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Summary: Statistical parametric maps (SPMs) are poten­
tially powerful ways of localizing differences in regional 
cerebral activity. This potential is limited by uncertainties 
in assessing the significance of these maps. In this report, 
we describe an approach that may partially resolve this 
issue. A distinction is made between using SPMs as im­
ages of change significance and using them to identify foci 
of significant change. In the first case, the SPM can be 
reported nonselectively as a single mathematical object 
with its omnibus significance. Alternatively, the SPM 
constitutes a large number of repeated measures over the 
brain. To reject the null hypothesis, that no change has 

Statistical maps are an important alternative to 
region of interest (ROI) analysis in the localization 
of differences in positron emission tomography 
(PET) images. Statistical maps can be looked at in 
two ways. They represent images of change signif­
icance, as opposed to change magnitude, allowing 
brain regions to be compared qualitatively in terms 
of relative significance. Alternatively, they have the 
potential to localize change at a given level of sig­
nificance. 

The distinction between images of change size 
and change significance relates to regional differ­
ences in the variability of cerebral activity. Signifi­
cance has two components: the size of the differ­
ence and the error variance associated with its mea­
surement. Statistical parametric maps (SPMs) are 
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occurred at a specific location, a threshold adjustment 
must be made that accounts for the large number of com­
parisons made. This adjustment is shown to depend on 
the SPM's smoothness. Smoothness can be determined 
empirically and be used to calculate a threshold required 
to identify significant foci. The approach models the SPM 
as a stationary stochastic process. The theory and appli­
cations are illustrated using uniform phantom images and 
data from a verbal fluency activation study of four normal 
subjects. Key Words: Positron emission tomography­
Statistics-Significance-Activation-Cerebral blood 
flow-Stochastic processes. 

therefore functions of change size (e.g., subtraction 
images or change score images) and reliability of 
measuring change, or error variance. Qualitative in­
terpretation and reporting of SPMs as single objects 
is justifiable given that the probability of obtaining 
the SPM, or a more unlikely one, is calculated. This 
sort of approach has been described for images of 
change scores by Fox et al. ( 1988) as part of 
"change distribution analysis." With SPMs, the es­
timation of this "omnibus significance" reduces to 
comparing the number of expected and observed 
pixels above a given threshold using the X2 statistic 
or with reference to the Poisson distribution (Col­
lings, 1977), as previously described (Friston et aI., 
1990). This comparison is only valid if the size of 
the SPM is much greater than its resolution. If this 
were not the case, then the SPM's smoothness will 
affect the distribution of pixel values. 

The omnibus significance relates to the collective 
profile of differences described by the SPM but 
does not relate to the significance of change at any 
single location. To repQrt that a particular cortical 
area has increased significantly, irrespective of 
changes elsewhere, the null hypothesis of no 
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change is being rejected for that position. The SPM 
in this case is being used as a set of repeated mea­
sures, each corresponding to a different location. 
The probability of a significant finding occurring by 
chance, in this set, must be approximated. That ap­
proximation is addressed in this article. 

The assessment of significance is confounded by 
the large number of pixels and by image smoothness 
imposed by the PET technique. The smoothness 
present in statistical maps means a large number of 
comparisons are made that are not independent. 

There is no satisfactory method that allows a 
proper adjustment to a threshold that accommo­
dates both large pixel number and smoothness. This 
is a major obstacle to interpretation. We present a 
theory and method that makes an adjustment for 
multiple comparisons that is less severe than a Bon­
ferroni correction, which treats every pixel as an 
independent test (which they are clearly not). This 
method depends on assumptions that are only ten­
able in the special case of SPMs. 

The approaches described are empirically vali­
dated and then applied to a verbal fluency PET ac­
tivation study, as an illustration of their use. 

THEORY 

A statistical map is a two-dimensional image pro­
cess whose pixel values are a statistic that reflects a 
difference. For any comparison (pixel), under the 
null hypothesis, the distribution of the statistic ap­
proximates to an analytically determined distribu­
tion. This distribution allows the probability of get­
ting an observed value of a statistic, or a greater 
value, to be calculated. 

Statistical maps (e.g., of the t statistic from a 
comparison of means) can be transformed to the 
normal distribution (using a probability integral 
transformation) with no loss of information. Under 
the null hypothesis, such a map will have pixels 
whose mean is zero and whose standard distribu­
tion is unity. However, the image process is not 
completely specified until the smoothness is 
known. This can be estimated in terms of the spec­
tral density, the autocorrelation function, or the 
variance of the image's gradients (see below). Fur­
thermore, it is assumed that under the null hypoth­
esis, this wide-sense stationary random process will 
be featureless, its autocorrelation function being a 
function only of the distance between two points. If 
this is the case, the process is said to be homoge­
neous and isotropic (Rosenfeld and Kak, 1976, p. 
39). The concept of homogeneous random pro­
cesses is a generalization of a one-dimensional sto­
chastic process to higher dimensions. For a full dis-

cussion of stationary processes, see Cox and Miller 
(1980, pp. 272-366). 

Threshold adjustment 

In the special case of no smoothing, each pixel 
will represent an uncorrelated, independent mea­
sure. The probability that any pixel will have a 
value of t or greater is given by p. For a Gaussian 
process, this is the appropriate integral under the 
normal distribution [P(§, t)]. For N pixels, an adjust­
ment to t is required to protect against false posi­
tives. A Bonferroni correction will ensure that the 
probability of obtaining at least one pixel above t is 
less than p, where t now corresponds to a proba­
bility of piN for each pixel. N represents the num­
ber of independent measures or degrees of freedom. 
In this case, the event of interest is a single pixel 
exceeding t; however, in the presence of smooth­
ing, pixel values will not be independent, suggesting 
that this would be an overcorrection. In the pres­
ence of smoothing, pixels that exceed t will cluster 
together and constitute suprathreshold regions. The 
number of these regions will be less than the num­
ber of pixels above t, as each region has many pix­
els. One approach is to reformulate the problem in 
terms of the event of interest. The event of interest 
(a false positive in the absence of change) can be 
defined as the centre of a contiguous region above 
t. The number of false positives and the number of 
centres will be the same. The probability (fl) that 
such an event will occur at any pixel once estimated 
can be adjusted using a Bonferroni correction to t 
such that n = O.OS/N. Intuitively, it might be 
thought that n falls as the number of pixels per false 
positive (or smoothness) rises. Indeed, this is the 
case and the precise relationship depends on 
smoothness. We will refer to the threshold adjust­
ment for repeated measures in smooth processes as 
a smoothness adjustment. 

Measuring smoothness 

It is clear that smoothness must be estimated. 
This is a problem of parameter estimation, where 
smoothness can be reduced to a single parameter s 
(the actual smoothness will be denoted by s and the 
estimated value of s by s). It is assumed that any 
"well-behaved" SPM could have been produced by 
convolving a completely random uncorrelated pro­
cess with a Gaussian filter of width s. "Well­
behaved" SPMs, under the null hypothesis, are de­
fined as homogeneous and isotropic random fields 
with a Gaussian autocorrelation function. For a def­
inition of these terms and a fuller discussion, see 
Rosenfeld and Kak (1976, p. 37). A number of ap­
proaches to estimating s can be envisaged. The ap­
proach chosen uses the measured variance of the 

J Cereb Blood Flow Metab, Vol. 11, No.4, 1991 



692 K. 1. FRISTON ET AL. 

first partial derivatives of the image process (S�), 
where, in all dimensions (see the Appendix), 

s = VII(2 . S�) (I) 

If the size of a discrete pixel is small relative to the 
smoothness (s), then the partial derivative in one 
dimension is approximated by the difference in 
value between a pixel and its neighbour. The vari­
ance of the derivative can be approximated by cal­
culating the variance of pooled interpixel differ­
ences along rows and columns of the SPM. 

Given the assumption that the statistical process 
is stationary, isotropic, and Gaussian, for a thresh­
old (t), the probability of a false positive (0) is ap­
proximated by 

(2) 

(see the Appendix for a definition of terms). This 
equality relates the smoothness s and threshold t to 
the probability density of a false positive (0). To 
make a smoothness adjustment at p = 0.05, t is 
found that satisfies 0 = 0.05/N, where N is the size 
of the process, or number of pixels. 

The above relationship is derived from theoreti­
cal considerations and the inherent assumptions re­
quire validation. In order to confirm that using dis­
crete pixels as opposed to continuous variables has 
little effect on the above equalities, they were tested 
using simulated data. The assumptions made in gen­
eralizing the continuous variable model to dis­
cretized pixel values are that (a) pixel size is small 
relative to s and (b) s is small relative to the size of 
the SPM. 

METHODS 

Empirical validation of relationships 
Estimating s from the variance of the first partial de­

rivatives. A 256 x 256 image process was generated using 
a random (Gaussian) number generator. This matrix of 
random uncorrelated numbers was convolved with a se­
ries of Gaussian filters (s = 2 to 6 in 0.4 pixel steps). To 
simulate the effect of pixelation on this simulated contin­
uous process, two secondary processes were derived 
from the 256 x 256 matrix. By taking the mean of 4 and of 
16 contiguous pixels in the large process, 128 x 128 and 
64 x 64 pixel processes were created. The partial deriv­
ative was measured in both dimensions (differences over 
rows and columns). The pooled variance of these differ­
ences was used to estimate s according to Eq. (I). This 
estimate was repeated 10 times and the mean compared to 
the known value. The results were presented graphically 
by regressing the observed s against the actual value of s. 
The percentage error across all residuals was recorded as 
a measure of precision for both pixel sizes. 

False positive rates in smooth Gaussian processes. The 
ratio of false positives to pixel number was measured in 
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100 simulated (as above) Gaussian processes 128 x 128 
pixels in size and normalized to unit variance. This ratio 
is an estimate of O-the probability per pixel of a false 
positive. The estimation was made for different values of 
smoothness, keeping threshold constant, and for different 
values of the threshold, keeping smoothness constant. 
The ranges used correspond to values typically encoun­
tered with real data. The range of smoothness s (deter­
mined by the width of convolution filter used in generat­
ing the simulated matrices) was 2 to 6 in 0.2 pixel steps, at 
a threshold (t) of 1.96 and t was varied from 1.8 to 4 in 
steps of 0.2, at a smoothness of 4 pixels. The results of 
this simulation were presented graphically by plotting ob­
served and predicted [Eq. (2)) false positives per pixel 
against smoothness (s) and threshold (t). 

Verbal fluency PET activation study 
Subjects and activation paradigm. The subjects were 

four right-handed male volunteers (age 26-45 years) with 
no history of neurological or psychiatric symptoms. Each 
subject underwent six consecutive studies whilst per­
forming different verbal fluency tasks. The details of 
these tasks and neurophysiological findings will be re­
ported in a separate article. In brief, the first and last 
studies were under standardized relaxed conditions and 
constitute the baselines. The remaining four conditions 
included one task that involved listening to aurally pre­
sented words and nonwords. 

Data acquisition. Scanning was performed using a PET 
scanner (CTl model 931-08/12, Knoxville, TN, U.S.A.) 
whose physical characteristics have been described 
(Spinks et aI., 1988). Scans were reconstructed using a 
Hanning ftlter with a cutoff frequency of 0.5 giving a trans­
axial resolution of 8.5 mm full width at half-maximum 
(FWHM). The reconstructed images contained 128 x 128 
pixels, each having a size of 2.05 x 2.05 mm. 

Subjects inhaled C1502 at a concentration of 6 MBq/ml 
and a flow rate of 500 mllmin through a standard oxygen 
face mask for a period of 2 min. Dynamic PET scans were 
collected for a period of 3.5 min starting 0.5 min prior to 
C 1502 delivery, according to a protocol described else­
where (Lammertsma et aI., 1990) used for measuring re­
gional CBF (rCBF). For the present study, integrated 
counts per pixel for the 2 min buildup phase of activity 
during C1502 inhalation were used. 

Image analysis. Calculations and image matrix manip­
ulations were performed in PRO MATLAB (Mathworks 
Inc., Sherborn, MA, U.S.A.). 

The 15 original scan slices (6.75 mm interplane dis­
tance) were interpolated, and transformed into a 26-plane 
standard stereotactic space. The intercommissural line 
was identified, according to a previously described 
method, directly from the primary PET image (Friston et 
aI., 1989). When stereotactically normalized, 1 pixel in 
the transformed image represents 2 mm in the x and y 
dimensions according to the atlas of Talairach and 
Tournoux (1988). The brain image falls within the central 
65 x 87 submatrix of the 128 x 128 image. The slices have 
an interplanar distance of 4 mm. Significant areas within 
the statistical parametric maps were displayed with the 
proportional "grid" and brain outline used by the atlas 
(Talairach and Tournoux, 1988). Each image was 
smoothed using a Gaussian filter (FWHM = 10 pixels). 
This increases the signal-to-noise ratio and accounts for 
variations in gyral anatomy. 
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Statistical analysis 
Global variance was removed according to a previously 

described method (Friston et aI. , 1990) using analysis of 
covariance with global activity as covariate on a pixel­
by-pixel basis. This analysis generates adjusted pixel 
means for each of the six conditions and the associated 
adjusted error variance required for comparison of these 
means. The listening condition was compared to the non­
listening verbal fluency tasks by comparing the adjusted 
condition means with the t statistic (Wildt and Ahtola, 
1978). The t value was transformed to the standard Gaus­
sian distribution. The set of t values (one for each pixel) 
constitutes the statistical image (SPM). 

The expected and observed distributions of the SPM 
pixel values over all pixels were plotted together for com­
parison. 

s was estimated as for the simulation and substituted in 
Eq. (2). The threshold t was chosen that satisfied Eq. (2) 
for n = 0.05/N (where N = the brain area in pixels for 
each slice). This is the smoothness adjusted threshold 
(per slice) used to detect significantly activated brain foci. 

As a final empirical validation of these procedures, the 
whole analysis was repeated identically step for step us­
ing six groups of four, 26-slice, uniform phantom images 
with corresponding counts per pixel. The distribution of 
pixel values in the resulting SPM was displayed with the 
distribution expected and the number of false positives 
was recorded. 

RESULTS 

Validation of relationships 

The results of the simulations testing the two re­
lationships lEq. (I) and (2)] are shown in Figs. I and 
2. The agreement is evident. The percentage error 
in estimating s from the first derivatives of the sim-
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ulated SPMs was 3.6% in the 128 x 128 pixel images 
and 6.4% in the 64 x 64 pixel images. Much of this 
error is attributable to a systematic underestimation 
of smoothness for high values of s. For 128 x 128 
pixel processes, the estimation is good for sIess 
than 4 pixels. This limit corresponds to a FWHM in 
the SPM of 18.8 mm. This is above the upper limit 
of smoothness typically encountered in this unit. 

The estimated values of fl compare well to those 
predicted by Eq. (2) and serve as a partial validation 
of the assumptions (see the Appendix) made in de­
riving this equality. 

Activation study 

Estimated smoothness (s) for the verbal fluency 
data corresponded to an effective resolution with 
FWHM of 13.21 mm. The expected and observed 
distributions are seen in Fig. 3, top. The measured 
distribution shows a degree of kurtosis, which may 
be a result of differences in brain states during the 
listening task compared to the remaining three flu­
ency tasks. Over all 26 slices, the average adjusted 
threshold (t) was 3.655 [Eq. (2), dotted line in Fig. 
3, top]. There were two foci detected at this thresh­
old. As expected, both were in the superior tempo­
ral regions, one on the left and one on the right. The 
left-sided focus was in Brodmann's area 42 accord­
ing to the atlas of Talairach and Tournoux (1988). 
The slice 8 mm above the intercommissural line is 
displayed in Fig. 4 with the focus superimposed on 
the brain outline used by the atlas. For this slice, t 
was 3.746. This corresponds to an uncorrected sig-
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FIG. 1. Regression of estimated smoothness (8) parameter on the actual value 8. 8 is the width of a Gaussian convolution 
function that has been used to smooth a completely random, unsmooth image process to give the observed "smoothness." The 
estimation of 8 is based on the variance of the image process's gradient over the whole plane. The data above were generated 
by smoothing a spectrally white Gaussian number field with a convolution function of known width and then estimating that 
width retrospectively using the measured variance of its gradients [Eq. (1) in the text]. In order to assess the effect of pixelating 
a continuous process, a 256 x 256 matrix was "contracted" to a 128 x 128 (a) and a 64 x 64 pixel matrix (b). This contraction 
involves taking the average of 4 and 16 pixel "blocks" in the large matrix, respectively. 
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FIG. 2. Comparison of the ex­
pected and predicted number of 
false positives/pixel in a simu­
lated Gaussian statistical para­
metric map. A false positive is 
defined as the centre of a col­
lection of contiguous pixels 
with a value above a given 
threshold. To test the validity of 
the assumptions inherent in Eq. 
(2), the dependency of 0 (prob­
ability of a false positive) on s 
(smoothness) and t (threshold), 
sand t were varied indepen­
dently and the number of false 
positives/pixel observed com­
pared to that predicted. a: The x 

axis is the smoothness parame­
ter s defined in the legend for 
Fig. 1. The y axis is the false­
positive rate or false positives/ 
pixel; this is an estimate of O. 
The variance of the simulated 
Gaussian statistical parametric 
map was unity in all cases. This 
means that the number of pixels 
above 1.96 was equivalent for 
different degrees of smoothing . 
Despite this, the number of false 
positives falls as s increases. 
The dotted line is the observed 
false-positive rate and the solid 
line that predicted analytically 
[from Eq. (2) in the text). b: The 
same as for a but in this case t 
has been varied with s = 4 pix­
els. 
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nificance of p = 0.00014. The greatest pixel value in 
this slice was 4.83, i.e., 4.83 standard deviations 
above the mean of O. 

Phantom study 

The expected and measured distributions of pixel 
values in the SPM from the phantom study are seen 
in Fig. 3, bottom. The effective FWHM for this 
SPM was to.25 mm. This is slightly smaller than for 
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the real data and may suggest that biological coher­
ence in local activity may contribute (marginally) to 
smoothness in the final SPM. The dotted line is the 
average threshold across all planes ( = 3.948). The 
observed distribution compares well with that pre­
dicted. There was one false positive 4 pixels in size 
on plane 12. A false positive would be expected 
every 20th plane. Twenty-six planes were analyzed 
in this study. 
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FIG.3. Comparison of expected 
and observed distributions of 
pixel values in SPMs derived 
empirically from a verbal flu­
ency activation study (a) and 
uniform phantoms (b). The t sta­
tistic was used to compare ad­
justed condition means from 
four conditions (one listening to 
aurally presented material and 
three nonlistening of the activa­
tion study). The t statistical 
parametric map (SPM) was ren­
dered Gaussian by transforma­
tion and s estimated as in Fig. 1. 
An adjusted threshold was cal­
culated for each plane by find­
ing the values of t that satisfied 
Eq. (2) for n = 0.05/N. The 
dotted line is the standard 
Gaussian distribution with an 
SO of 1. 
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DISCUSSION 

By modeling statistical maps as two-dimensional 
stationary stochastic processes and parameterizing 
their smoothness, it is possible to predict the ex­
pected frequency of certain features due to chance. 
By defining a false positive as the centre of a con­
tiguous group of suprathreshold pixels, it is possible 
to derive an approximation relating the probability 
of a false positive, the threshold, and the image's 

pixel value {Z} 

smoothness. This relationship can be used to adjust 
the threshold for any given pixel number and 
smoothness. The assumptions made are (a) the size 
of the statistical process is large relative to s 
(smoothness), (b) the statistical process is Gaus­
sian, (c) the statistical process is homogeneous and 
isotropic with a Gaussian autocorrelation function, 
(d) foci above a threshold are ellipsoid, (e) the 
threshold is sufficiently high enough for d to hold as 
an approximation, and (t) pixel size is small relative 
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regions activated by listening 

level of SPM 

smoothness adjustment to p=O.05 

to s. These assumptions are only tenable under the 
null hypothesis of no change between the images 
compared. 

Central to these methods is the estimation of s, 
the smoothness parameter. It is potentially the 
weak link in the chain and requires a large amount 
of data for precise determination. In the method 
described, s was determined retrospectively from 
the image's (approximated) partial derivatives. This 
estimation is unavoidable for proper characteriza­
tion of statistical maps. 

It has been shown that treating the image process 
as a stationary stochastic process can be useful. 
The property of SPMs that justifies this approach is 
their well-behaved spatial organization. This topo­
graphic attribute of SPMs makes them a special 
case in terms of statistical analysis. In particular, 
the null hypothesis must by implication have a to­
pographic component. The question of interest is 
not simply "has change occurred?" but "is there 
change, and if so where?" Differences in the null 
hypothesis can have profound effects on the assess-

8mm 

FIG. 4. Foci of pixels whose thresholds ex­
ceed t (defined in the legend for Fig. 3). The 
focus displayed represents the extra­
auditory area (Brodmann's area 42/41). This 
activation is attributable to listening. The fo­
cus is superimposed on the brain outline and 
proportion grid used by the atlas of Talairach 
and Tournoux (1988). The level of the SPM 
was 8 mm above the intercommissural line 
and is shown on the right lateral drawing. 

ment of significance. Consider three classes of null 
hypothesis (summarized in Table O. In the first 
case, the null hypothesis explicitly includes a loca­
tion. This topographically constrained null hypoth­
esis is concerned, a priori, with detection of differ­
ences in a particular place and is rejected if the pixel 
value at that location corresponds to, say, p < 0.05 
without any adjustment for repeated measures. Re­
jection of this null hypothesis is equivalent to con­
cluding that activity at the predetermined location 
has changed. 

The second class of null hypothesis has no topo­
graphic component and states that no differences in 
the profile of cerebral activity will be found. This 
hypothesis can be rejected if the collective distribu­
tion of pixel values, or a more "extreme" distribu­
tion, has a low (p < 0.05) probability of chance 
occurrence. If rejected, it is concluded that there is 
a difference somewhere in the brain and the pattern 
of cerebral activity has changed. The site of these 
differences remains unknown but the SPM can be 
reported in its entirety as a single result, with the 

TABLE 1. Summary of different classes of null hypothesis and suggested assessment of significance 

Research question 

The primary auditory cortex (x = - 50, y = 

- 20, Z = 12 mm) responds to tones whose 
frequencies are modulated over time to a 
greater extent than it does to constant tones 
with the same frequencies and loudness 

Are there any differences in the profile of 
cerebral activity between schizophrenics 
with auditory hallucinations and those 
without 

What cortical region is critically concerned 
with the emotional tone of spoken words 
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Null hypothesis Criteria for rejection 
-------

The SPM pixel value at - 50, - 20, 12 is zero 

Single null hypothesis: the number of pixels 
corresponding to p < 0.05 is not significantly 
greater than chance expectation, i.e., there is 
no omnibus difference in the profile of 
activity 

Many null hypotheses: each pixel is zero; the 
number of null hypotheses is equal to the 
number of pixels 

p < 0. 05 at x, y, Z 

Suprathreshold pixel number is 
greater than 0.05 x total 
pixel number at p < 0.05 

Pixel value exceeds p = 0.05 
adjusted as described to 
account for the number of 
null hypotheses tested 
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corresponding" omnibus" significance. Qualitative 
features suggesting regional specificity of differ­
ences can be observed descriptively. Clearly, to re­
port all of the pixel values (above, say, p = 0.05) 
requires the results to be displayed as an image. 

Finally, to say activation has occurred at position 
x, y, z, one is rejecting the null hypothesis that the 
change at that location is zero. This null hypothesis 
is one of a large set that have been simultaneously 
tested for all locations. If significant following an 
adjustment for multiple comparisons, a point is re­
ported selectively with the stereotactic coordinates, 
irrespective of changes elsewhere. 

There is a fundamental difference between a sin­
gle null hypothesis relating to the distribution of 
statistical values across all pixels and a set of null 
hypotheses, one for each pixel. Note that it is pos­
sible to reject the second class of null hypothesis 
whilst being unable to reject the third in the same 
SPM. In other words, for a given level of signifi­
cance, the topographic pattern of differences can be 
significant yet (using the described criteria) no sin­
gle location can be said to be significant in its own 
right. This apparent paradox derives from using the 
same threshold for testing different hypotheses. For 
cognitive activations, this outcome may be under­
standable in physiological terms. The brain systems 
underlying complex behaviour are likely to be dis­
tributed and consequently the activation profile will 
be distributed across many pixels. 

Acknowledgment: We would like to thank the editor for 
guidance in the presentation of this work and the reviewer 
for substantial help in developing these ideas. K.l.F. is 
funded by the Wellcome Trust. We wish to thank the staff 
of the Cyclotron Unit for valuable discussion and for 
making these studies possible and in particular Claire 
Taylor and Graham Lewington. 

APPENDIX 

Let V{ } denote variance, C{ } denote covariance, 
and E{ } the expectation. The following assump­
tions are made: 

(a) Pixel size is sufficiently small for a Gaussian 
statistical map (X) to be an approximation of a con­
tinuous two-dimensional process X(x,y) with spec­
tral density gx(u, v). 

(b) X(x,y) is homogeneous and isotropic (Rosen­
feld and Kak, 1976, p. 39) with unit variance (S�). In 
terms of spectral density (see Cox and Miller, 1980, 
p. 313), 

s; = J:oc J:oc gx(u,v) du dv = 1 (Al) 

(c) X(x,y) is the process resulting from a convo­
lution of a random uncorrelated process Y(x,y) [of 

uniform spectral density gy(u, v)] with a Gaussian 
convolution function c(x,y). Indeed, this is how the 
simulated processes were created (see the Methods 
section). c(x,y) is characterized by width s, where 

1 2 2 2 
c(x y) = -- . e-(x +y )/2s (A2) , 

(21TS2) 

An alternative expression for function width is the 
FWHM. In this case, s = FWHMlV8In(2). The 
transfer function associated with c(x,y) is lc(u, v). 
The transfer function is related to the Fourier trans­
form of the convolution function (see Rosenfeld and 
Kak, 1976, p. 156 for a discussion of the relation­
ship between the line spread function, or convolu­
tion filter and transfer function; see Cox and Miller, 
1980, p. 320 for examples in one-dimensional pro­
cesses). 

(d) The dimensions of X(x,y) (x and y) are large 
with respect to s in Eq. (A2). X is sufficiently large 
for edge effects to be ignored. 

(e) Regions for which X(x,y) > t holds are ellip­
tical with radii rx and ry. Because X(x,y) is isotro­
pic, it is assumed E{rx} = E{ry} and C{rx,ry} = o. 

(f) t is sufficiently large for (e) to be a reasonable 
approximation. 

Derivations 

From assumption (c), the spectral density of 
X(x,y) is related to the spectral density of Y(x,y) (a 
constant) and the transfer function of c(x,y), where 

gx(u. v) = Ilc(u, v) 12 gy(u, v) (A3) 

where (see Cox and Miller, 1980, p. 322) 

lc(u,v) = J:x J:x e-(u'x+v'Y) c(x,y) dx dy 

= e -(u' +v')·s'/2 (A4) 

Therefore, 

gx(u. v) = gx(u) . gx(v) ( 2 2) 2 
= gy(u. v) . e- U +v ·s (AS) 

where gY(u.v) = S2/1T, to satisfy Eq. (Al). 
The variance of the first partial derivative of 

X(S�) with respect to x (and y) is V{a(X)/ax} 
V{a(X)/ay} (because X is isotropic) and is given by 
(Cox and Miller, 1980, p. 321) 

S� = si . JX u2 gx(u) du = 

2
\ -oc s (A6) 

by Eqs. (AI) and (AS). Using an estimate of S�, this 
relationship is used to estimate smoothness s. 
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Expectation of false positives 
A false positive at threshold t is defined as the 

centre of a contiguous region for which X(x,y) > t is 
true. 

Let qx Llx be the probability of an upcross in x at 
y = Y of the process X(x, Y) at threshold t in (x,x + 
Llx). Let p(a,b) be the joint probability density func­
tion of the process X(x, Y) and its derivative 
aX(x, Y)/ax. p(a,b) does not involve x because the 
image process is stationary. Furthermore, it can be 
shown for a stationary Gaussian process that the 
covariance of X(x, Y) and aX(x, Y)/ax is zero, i.e., 
C{X(x, Y),aX(x, Y)/ax} = O. Hence, p(a,b) has a bi­
variate normal distribution with mean (0,0) and 
covariance matrix (see Cox and Miller, 1980, p. 
294) of 

The term 112s2 is the variance of the first partial 
derivative s� in Eq. (A6). The criteria for a threshold 
crossing in x is that the process X(x, Y) intercepts 
the level t with positive slope. Over a small dis­
tance Llx, the slope will be linear and the conditions 
to be satisfied will be b > 0 and t - b . Llx < a < 
t. In the limit of Llx - 0, 

where 

Thus, 

qx = Iox b . p(t,b) db 

p(a,b) = - . - . exp - - -1 1 (-a2 b2 ) 
2n sa 2 2s� 

1 1 -t'l2 qX = -' -- ' e  
2n � (A7) 

See Cox and Miller ( 1980, p. 295) for a general der­
ivation but with t = O. 

The regions of X(x,y) for which X > t are mod­
eled as ellipses of radii rx and ry. The probability 
density of interest is the (uniform) probability that 
the centre of an ellipse will fall in the intervals x:x + 
dx, y:y + dy. Let this be D. 

The conditional density, given an ellipse, of its 
radii is p(rx,ry I D = 1). By assumption (e), this will 
factorize into the marginal probability densities. Let 
p(rx,ry I D = 1) = p(rx) . p(ry) . p(rx,ry I D = 1) 
will not be a function of x or y because ellipse size 
will not vary systematically with position. There­
fore, the probability that the centre of an ellipse of 
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radii in the intervals rx:rx + drx, ry:ry + dry will 
fall in x:x + dx, y:y + dy is 

j(x,y,rx,ry) = D . p(rx) . p(ry) (A8) 

The probability of an upcross in X(x, Y) over x = 0 - x at t is the approximate probability that the 
centre of an ellipse will fall in the interval x = 0 -
x, y = Y - ry - Y + ry (approximate because of 
the simplifying assumptions): 

[X q xdx = [X I Y+ry [x [xj(x,y,rx,ry)dxdydrxdry 
Jo Jo Y-ry Jo Jo 

Therefore, 

qx = 2DE{ry} (A9) 

The contribution of an elliptical region to the total 
expected area for which X(x,y) > t is true is n 

rx . ry. This expectation of area is also determined 
by the probability that X(x,y) > t = p(X > t). As X 
is Gaussian with unit variance, this is given by the 
integral under the normal distribution. Let p(§, t) 
denote this integral: 

p(§,t) = 00 __ e- (/2 dt J 
1 ' 

t Vh 
Therefore, for a process of size x,y, the expectation 
of area is (assuming no overlap) 

I: I: p(X > t) dx dy = Io
x I: 1000 10

'" 
n . rx . ry 

. j(x ,y ,rx ,ry) dx dy drx dry 

x . y . p( §, t) = x . y . D . n . 10'" 1000 rx 

. ry . p(rx ,ry) drx dry 

Given that p(rx,ry) = p(rx) . p(ry) and E{rx} 
E{ry} , this equality reduces to 

p(§,t) = DnE{ry}2 (AIO) 

Eliminating E{ry} from Eqs. (A9) and (AIO) and re­
arranging for D, we have 

D is the probability of X[over x:x + dx, y:y + dy for 
any x,y] taking a value greater than t and being at 
the centre of an ellipsoid region where X > t. 

To make a Bonferroni correction at p = 0.05 for 
a process X of size N, we require t to satisfy D = 

0.05/N. 



SIGNIFICANCE IN STATISTICAL MAPS 699 

REFERENCES 

Collings SN (1977) Mathematical Statistics: Its Setting and 
Scope. Milton Keynes, The Open University Press, pp 73-
75 

Cox DR, Miller HD (1980) The Theory of Stochastic Processes. 
New York, Chapman and Hall, pp 272-336 

Fox PT, Mintun MA, Reiman EM, Raichle ME (1988) Enhanced 
detection of focal brain responses using intersubject averag­
ing and change distribution analysis of subtracted PET im­
ages. J Cereb Blood Flow Metab 8:642-653 

Friston KJ, P;tssingham RE, Nutt JG, Heather JD, Sawle GV, 
Frackowiak RSJ (1989) Localization in PET images: Direct 
fitting of the intercommissural (AC-PC) line. J Cereb Blood 
Flow Metab 9:690-695 

Friston KJ, Frith CD, Liddle PF, Lammertsma AA, Dolan RD, 
Frackowiak RSJ (1990) The relationship between local and 

global changes in PET scans. J Cereb Blood Flow Metab 
10:458-466 

Lammertsma AA, Cunningham VJ, Deiber MP, Heather JD, 
Bloomfield PM, Nutt JG, Frackowiak RSJ, Jones T (1990) 
Combination of dynamic and integral methods for generating 
reproducible functional CBF images. J Cereb Blood Flow 
Metab 10:675-686 

Rosenfeld A, Kak AC (1976) Digital Image Processing. New 
York, Academic Press 

Spinks n, Jones T, Gilardi MC, Heather JD (1988) Physical 
performance of the latest generation of commercial positron 
scanner. IEEE Trans Nucl Sci 35:721-725 

Talairach J, Tournoux P (1988) A Co-planar Stereotaxic Atlas of 
a Human Brain. Stuttgart, Thieme-Verlag 

Wildt AR, Ahtola OT (1978) Analysis of Covariance, Sage Uni­
versity Paper Series on Quantitative Applications in the So­
cial Sciences, Series no. 12. Beverly Hills, London, Sage 
Publications 

J Cereb Blood Flow Metab, Vol. 11, No.4, 1991 


