). Seizures are common:
in a study of 100 patients with NMDAR-encephalitis 76 had seizures.
Most commonly, generalised tonic–clonic seizures followed by focal
seizures; however, six patients developed status epilepticus and two
developed epilepsia partialis continua. EEG abnormalities are often
seen in patients, most commonly increased delta activity and mono-
morphic appearance of rhythmic delta activity (Dalmau et al., 2008). It
is not uncommon to see “extreme delta brushes”, comprising rhythmic
delta activity with a brush of beta activity (Schmitt et al., 2012).
Electrographic seizure activity can sometimes be detected on the EEG.

Electrographic seizure activity is one of the most specific findings in
clinical electroencephalography (Daly et al., 2002). However, the under-
lying pathophysiology is still poorly understood. Focal seizures typically
exhibit three phases; initiation, propagation and termination (Schiff
et al., 2000). They generally start with low-amplitude fast activity
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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(Allen et al., 1992; Spencer et al., 1992; Alarcon et al., 1995; Wendling
et al., 2003). This activity corresponds to the “ictal flattening”, some-
times seen before seizure onset in the scalp EEG. The cause of this pre-
ictal pattern is thought to be caused by disinhibition of pyramidal neu-
rons (Wendling et al., 2002), although other studies have suggested that
synchronization through inhibition is important for the generation of
low-amplitude fast activity at the onset of seizure activity (de Curtis
and Gnatkovsky, 2009). During seizure propagation, there is usually a
transition to large amplitude activitywith slower oscillatory activity, to-
gether with spatial spreading. At this stage, seizure activity becomes
more complicated— beingmediated by a distributed epileptic network.
Seizure offset usually entails a slowing of seizure activity and may be
followed by a post ictal phase. Even seizure termination is governed
by complex network dynamics that remains poorly understood. It has
been suggested that seizures occurwhen there is an imbalance between
excitatory and inhibitory conductance (Scharfman, 2007; Schiff and
Sauer, 2008). Balanced excitation and inhibition in the brain is an im-
portant aspect of neuronal processing, enabling fast responses that re-
quire less energy consumption, and more efficient information
processing (Sengupta et al., 2013; Sengupta and Stemmler, 2014). Ac-
tive engagement of gain control mechanisms that maintain this balance
may be compromised in epilepsy (Swann and Rho, 2014). However, it is
unclear how this imbalance is related to seizure phenomenology in cor-
tical circuits that generally exhibit normal excitatory–inhibitory balance
(Soltesz, 2008). In this work, we use dynamic causal modelling with
neural mass models to quantify excitation–inhibition balance in terms
of intrinsic (within source) connectivity.

Neural massmodels were first conceived byWilson and Cowan using
mean field theory to estimate the average activity of neuronal popula-
tions (Wilson and Cowan, 1972, 1973) based on the Hodgkin Huxley de-
scription of single neurons. Neuron mass models offer a computationally
tractable model of mesoscopic neuronal activity. A particular useful vari-
ation of the Wilson and Cowan model was presented by Jansen and Rit,
which has been used extensively in modelling different sorts of neuronal
activity, including seizure activity (Jansen and Rit, 1995). The transition
between normal and seizure activity has also been modelled in terms of
bifurcations (qualitative changes in neural mass dynamics due to quanti-
tative changes inmodel parameters) (Blenkinsop et al., 2012; Breakspear
et al., 2006; Grimbert and Faugeras, 2006; Jirsa et al., 2014;
Nevado-Holgado et al., 2012). However, multistability has also been pro-
posed as an alternative to bifurcations (Benjamin et al., 2012; Lopes da
Silva et al., 2003). Bifurcations are induced by changes in one ormore pa-
rameters of the neuralmassmodel. Parameterfluctuations during seizure
onset has been inferred using a variety of methods, including Kalman fil-
ter techniques and genetic algorithms (Blenkinsop et al., 2012; Freestone
et al., 2014; Nevado-Holgado et al., 2012; Schiff and Sauer, 2008; Ullah
and Schiff, 2009, 2010; Wendling et al., 2005).

It is usually assumed that the transition fromnormal to seizure activ-
ity can be modelled with changes in connectivity between neuronal
populations (Blenkinsop et al., 2012; Freestone et al., 2014; Wendling
et al., 2002). Moreover, slow changes in ion concentrations have been
shown, both experimentally and computationally, to induce rapid
changes in neuronal dynamics that are formally similar to bifurcations
(Bazhenov et al., 2004; Kager et al., 2000; Lewis and Schuette, 1975).
Some modelling studies have considered glial cell ion homeostasis and
conclude that changes in [K+] and [Na+] are necessary for seizure gen-
eration in hippocampal tissue (Ullah and Schiff, 2010). Similarly, the
ability of extracellular oxygen to induce seizure activity has been veri-
fied in vivo and in computational models (Ingram et al., 2014; Wei
et al., 2014). Furthermore, dynamical multi-stability has been used to
simulate seizure activity, where [K+] can induce switching between
(bistable) states, without the need for bifurcations (Frohlich et al.,
2010). Finally, in contrast tomechanisms that are intrinsic to the source
of seizure activity, several studies have highlighted the importance of
multistability due to global changes in connectivity, causing both focal
and general seizure activity (Benjamin et al., 2012; Terry et al., 2012).
In this paper, we characterise the evolution of seizure activity in
terms of slow fluctuations in the (synaptic) connectivity among specific
neuronal populations that constitute a canonical cortical microcircuit.
Crucially, we evaluate these intrinsic changes, while allowing for con-
comitant changes in afferent activity from other distributed sources.
To do this, we used dynamic causal modelling to analyse seizure activity
in a patient with anti-NMDA-receptor encephalitis and attempt to rep-
licate the findings in an identical analysis of a second patient.

Dynamic causalmodelling (DCM) is amethod formaking inferences
about the neuronal architectures that underlie measured time series,
such as EEG (Friston et al., 2007). The main constituents of a DCM are
a model of neuronal dynamics (e.g., a neural mass model) and a mea-
surement model (e.g., a classical electromagnetic forward model).
DCM has been widely used in neuroscience in modelling fMRI and
EEG activity (David et al., 2006, 2008; Moran et al., 2008, 2011a,b,c;
Friston et al., 2012). Crucially, several dynamic causal models can be
inverted for any given data; enabling the evidence for competing
models or hypotheses to be evaluated (with Bayesian model compari-
son). In contrast to alternative approaches (e.g., Kalman filtering), we
apply DCM to spectral density measures of seizure activity. This enables
one to (i) average spectral density measures over multiple seizures;
(ii) estimate the spectral density of endogenous neuronal fluctuations
with scale free (non-Markovian) temporal correlations and (iii) esti-
mate any changes in these fast fluctuations during seizure onset.
Furthermore, DCM allows one to explicitly parameterise the slow fluc-
tuations in model parameters (e.g., excitatory and inhibitory connectiv-
ity) that contribute to the induction of seizure activity.

DCM has been used recently to model electrocorticography data
during seizure onset. The authors found that changes in intrinsic con-
nectivity were sufficient to explain seizure onset, and that seizure initi-
ation was a result of transient loss of excitatory–inhibitory balance
(Papadopoulou et al., 2015). This paper extends these findings with a
more detailed analysis of non-invasive EEG data from human subjects
with a known and specific pathophysiology of NMDA receptor function.

Materials and methods

Recordings

EEG recordings were obtained retrospectively from two female pa-
tients with anti-NMDA-R encephalitis from the database at Clinical Neu-
rophysiology at Karolinska University Hospital, Stockholm, Sweden. Both
patients were treated in intensive care with continuous EEG monitoring
using nine scalp electrodes positioned according to the 10–20 system
(F3, F4, C3, C4, Cz, P3, P4, T3 and T4) together with a reference electrode
placed over Fz. The seizures recorded from patient 1 (age 19 years)
started with 20 Hz activity, which reduced in frequency and increased
in amplitude before termination after approximately 10–20 s, see Fig. 1.
The seizures were clustered over time and occurred every two to three
minutes. A total of 55 seizures free of artefacts were selected for model-
ling. The two seizures recorded from patient 2 (age 31 years) started
with 10–15 Hz activity with a slow reduction in frequency before termi-
nation after approximately 60 s, see Fig. 1. We did not have access to
higher density EEG recordings or invasive recordings as these patients
had seizures only during the acute phase of the disease.

Preprocessing

After acquisition, the data was re-referenced to a common average
and filtered using a bandpass filter (Butterworth 5th order filter) be-
tween 0.5 and 70 Hz. Line activity was removed using a notch filter at
50 Hz. We used an empirical Bayes beamformer to locate the source
with the greatest spectral power during thefirst secondof seizure activity
in each patient (Belardinelli et al., 2012). We then reconstructed source
activity and this location for further analysis. The time series for each sei-
zure was divided into 2000 ms windows without overlap, for both



Fig. 1. Seizure activity of patient 1 (top) and patient 2 (bottom). Note the focal start of seizure with relatively quick spreading between electrodes.
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patients. The size of the window was chosen as the maximum duration
over which spectral activity remained approximately constant for each
patient. More specifically, we used the maximum window length that
retained 90% of the spectral power (as estimated using a complex Gauss-
ian wavelet). The spectral densities of successive windows or epochs
were estimated under a Bayesian multivariate autoregressive model,
and the resulting spectral density averaged over seizures for each patient
(referenced to the time of seizure onset). Based upon the resulting spec-
tral density of seizure activity, we modelled fluctuations in spectral
power between 1 Hz and 40 Hz with DCM, see Fig. 2.

Dynamic causal modelling

The analysis described in the following sections used standard proce-
dures for the Dynamic Causal modelling of spectral density (Moran et al.,
2011a; Friston et al., 2012). For a formal description seeAppendix A. DCM
of (cross) spectral density has been validated in several contexts — and
Fig. 2. Schematic showing the steps of the analysis together with a schematic of the DCM used
show the cell populations generating the measured EEG signal.
has been applied to ECoG data of seizure activity (Papadopoulou et al.,
2015). Here, cortical activity was modelled using a neural mass model
based on the canonical cortical microcircuit (CMC, Fig. 2), comprising
four neuronal populations corresponding to granular, superficial pyrami-
dal and deep pyramidal excitatory populations and inhibitory neurons
(Moran et al., 2013). These neuronal populations are interconnected
with inhibitory and excitatory (intrinsic) connections. Afferent connec-
tions terminated in the excitatory granular cells, which histologically
would be equivalent to spiny stellate cells.

The canonical microcircuit was first described by Douglas and
Martin (1991) based on the structure and function of the cat visual cor-
tex. Structural and functional analysis of cat and rat neocortex from the
visual and sensory–motor cortex has further supported the idea of a ca-
nonical microcircuit (Katzel et al., 2011; Thomson and Bannister, 2003;
Yoshimura and Callaway, 2005) The CMCneuralmassmodel is based on
this and subsequent work, see (Bastos et al., 2012, 2015). The CMC
model represents a minimal description of the cortical microcircuit,
to generate the activity. Blue arrows depict afferent connections while the two red arrows
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where neuronal dynamics are represented by generic inhibitory and ex-
citatory cell populations; e.g., the effect of fast spiking interneurons rich
in NMDA-R are represented by a generic inhibitory population
(DeFelipe, 1999). In contrast to many neural mass models of cortical
sources, the CMC includes two populations of excitatory pyramidal
cells, located in superficial and deep cortical layers. These cell popula-
tions are the sources of forward and backward extrinsic (between-
source) connections respectively (Pinotsis et al., 2014). There is evi-
dence that both deep and superficial pyramidal cells are necessary to
model the full spectrum of cortical activity, where faster activity is gen-
erated by the superficial population and slower activity by the deep
population (Bastos et al., 2012; Buffalo et al., 2011; Roopun et al.,
2006, 2008). In DCM, electrophysiological measurements such as the
EEG, are modelled as a mixture of depolarisations in superficial and
deep pyramidal cells, where, a priori, the contribution of deep pyrami-
dal cells is optimised with a free parameter in relation to the (predom-
inant) contribution from superficial populations.

Formally, the generative model of neuronal activity comprised eight
coupled non-linear first order ordinary differential equations with delays
(see Appendix A). This model is similar to that of Jansen and Rit (Jansen
and Rit, 1995) but augmented to include four populations per source
(and anatomically plausible intrinsic connectivity among the sources).
The parameters of DCMs include intrinsic connection strengths, synaptic
time constants, delays and parameters of the activation functions relating
mean depolarisation to firing rates.

NMDA-R antibodies have been shown to target NMDA-R throughout
the cortex – affecting both excitatory and inhibitory neurons –with a de-
crease in inhibitory synaptic density on excitatory neurons (Moscato
et al., 2014). To model this, we equipped our with separate excitatory
and inhibitory gain parameters, where gain corresponds to the sensitivity
of a neuronal subpopulation to excitatory or inhibitory input. Crucially,
the intrinsic connections from the inhibitory population were allowed
to change during seizure onset and their evolution was modelled using
a discrete cosine basis set with 8 components (over successive timewin-
dows of seizure activity, seeAppendixA). These connectionswere chosen
tomodel GABAergic tone; noting that certain fast spiking inhibitory inter-
neurons such as chandelier cells andbasket cells expressNMDAreceptors
and preferentially target the source of EEG signal (principally, the super-
ficial pyramidal cells) (Goldberg et al., 2003; Kawaguchi and Kubota,
1993). Similarly, all three excitatory intrinsic connections were allowed
to change during seizure activity (Table 1). Note that all parameters of
the afferent input were allowed to change with time giving the model
full flexibility in modelling non-local input (see Appendix A). The
methods used in this study for estimating inhibitory and excitatory
Table 1
(Free) Parameters estimated by dynamic causal modelling. The second column describes the p

Parameters estimated Notation

Constant parameters
Time constants (Hz) Ti, i = 1,
Connectivity constants (Hz) gi, i = 1,
Slope of sigmoid function γ
Time delay for connections (ms) d

Time dependent parameters
Connectivity parameters

Inhibitory (Hz) g3(t)
Inhibitory (Hz) g4(t)
Inhibitory (Hz) g9(t)
Excitatory (Hz) g5(t)
Excitatory (Hz) g6(t)
Excitatory (Hz) g8(t)

Endogenous spectral input
Amplitude of spectral density of input a1(t)
Power law exponent of spectral density of input a2(t)
Amplitude of spectral density of measurement noise b1(t)
Power law exponent of spectral density of measurement noise b1(t)
Spectral innovation of input di(t), i =
connectivity have been previously validated in several studies, where
LFP recordings have been measured together with pharmacological ma-
nipulations or with micro-dialysis measurements of extracellular gluta-
mate levels (Moran et al., 2011a,b).

Model inversion and comparison

The parameters of themodel were estimated followingmodel inver-
sion. The inversionwas performed using a standard variational Bayesian
scheme (Variational Laplace) under the Laplace approximation; i.e., the
priors and posteriors were assumed to be Gaussian probability distribu-
tions (Friston et al., 2007). Effectively, inversion means finding the
model parameters that maximise Bayesian model evidence. This auto-
matically penalises complex models, because the model evidence com-
prises an accuracy and complexity term — the model with the greatest
evidence is the simplest model that provides an accurate explanation
for the data. Model inversion approximates the model evidence with a
quantity called variational free energy (Appendix A; Friston et al.,
2007). The variational free energy can then be used to compare compet-
ing models in terms of their probability is given the data. This is known
as Bayesian model comparison (Stephan et al., 2010). Eight models
were inverted (compared) for each patient, where different sets of pa-
rameters (intrinsic connections) were allowed to change over time —
as shown in Fig. 3. These ranged from models in which nearly all con-
nections could change (model 7) to a null model that precluded any
changes over time windows (model 8). More specifically, we allowed
for all possible combinations of changes in excitatory connections, in-
hibitory connections, and the parameters of the (power law) spectral
density of afferent input from other sources.

Summary

In summary, seizures were identified from the EEG recordings and
epileptogenic sources were localised using a standard beamforming
technique. The seizure activity at this source was used for subsequent
DCM. The seizure activity was windowed and the spectral activity esti-
mated in each window. We then used a neural mass model to generate
the spectral activity of the underlying source by allowing slow fluctua-
tions in excitatory and inhibitory (intrinsic) connections, while also
allowing for changes in afferent activity from other parts of the brain.
We used variational Laplace to estimate the ensuing model parameters
for a set ofmodels with andwithout changes in various parameters. The
resulting model evidence was used to compare different models of sei-
zure activity and identify the best explanation of observed seizure
rior values and the third the log variances.

Prior mean Log prior variance

…, 4 [0.25 0.17 0.08 0.07] ∗ 1000 0.0625
2, 7, 10 [0.8, …, 0.2] ∗ 1000 0.0625

0.67 0.03125
1 0.03125

1.6 ∗ 1000 0.0625
0.8 ∗ 1000 0.0625
0.4 ∗ 1000 0.0625
0.8 ∗ 1000 0.0625
0.4 ∗ 1000 0.0625
0.8 ∗ 1000 0.0625

1 0.0078125
1 0.0078125
1 0.0078125
1 0.0078125

1, …, 8 1 0.0078125



Fig. 3. Eight models were inverted for each patient. Each sourcemodel comprised four neuronal populations representing different cell types from distinct cortical layers: excitatory gran-
ular cells, superficial and deep pyramidal cells and inhibitory interneurons. These cells were interconnected using 10 connections (not drawn in for clarity). Six of these connectionswere
allowed to change over time tomodel changes in EEG spectra during the seizure. Only connections that were allowed to change are shown. All three connections from the inhibitory cells
are marked in blue. All excitatory connections are marked in red. The spectral input marked in black was also allowed to vary in time. Model 7 – allowing changes in all three sets of pa-
rameters – was the most likely.
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activity. Data preprocessing and modelling were performed using the
academic freeware SPM12 (http://www.fil.ion.ucl.ac.uk/spm/).

Results

The seizure activity of the first patient comprised low amplitude
20 Hz activity, which reduced in frequency to approximately 10 Hz
but increased in amplitude. After 10–20 s the seizure terminated. Sei-
zure activity was most prominent over the temporal region on the left
side, although it showed a rapid and partial spread. In the second pa-
tient, seizure activity was manifest as 10–15 Hz activity with a slower
reduction in frequency to about 5 Hz, accompanied by a slow increase
in amplitude. The seizures terminated after approximately 60 s. Seizure
activity was prominent over the central region but spread relatively
quickly to several electrodes bilaterally. See Figs. 1 and 4 for time and
time–frequency plots of seizure activity from the two patients.

Eight competingmodelswere inverted for each patient; each allowing
for different combinations of changes in inhibitory and excitatory intrinsic
connectivity (and afferent input): see Fig. 3. The model with highest evi-
dence (free energy) for both patients allowed for changes in both inhibi-
tory and excitatory (i.e., GABA and NMDA dependent) connectivity
together with changes in endogenous afferent input (i.e., the full
model). The null models with no changes in model parameters were
found to be least likely. Crucially, these results were exactly the same
for both patients. The bestmodel explainedmore than 97%of the variance
in patient 1 and 95% in patient 2, see Table 2. The difference in log evi-
dences (free energy) between the winning model and the next best
model exceeded 10 in both cases. A difference of three is considered
strong evidence in favour of the winning model (and corresponds to an
odds ratio of about 20:1).

The time course of inhibitory and excitatory connectivity and their
balance (difference) showed systematic and similar changes during sei-
zure activity; see Fig. 5. Seizure onset was induced by a transient in-
crease in inhibitory connectivity followed by a transient increase in
excitatory activity and a final peak in excitatory–inhibitory balance dur-
ing seizure termination. Inversion of individual seizures showed similar

http://www.fil.ion.ucl.ac.uk/spm/


Fig. 4.A). The top image illustrates the time frequency profile of observed seizure activity for patient 1 and the lower image illustrates the predicted time frequency plot after estimating the
parameters of the DCM. Note the decrease in frequency as the seizure progresses. B). Similar illustration for patient 2. Note the difference in frequency content compared to patient 1 but
the similar decrease in frequency over time.
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results to the inversion of the averaged seizure (time frequency) activ-
ity. We also characterised source activity during 5 min of pre- and
post-seizure activity, where the EEG showed no clear spectral changes
and where the fluctuations in intrinsic connectivity (estimated under
the full model) were almost negligible: see Fig. 6.

The overall effects of these changes in synaptic efficacy correspond
to a disruption of excitatory–inhibitory balance during the seizure. To
quantify the effect on each of the four populations, the predicted spec-
tral activity of each population was reconstructed under the expected
parameters of the best model. The ensuing time frequency response is
shown in Figs. 7A and B, for the first and second patient respectively.
It can be seen that there was an increase in spectral activity of all cell
types during the seizure, with the superficial pyramidal cells showing
a transient increase within a broad frequency range at seizure onset,
while the inhibitory and deep pyramidal cells showed activity within
a more narrow frequency range, which decreased in average frequency
as the seizure progressed. In thewinningmodel, the input to the cortical
source (a summary of all subcortical and cortical afferents), was
Table 2
The variance described and the free energy for the different models inverted for each pa-
tient. Note that the winning model (highest free energy) also had the best fit and these
were the same models for both patients. The free energies are expressed relative to the
null model.

Model Patient 1 Patient 2

Variance
explained

Free
energy

Variance
explained

Free
energy

Inhibitory + excitatory + endogenous 0.97 1430 0.95 1740
Inhibitory + excitatory 0.97 1380 0.94 1650
Inhibitory + endogenous 0.97 1320 0.94 1600
Excitatory + endogenous 0.96 1310 0.94 1680
Inhibitory 0.90 860 0.91 1130
Excitatory 0.91 1010 0.92 1460
Endogenous 0.91 950 0.91 1230
Null 0.50 0 0.75 0
modelled as coloured noise (with spectral features) and was also
allowed to change during the seizure activity. The time frequency pro-
file of this afferent input is illustrated in Figs. 8A and B. It can be seen
that there was an increase in the amplitude and a change in the spec-
trum of afferent input during the seizure, suggesting a distributed epi-
leptogenic process beyond the source that was modelled explicitly.

Summary

In summary, we found remarkable similarities between the explana-
tions for seizure activity in both patients, regarding changes in the under-
lying cortical intrinsic connectivity. In general, these changes involved
increases in the amplitude and changes in the spectrum of afferent
(endogenous) activity, together with dissociable changes in inhibitory
and excitatory intrinsic connectivity and their balance; peaking
successively during seizure activity. Furthermore, model comparison
revealed the contribution of changes in both excitatory and inhibitory
connectivity— in addition to the afferent input from subcortical and cor-
tical structures; suggesting the importance of distributed network dy-
namics in seizure initiation and maintenance.

Discussion

In effect, we used DCM as a virtual microscope to track the changes in
cortical dynamics during epileptic seizures registered with scalp EEG
from two patients with anti-NMDA-R encephalitis. This allowed us to
infer activityof the constituent cell populations inepileptogenic sources—
and the underlying changes in connectivity and afferent input subtending
this activity. Our results indicated an increase in activity of all cell types
during seizure activity. Furthermore, we identified systematic changes
in inhibitory and excitatory connectivity — suggesting a disruption of
excitatory–inhibitory balance during seizure activity. This is, to our
knowledge, the first time that cortical dynamics of seizure activity in-
duced by anti-NMDA encephalitis has been inferred quantitatively from
non-invasive EEG data.



Fig. 5. Changes in inhibitory and excitatory connectivity and their associated balance (difference). The parameters are shown as log scaling parameters. The first column shows changes
inferred from average seizure activity and the second column shows themean of connectivity changes (±2 standard deviations) inferred from individual seizures for patient 1. The third
and fourth column shows changes for patient 2, note that the standard deviationwere not calculated for patient 2, as therewere only two seizures. Note the peaks in activity occurring first
for inhibitory activity followed by excitatory activity followed by excitatory-inhibitory balance (red and pink arrows).
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Increased disinhibition has been previously suggested as a possible
cause of epileptic seizures (Wendling et al., 2002); however, several in-
vivo and in-vitro studies have shown that there is sustained inhibitory ac-
tivity during seizures and that disinhibition may not be necessary for
Fig. 6. The top row illustrates electrographic activity for fiveminutes before and after seizure ini
The lower row shows similar results for patient 2. Note the absence of changes inferred during
seizure generation (Dailey et al., 1989). In this study, we see amore com-
plex picture, where we found a sequential peaking of inhibitory connec-
tivity, excitatory connectivity and finally excitatory–inhibitory balance.
The net effect on each of the main four cell types within cortical sources
tiation for patient 1, together with inferred changes in connectivity (under the full model).
seizure activity.



Fig. 7. A). Time–frequency responses of each cell type in the canonical microcircuit model for patient 1. There is a general increase in activity of all four cell types during seizure activity.
Superficial pyramidal cells show an early increase in spectral activity, with a subsequent slower reduction; while the inhibitory and deep pyramidal cells show amore sustained increase.
B). Similar results for Patient 2 show a similar transient increase in superficial pyramidal activity and a more sustained response in the inhibitory cells.
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suggest an increase in activity but a decreasing frequency of the deep py-
ramidal cells activity as the seizure progressed. The exact timing of the ac-
tivation of each cell type is controlled by slow fluctuations in the intrinsic
connections to and from the input (granular or spiny stellate population).
Fig. 8.A). Spectral input for patient 1. Note that there is an increase in spectral activity during th
end of the seizure.
At seizure onset, we see increased activity in the superficial pyramidal
cells, which convey mainly fast (beta and low gamma band) activity to-
gether with a slightly prolonged activation of deep pyramidal cells,
which show slower activity (alpha and theta band). This was more
e seizure. B). Similar results for Patient 2 shows an increase in spectral activity towards the
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pronounced in the first patient, where there is a greater change in fre-
quency during the seizure. This change of activation from superficial
layers of the cortex to deeper (infragranular) layersmight be a ubiquitous
feature of seizure activity— as a decrease in themain oscillatory frequen-
cy is characteristic of seizure activity. This electrophysiological pattern
has also been termed the brain chirp (Schiff et al., 2000).

We were able to ask, using Bayesian model comparison, whether
seizure activity originating from the epileptogenic source depended
on other regions of the brain or not. Model comparison suggested that
seizure activity was indeed dependent on other subcortical or cortical
regions. However, this time varying spectral input was not sufficient
to explain seizure activity — as changes in intrinsic connectivity was
necessary to explain changes in spectral activity (and thedifferent activ-
ity profiles of superficial and deep pyramidal populations). Thesefluctu-
ations in intrinsic connectivity can be thought of as changes in synaptic
gain. Changes in gain can be mediated by various biophysical and bio-
chemical mechanisms, such as membrane-potential dependent ion
channels conductance or changes in ion concentrations. The effects of
intra and extracellular ion concentrations have been associated with
the generation of seizures in vivo and in vitro (Frohlich et al., 2010;
Ingram et al., 2014). Experimental and computational studies speak to
the importance of ionic homeostasis and several models have included
glial cell physiology in this context (Frohlich et al., 2010; Ullah et al.,
2009). As epileptic seizures are sometimes prolonged – and can last
for minutes or hours – there is also a possible role for short and long-
term receptive plasticity. Furthermore, seizures are not physiological
events and may affect neuronal dynamics pathologically through ener-
gy (ATP) or oxygen depletion, which has been shown in vivo (Ingram
et al., 2014; Wei et al., 2014). In short, further modelling of ionic and
synaptic homeostasis might be necessary to understand the detailed
causes of the slow parameter variations of the sort seen in the study.

Several studies have shown that it is possible to estimate synaptic
parameters using inversion schemes based on extended and unscented
Kalman filters but also using alternative methods like multi-objective
genetic algorithms (Freestone et al., 2014; Nevado-Holgado et al.,
2012; Schiff and Sauer, 2008; Ullah and Schiff, 2010). It is important
to appreciate that the DCM scheme used here is formally distinct from
filtering schemes. This is because the data features used by DCM here
are not the timeseries but their spectral density. Effectively, this enables
DCM to parameterise the second order statistics of endogenous fluctu-
ations generating seizure activity. In our case, we used a mixture of
scale free dynamics (specified with a 1/f form in frequency space) and
other coloured components we attribute to fast neuronal fluctuations
in afferent input from other sources. This means that we do not have
to estimate hidden neuronal states (as in Bayesianfiltering) but can for-
mulate the inverse problem purely in terms of unknownmodel param-
eters. Furthermore, inverting models based upon spectral responses
enables one to average over multiple seizures to provide a computa-
tionally efficient summary of seizure activity.

Biological considerations suggest dysfunction in both excitatory and
inhibitory synaptic activity, as these synaptic connections are affected in
anti NMDA-R encephalitis (Moscato et al., 2014). We therefore
modelled fluctuations in the intrinsic gain of excitatory and inhibitory
connectivity. It is possible that several excitatory (and inhibitory) con-
nections could change independently during seizure onset; in principle,
this can be addressed using Bayesian model comparison. Note that in-
troducing more free (changes in intrinsic connectivity) parameters
would increase the accuracy of the fits but may reduce model evidence
by incurring a large complexity cost. In this paper, we used a parsimoni-
ous model of gain fluctuations, because our focus was on changes in in-
trinsic connectivity, relative to changes in extrinsic afferents.

In this studywe focused on the temporal dynamics of seizure activity
but not its spatial dynamics. The (pragmatic) reason for this was the
sparse set of electrodes used for recording the seizure. We used a low-
density setup, as these patients were being treated in an intensive care
unit and the clinical indication for EEG was to detect the presence of
seizure activity (not source localisation).Wewere able, by visual analysis
of the EEG, to determine that the seizures were focal. This observation
was used to motivate a single (epileptogenic) source model. The main
reason for reconstructing distributed seizure activity (including source
localisation) is to delineate the seizure onset zone in cases of pre-
surgical evaluation of patients with refractive epilepsy. Usually this is ac-
complished with high-density recordings. In the future, we hope to
model seizure activity recorded with high density EEG and apply similar
methods using DCM to obtain amore comprehensive characterisation of
the spatiotemporal dynamics.

Recently, a canonical (Epileptor) model of epileptic seizure activity
was presented, which provided a formal taxonomy of seizure activity
in terms of bifurcations (Jirsa et al., 2014; Proix et al., 2014). The onset
and offset of seizure activity were described as saddle node and
homoclinic bifurcations, respectively. Predictions of inter spike timing
and direct current shifts associated with seizure onset and offset were
also confirmed in vitro. This Epileptormodel uses coupling between dy-
namics at different time scales — such that bifurcations can be induced
by slowly varying neuronal states. In the present study no dynamical
model was used for the slow fluctuations of synaptic parameters, only
smoothness constraints were imposed. In a forthcoming study we will
consider biophysically plausible DCMs in which slow parametric varia-
tions depend on the fast activity of the hidden states, based on activity
dependent plasticity.

We assumed fluctuations in synaptic efficacy were at least one time-
scale slower than EEG activity. This prior assumption was imposed using
smooth temporal (discrete cosine) basis functions to model changes in
parameters (see Appendix A). This procedure requires the whole data
set to be inverted at once, which is computationally intensive but practi-
cally possible, if a small number of cortical sources are modelled. When
analysing a more realistic dataset (with several sources of an epileptic
network) model inversion can become computationally intractable. In
this setting, Bayesian belief updating, may provide a more efficient
scheme for estimating slowly varying parameters, where estimates are
updated from epoch or window to window. This form of updating is for-
mally similar to the Kalmanfilter techniques used in other studies to infer
parameter dynamics from non-invasive and invasive recordings (Schiff
and Sauer, 2008; Ullah and Schiff, 2010). If the generative model is very
non-linear other techniques can be used such as genetic algorithms or
numerical continuation procedures for bifurcations analysis (Blenkinsop
et al., 2012; Nevado-Holgado et al., 2012). Finally, Generalised Filtering
is a recently described Bayesian filtering scheme that allows for estima-
tion of slowly varying parameters, which has already been used to esti-
mate hidden states and parameters in fMRI analysis (Friston et al.,
2010). In a forthcoming study, we will compare the analysis described
above with computationally efficient Bayesian belief updating schemes.
These might provide accurate and efficient schemes for the inversion of
larger epileptic networks.

Conclusion

With DCMwewere able to infer the cortical pathophysiology of sei-
zure activity from two patients with anti-NMDA-R encephalitis record-
ed in a clinical setting. We found distinctive changes in excitatory–
inhibitory balance were necessary to explain observed seizure activity
and that these changes were conserved over seizures. The same pattern
of changes was observed in a second patient with the same seizure
aetiology. We hope to model an extended group of patients to see
whether our findings generalise and further characterise the mecha-
nisms of seizure activity in anti-NMDA-R encephalitis.
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Appendix A

A.1. Canonical microcircuit model

The canonical microcircuit represents the activity of a cortical source
and comprises four populations of cells that are assigned to various
layers in the cortex. Each cell type is represented by a critically damped
harmonic oscillator driven by connections from other populationswith-
in the source and through extrinsic connections from other sources
(with a delay for transmission between cell types, δ), see Fig. 2. The neu-
ronal dynamics are given by,

d2X
!

dt2
þ 2T−1 dX

!
dt

þ T−2X
!¼ U

!þ g S
!

X
!� �

A1:1

• X
!

is a 4 × 1 vectorwhere the i-th element represents themean poten-
tial of the i-th population.

• T is a 4 × 4 diagonal matrix containing the time constants of the four
populations.

• U
!

is a 4 × 1 vector of afferent input to the i-th population δ on: here,
just the first.

• g is a 4 × 4 matrix of intrinsic connections along the four popula-
tions, excitatory connections are positive while inhibitory connec-
tions are negative.

• S
!

X
!� �

is a 4 × 1 sigmoid vector function of mean potential that

models the firing rate of the population; i.e.,

Si X
!� �

¼ Sigm X
!

tð Þ
� �

¼ tanh γ X
!

t−δð Þ
� �

A1:2
Where δmodels the conduction delays and γmodels the sensitivity
of neuronal firing to depolarisation.

See Table 1 for definition of parameters. In the current model, ten of
the intrinsic connectivity gains gij were nonzero. The predicted re-
sponse, y (the activity of the virtual electrode), is given by:

y ¼ CTX
!

A1:3

where C is 4 × 1 vector describing the leadfield of each subpopulation in
the cortex, in the current model, C is a weighted sum of the membrane
potentials of the two pyramidal cell populations.

A.2. Transfer functions

We are interested in modelling the perturbations of this system
around its fixed point induced by exogenous input. Under local linear
assumptions, one can write Eq. (A1.1) in normal form; i.e., as a linear
first order differential system:

dX
!
dt

¼ JX
!þ U

!
A2:1

J is the Jacobian of the operator mapping the neuronal states to their

time-derivatives and X
!

is now a 8 × 1 vector. The Laplace transform of
Eqs. (A1.3) and (A2.1), together a re-arrangement furnishes the transfer
function mapping the exogenous input to the spectral output of the
source.

~y ¼ H sð Þ ¼ CT sI− Jð Þ−1 eU! A2:2

The tilde sign is used to denote the Laplace transform. The transfer
function H(s) will depend on the parameters of the model through the
Jacobian J and the parameterised exogenous input, which means that
the spectral output is a function of model parameters θ.

~y ¼ H θ; sð Þ A2:3

See Moran et al. (2011a,b,c) and Friston et al. (2012) for further de-
tails. The spectral density of the input is modelled as 1/f noise with am-
plitude and power law parameters together with a parameterised
spectral innovation. The spectral innovation was parameterised using
a discrete cosine set of order 8. Channel-specific measurement noise
was modelled as 1/f noise with amplitude and power law parameters.

A.3. Changes in parameters

Three of the (g3, g4, g9) representing inhibitory connections and
three excitatory connections (g5, g6, g8) were allowed to change with
time, as were the parameters of the (power law) spectral density of
afferent input, see Table 1. As we wanted to infer slow changes over
time we approximated this variation using a truncated series of cosine
functions.

gi tð Þ ¼ giΓ inh tð Þ; i ¼ 3;4;9 A3:1

gi tð Þ ¼ giΓexc tð Þ; i ¼ 5;6;8 A3:2

The time course of changes Γi(t), i= inh, exc, was parameterised as a
discrete cosine set of order 8. Similar equations were used for parame-
ters determining the spectral input.

A.4. Model inversion and variational free energy

Model inversion corresponds to optimising variational free energy
with respect to an approximate posterior over the unknown model pa-
rameters. For more details on the following see (Friston et al., 2007).
Variational free energy, F, is defined as the difference between the evi-
dence for a model and the Kullback–Leibler divergence (DKL) between
the approximating posterior, q(θ), and the true posterior.

F qð Þ ¼ log p ~yjmð Þ−DKL q θð Þjjp θj~yð Þð Þ A4:1

Note that for any pair of probability distributions, q and p,
DKL(q||p) ≥ 0, with equality only when the distributions are identical.
The free energy evaluated at any given q is less than the evidence for
themodel. Thismeans that bymaximising Fwith respect to the approx-
imate posterior, one can evaluate a lower bound for the evidence, while
(at the same time)minimising the difference between the approximate
and true posteriors. Note that the sign of the variational free energy
used here is opposite to the definition used in the physics literature.

A.5. Variational Laplace

The free energy can be written as the difference between the
expected energy and the entropy of the variational parameter
distribution.

F ¼ log p ~yj θ!ð Þð Þh iq þ log p θ
!� �� �D E

q
− log q θ

!� �� �D E
q
: A5:1

The first two terms represent the expected energy. Under the La-
place assumption that the approximate posterior is Gaussian with
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mean and covariance (μ, Σ), the expected energy can be expressed as
follows (ignoring constants).

L μð Þ ¼ −
1
2
εTΠε−

1
2
εθ

T
Πθεθ þ 1

2
log Πj j A5:2

• μ is the mean of the approximate posterior
• ε = ỹ(s) − H(μ, s) is the prediction error
• εθ = μ − μθ is the difference between the posterior and prior mean.
• Π is the precision of sampling errors
• Πθ is the precision (inverse covariance) of the prior distribution.

The free energy is maximised by performing a gradient ascent on
Eq. (A5.2). At convergence themeanof theposterior is retrieved. Finally,
theposterior covariance is estimated from theHessian of the inverse en-
ergy at its mean.

∑−1
i j ¼ −

∂2L μð Þ
∂θi∂θ j

A5:3
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