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Recently, there has been a lot of interest in characterising the connectivity of resting state brain networks.Most of
the literature uses functional connectivity to examine these intrinsic brain networks. Functional connectivity has
well documented limitations because of its inherent inability to identify causal interactions. Dynamic causal
modelling (DCM) is a framework that allows for the identification of the causal (directed) connections among
neuronal systems — known as effective connectivity. This technical note addresses the validity of a recently
proposed DCM for resting state fMRI – as measured in terms of their complex cross spectral density – referred
to as spectral DCM. Spectral DCMdiffers from (the alternative) stochastic DCMby parameterising neuronal fluctu-
ations using scale free (i.e., power law) forms, rendering the stochastic model of neuronal activity deterministic.
Spectral DCM not only furnishes an efficient estimation of model parameters but also enables the detection of
group differences in effective connectivity, the form and amplitude of the neuronal fluctuations or both. We com-
pare and contrast spectral and stochastic DCM models with endogenous fluctuations or state noise on hidden
states. We used simulated data to first establish the face validity of both schemes and show that they can recover
the model (and its parameters) that generated the data. We then used Monte Carlo simulations to assess the
accuracy of both schemes in terms of their root mean square error. We also simulated group differences and com-
pared the ability of spectral and stochastic DCMs to identify these differences.We show that spectral DCMwas not
only more accurate but also more sensitive to group differences. Finally, we performed a comparative evaluation
using real resting state fMRI data (from an open access resource) to study the functional integrationwithin default
mode network using spectral and stochastic DCMs.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
Introduction

In recent years there has been amarked increase in research that com-
bines resting state fMRI with large-scale ‘network analyses’ (Nakagawa
et al., 2013; Smith et al., 2013;Wang et al., 2010). Themajority of studies
report functional connectivity, reflecting statistical dependencies
(e.g. temporal correlations) between spatially remote neurophysiological
regions. These correlations are inherently undirected, and preclude infer-
ence about (directed) causal interactions among neuronal systems. In
contrast, effective connectivity summarises the causal influence one
neural system exerts over another using a model of neural interactions
that best explains the observed signals or their functional connectivity:
in brief, effective connectivity causes functional connectivity. Effective
connectivity is, necessarily, directed. However, it should be noted that
functional connectivity can also be directed; e.g., partial correlation
and parametric (resp. nonparametric) Granger causality based on
for Neuroimaging, Institute of

. This is an open access article under
Yule–Walker (resp. Wilson–Burg) formulations. These characterisations
provide measures of directed statistical dependencies because they con-
sider how much past observations predict the current observation
(Friston et al., 2014a).

We recently introduced a new dynamic causal model (DCM) for
modelling intrinsic dynamics of a resting state network (Friston et al.,
2014b). This DCM estimates the effective connectivity among coupled
populations of neurons, which subtends the observed functional con-
nectivity in the frequency domain. We refer to this as spectral DCM
(spDCM). Spectral DCM uses a neuronally plausible power-law model
of the coupled dynamics of neuronal populations to generate complex
cross spectra among measured responses. In particular, this spectral
DCM is distinct from stochastic DCM (sDCM) (Friston et al., 2011; Li
et al., 2011) as it eschews the estimation of random fluctuations in
(hidden) neural states; rendering spectral DCM essentially deterministic
in nature.

In this paper, we establish the construct validity of spectral DCM
by comparing and contrasting it with stochastic DCM. This paper
comprises of four sections. We begin by rehearsing the theoretical
background of both spectral and stochastic dynamic causal models.
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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1 Strictly speaking, the hidden states include both neuronal and haemodynamic states;
however, for simplicity, we will ignore haemodynamic states in this paper.
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Thesemodels are similar to conventional deterministic DCM for fMRI
(Friston et al., 2003) but include these statistics of endogenous activity
that reproduce functional connectivity (correlations) — of the sort ob-
served in resting state fMRI. DCMs for resting state data are also slightly
simpler: given that most resting state designs compare groups of sub-
jects (e.g. patient cohorts vs. controls); spDCMs do not usually require
the bilinear term (accounting for condition-specific effects on effective
connection strengths). In the second section, we address construct
validation of spectral DCM against stochastic DCM, using simulated
time series.We compare the accuracy of model inversion, demonstrating
that ‘true’ effective connectivity can be recovered using both schemes
with an acceptable rootmean square error. In the third section,we repeat
the simulations but with simulated group differences, to see if the
schemes can successfully recover true differences in effective connec-
tivity. In the fourth section, we conclude with an empirical (compara-
tive) evaluation using data available from an open source database,
with an illustrative focus on functional integration within the default
mode network.

Dynamic casual modelling of resting brain networks

There has been a large surge of research recently examining sponta-
neousfluctuations in BloodOxygen Level Dependent (BOLD) fMRI signals
measured using fMRI. These fluctuations can be attributed to the sponta-
neous neural activity, which is usually ignored in the deterministic DCM
models of responses to (designed) experimental inputs.

Classically, deterministic DCMs are cast as multiple input multiple
output (MIMO) systems, where the experimentally designed inputs
enter the brain to produce an observed BOLD response. In the absence
of external inputs – as is the case in the resting state fMRI – one would
imagine that neuronal networks are perturbed by activity that is internal
to the systemor by intrinsic fluctuations seen in any biological system for
e.g. see Faisal et al. (2008). These perturbations are the endogenous neu-
ral fluctuations, which are responsible for driving the coupled dynamics
of the hidden neuronal states. The inclusion of the neural fluctuations
means that the model is now based on random differential equations
having both the drift and diffusion components. The drift component of
this random differential equation entails the Jacobian; i.e., the effective
connectivity matrix, whilst the diffusion component models the endoge-
nous fluctuations. We have introduced several schemes that can invert
these sorts ofmodels (Friston et al., 2010, 2014b; Li et al., 2011) that differ
according to how the endogenous fluctuations are treated.

Model inversion using sDCMestimates both the effective connectivity
and the neuronal fluctuations from the BOLD signal, which entails a diffi-
cult triple estimation problem and uses advancemethods like generalised
filtering (Friston et al., 2010) for parameter estimation. In contrast,
spDCM parameterises the form of the endogenous fluctuations; specifi-
cally, by characterising them in terms of their cross spectral densities.
This eliminates the need to estimate the neuronal fluctuations and signif-
icantly simplifying model inversion. In what follows, we briefly review
thesemodels in turn. It is useful to remember that DCM for fMRI consists
of two parts; (1) the neuronal state model, describing how the dynamics
of coupled neuronal populations interact, and (2) the haemodynamic
model, which transforms hidden neural states of each population or
region into predicted BOLD responses — using a previously established
biophysical model (Buxton et al., 1998; Friston et al., 2003; Stephan
et al., 2007). In this paper,we are only concernedwith thefirst (neuronal)
part, without changing the second (haemodynamic) part: see Stephan
et al. (2007).

The generative model

In modelling resting state activity, it is necessary to augment the
ordinary differential equations used in standard DCM, with a stochastic
term to model endogenous neuronal fluctuations. This renders the
equations of the motion stochastic. Stochastic equations are most
frequently used to model the behaviour of (open) systems operating
near or far from equilibrium that are perturbed by fluctuations in the
(thermal) environment. The stochastic generative model for the resting
state fMRI time series, like any other DCM, comprises of two equations:
the Langevin form of evolution equation (motion) is written as:

x
�
tð Þ ¼ f x tð Þ;u tð Þ; θð Þ þ v tð Þ; ð1Þ

and the observation equation, which is a static nonlinear mapping from
the hidden physiological states1 in (1) to the observed BOLD activity
and is written as:

y tð Þ ¼ h x tð Þ;φð Þ þ e tð Þ; ð2Þ

where ẋ(t) is the rate in change of the neuronal states x(t), θ are un-
known parameters (i.e. the effective connectivity) and v(t) (resp. e(t))
is the stochastic process – called the state noise (resp. themeasurement
or observation noise) – modelling the random neuronal fluctuations
that drive the resting state activity. In the observation equations, φ are
the unknown parameters of the (haemodynamic) observation function
and u(t) represents any exogenous (or experimental) inputs that drive
the hidden states— that are usually absent in resting state designs. Here,
we will assume a generalised framework in which v(t) and e(t) are ana-
lytic (i.e., non-Markovian). This simply means that generalisedmotion of
the state noiseev tð Þ ¼ v tð Þ; v� tð Þ; €v tð Þ…� �

is well defined in terms of its co-
variance. Similarly, the observation noise (t) = [e(t), ė(t), ë(t) …] has
well defined covariance (for a more detailed discussion see Friston,
2008). Consequently, the diffusion part of the generative model above
can be conveniently parameterised in terms of its precision (inverse
covariance). This allows us to cast (1) as random differential equation in-
stead of stochastic differential equation hence eschewing Ito calculus
(Friston et al., 2010; Li et al., 2011).

Statistical assumptions about the higher ordermotion of generalised
state noise implicitly specify its degree of smoothness. Interested
readers will find a theoretical motivation for using analytic state noise
in the context of studying brain dynamics in (Friston et al., 2010).
Note that standard stochastic differential equations (and related Ito cal-
culus) rely upon the fluctuations being a mixture of Wiener processes,
which are non-differentiable functions of time (Kloeden and Platen,
1999). This corresponds to a special case of generalised state noise
whose high ordermotion has infinitely high prior variance (unbounded
roughness). Within the above class of generalised state-space models,
standard Markovian state-space models are thus rather special (and
biologically implausible) cases of generalised models.

Under linearity assumptions, Eqs. (1) and (2) can be written com-
pactly in generalised coordinates of motion:

Dex tð Þ ¼ ef ex; eu; θð Þ þ ev tð Þ; ð3Þ

ey tð Þ ¼ eh ex;φð Þ þ ee tð Þ; ð4Þ

where D is the block diagonal temporal derivative operator, such that
the vectors of generalised coordinates of motion are shifted as we
move from lower-orders of motion to higher-orders. This means that
the first leading diagonal of D contains identitymatrices. For amore de-
tailed derivation and explanation please see Friston (2008). For resting
state activity, Eq. (3) takes on a very simple linear form:

Dex tð Þ ¼ Aex tð Þ þ Ceu tð Þ þ ev tð Þ; ð5Þ

where A is the Jacobian describing the behaviour – i.e. the effective
connectivity – of the system near its stationary point (f(xo) = 0) in
the absence of the fluctuations ṽ(t). Eq. (5) is an instance of a linear
dynamical system and has quasi-deterministic behaviour (Daunizeau
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et al., 2012; Tropper, 1977). Put simply, the linear dynamical system
described by Eq. (5) is insensitive to the initial conditions; hence, it
can only exhibit a limited repertoire of behaviour: linear systems
can contain closed orbits, but they will not be isolated, hence no
limit cycles – either stable or unstable – can exist, which precludes
chaotic behaviour. Technically speaking, if λ represents the eigenvalues
of the Jacobian ∂ex f ¼ A, that is λ = ν†Aν, where † denotes the general-
ised inverse, then the Lyapunov exponentsℜ(λ) of this linear dynamical
system will always be negative. In general, the Jacobian is not symmet-
rical (causal effects are asymmetric); hence the modes and eigenvalues
take complex values. For the detailed treatment of the special case of
symmetrical connectivity – in which the eigenmodes of functional and
effective connectivity become the same – see Friston et al. (2014c).
The real part of the eigenvalues plays the role of Lyapunov exponents,
whereas the imaginary part represents the oscillatory portion of the
response, which will decay (or grow) with the real part. In terms of
dynamical behaviour, irrespective of the amount of the stochastic
noise, the average trajectory of the stochastic system would follow the
trajectory of its deterministic variant — in the absence of any stochastic
forcing term.
Dynamic instabilities and intrinsic brain networks

Although the resting state model of effective connectivity is simple –

and admits only a limited repertoire of dynamical behaviour – the inclu-
sion of endogenous fluctuations provides a plausible model of intrinsic
brain networks: intrinsic dynamics are thought to be generated by the
dynamic instabilities that occur near bifurcations; i.e., dynamics that
accompany a loss of stability when certain control parameter(s) reach a
critical value (Deco and Jirsa, 2012; Freyer et al., 2011; Robinson et al.,
2002). The eigenmodes of effective connectivity that define the stability
of the resting state give rise to scale-free fluctuations that emerge from
the superposition of the few modes that decay slowly. These slowly
fluctuating (unstable) modes have Lyapunov exponents that are close
to zero. This occurs when systems approach transcritical bifurcations
(or stochastic Hopf bifurcations) when the eigenvalues are complex
(Aburn et al., 2012; Robinson, 2003) and show critical slowing (Kelso,
2010). This simply means that the ensuing networks are defined by tra-
jectories that have a fixed point that always exists but which is also
close to instability. This means that the neural fluctuations persist over
longer time scales to generate the patterns responsible for the emergence
of intrinsic brain networks. The (negative) inverse of the Lyapunov expo-
nent corresponds to the characteristic time constant of eachmode,where
each mode corresponds to an intrinsic brain network.
Free energy and Bayesian model inversion

Having considered DCMs of resting state activity, we turn to model
inversion. Bayesian model inversion means that we infer the parameters
of the model in Eqs. (3) and (4), from the observed signal y(t). Since this
inversion is computationally exorbitant, requiring high-dimensional in-
tegrals (either by brute force numericalmethods or sampling schemes),
we resort to schemes based on approximate variational Bayesian infer-
ence. Variational Bayes approximates the conditional posterior density
p(ψ|y,m) – of model parameters ψwith data y for a given modelm – by
a variational or proposal density q(ψ). Importantly, this approximation
is optimised by maximising model log-evidence, which can be expressed
mathematically as

lnp yjmð Þ ¼ F y; qð Þ þ DKL q ψð Þjjp ψjy;mð Þ½ �; ð6Þ

where F(y, q) is the free energy andDKL is the Kullback–Leibler divergence.
In turn, free energy can be expressed as

F y; qð Þ ¼ Eq lnp ψ; yjmð Þ� – Eq½ lnq ψð Þ
h i

;

¼ Eq lnp yjψ;mð Þ þ lnp ψjmð Þ½ �– Eq lnq ψð Þ½ �;
ð7Þ

whereEq :½ � is the expectation operatorwith respect to q(ψ). There are few
important observations to make here: Firstly, from Eq. (6) free energy
F(y, q)≤ ln p(y|m) is always a lower bound on themodel log evidence be-
cause the divergence term is always positive and only becomes zero
when q(ψ) = p(ψ|y,m). Secondly, maximising F(y, q) automatically min-
imizes the divergence term hence giving q(ψ) ≈ p(ψ|y, m). In other
words, bymaximising negative free energywith respect to the variational
density we get two things; first, the free energy becomes a proxy for log
model evidence (necessary formodel comparison) and second, the varia-
tional density becomes posterior density over parameters (necessary for
model identification).

Under the Laplace assumption, the proposal density assumes a
Gaussian form q ψð Þ ¼ N μ;Σð Þ, where the variational parameters,
μ and Σ, corresponds to the conditional mean and covariance respec-
tively. The free energy from Eq. (7) – under Laplace approximation –

can now be written as

F y; qð Þ ¼ lnp yjμ;mð Þ þ lnp μjmð Þ þ 1
2

ln jΣj þ n ln2πe½ �; ð8Þ

where n is the number of the parameters in the set ψ.
Another assumption that simplifies the maximisation of free energy

F(y, q) is the mean field assumption used in statistical physics. This
means that one can factorise the proposal density over a set of parameters
such that

q ψð Þ ¼ ∏ i q ψi
� �

: ð9Þ

In otherwords, F(y, q) ismaximisedwith respect to q(ψi)when there
is no variation in free energy with respect to q(ψi) (Friston et al., 2007).
Mathematically this can be written as:

ΔF y; q ψi
� �� �

¼ 0⇔
∂F y; q ψi

� �� �
∂q ψi

� � ¼ 0⇒

q ψi
� �

¼ 1
Zi

exp I q ψi
� �� �� �

;

ð10Þ

where Zi is a normalization constant and I(q(ψi)) is the variational energy.
In summary, model inversion reduces to maximising the free energy in
Eq. (8)with respect to themean (and covariance) of the proposal density
over each set of parameters. DCM generally uses a gradient ascent
scheme, known as the Variational Laplace (VL).

Inversion of stochastic models in time domain

Inverting the stochastic DCM of the form given by Eq. (1) in the time
domain, which includes state noise, is rather complicated because such
models require estimation of not only the model parameters (and any
hyperparameters that parameterise the random fluctuations), but also
the hidden states, which become random (probabilistic) variables.
Hence the unknown quantities to be estimated under a stochastic
DCM are ψ ¼ ex tð Þ;φ; θ;σf g, where σ refers to any hyperparameters
(precisions or inverse covariances) defining the neuronal fluctuations.
In terms of temporal characteristics, the hidden states are time-variant,
whereas the model parameters (and hyperparameters) are time-
invariant. There are various variational schemes in literature that can in-
vert such models, for example, dynamic expectation maximisation
(DEM) (Friston et al., 2008) and generalised filtering (GF) (Friston et al.,
2010). There is a subtle but important distinction between DEM and GF.
DEM calls on the mean field approximation described above i.e., it
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assumes q ψð Þ ¼ q ex tð Þð Þq φð Þq θð Þq σð Þ, whereas generalised filtering, as
the name suggest, is more general in a sense that it does not make this
assumption. Both schemes, however, assume a fixed form Gaussian dis-
tribution for the approximate conditional posterior densities (the Laplace
approximation). Generalised filtering considers all unknown quantities
to be conditionally dependant variables i.e., q ψð Þ ¼ q ex;φ; θ;σð Þ , and
furnishes time-dependent conditional densities for all the unknown
quantities. The time-invariant parameters and hyperparameters are cast
as time-variant with the prior constraint that their temporal variation is
very small. This translates into a smooth gradient ascent on the free
energy landscape. In brief, this online scheme assimilates log-evidence
at each time point, in the form of the free energy bound and provides
time-dependant conditional densities for all unknown quantities. This
is in contrast to schemes, like DEM (or deterministic model inversion
using VL) with mean field approximations that assimilates all the data
before computing the free energy. The marginal conditional densities
for the time-averaged parameters (and hyperparameters) from general-
ised filtering (GF) are calculated by using Bayesian parametric averaging
(BPA). This allows one to compare GFwith other schemes like the deter-
ministic model inversion employed in spDCM.

Inversion of stochastic models in spectral domain

Although the stochastic models in Eq. (1) and their inversion in time
domain provide a useful means to estimate effective connectivity they
also require us to estimate hidden states. This poses a difficult inverse
problem that is computationally demanding; especiallywhen thenumber
of hidden states becomes large. Tofinesse this problem,we recently intro-
duced a DCM based upon a deterministic model that generates predicted
cross spectra (Friston et al., 2014b). This scheme furnishes a constrained
inversion of the stochastic model by parameterising the neuronal fluctu-
ations. This parameterisation also provides an opportunity to compare
parameters encoding the neuronal fluctuations among groups. The
parameterisation of endogenous fluctuations means that the states are
no longer probabilistic; hence the inversion scheme is significantly sim-
pler, requiring estimation of only the parameters (and hyperparameters)
of the model. The ensuing model inversion in the spectral domain is
similar in spirit to previous approaches described in (Freyer et al., 2012;
Robinson, 2003; Robinson et al., 2004). Put simply, whilst DEM or GF
estimates time-dependent fluctuations in neuronal states producing ob-
served fMRI data, spDCM simply estimates the time-invariant parameters
of their cross spectra. Effectively, this is achieved by replacing the original
time series with their second-order statistics (i.e., cross spectra), under
stationarity assumptions. This means that, instead of estimating time
varying hidden states, we are estimating their covariance, which does
not changewith time. Thismeans thatweneed to estimate the covariance
of the random fluctuations; where a scale free (power law) form for the
state noise (resp. observation noise) that can bemotivated from previous
work on neuronal activity (Beggs and Plenz, 2003; Shin and Kim, 2006;
Stam and de Bruin, 2004):

gv ω; θð Þ ¼ αvω
−βv

ge ω; θð Þ ¼ αeω
−βv :

ð11Þ

Here, {α, β} ⊂ θ are the parameters controlling the amplitudes and
exponents of the spectral density of the neuralfluctuations. Thismodels
neuronal noise with generic 1/fγ spectra, which characterises fluctua-
tions in systems that are at nonequilibrium steady-state. A linear scaling
regime of the spectral density in double logarithmic coordinates –

implicit in (11) – is not by itself indicative of a scale free, critical process
unless γ is less than 1.5 — and the regime scales over several orders of
magnitude. We note that for the human EEG, this is generally not the
case – above 10 Hz, γ = 2.5 and above 70 Hz γ is usually greater than
3.5 – which is consistent with a Poisson process (see Bedard et al.,
2006; Miller et al., 2009). At low frequencies (less than 1.5 Hz) the
slope is shallower and it is likely that the amplitude or power enve-
lopes of faster frequencies are scale-free (Kitzbichler et al., 2009;
Linkenkaer-Hansen et al., 2001) or heavy-tailed (Freyer et al., 2009).

Using themodel parameters, θL {A, C, α, β}, we can simply generate
the expected cross spectra:

y tð Þ ¼ κ tð Þ⊗v tð Þ þ e tð Þ;
κ tð Þ ¼ ∂xg exp t ∂x fð Þ;
gy ω; θð Þ ¼ K ωð Þj j2gv ω; θð Þ þ ge ω; θð Þ;

ð12Þ

where K(ω) is the Fourier transform of the system's (first order)
Volterra kernels κ(t), which are a function of the Jacobian or effective
connectivity. The unknown quantities ψ={φ, θ, σ} of this deterministic
model can now be estimated using standard Variational Laplace pro-
cedures (Friston et al., 2007). The resulting inversion provides the
free energy bound on the log evidence ln p(gy(ω)|m) and approximate
conditional densities q(ψ) ≈ p(ψ|g(ω), m). Here gγ(ω) represents the
predicted cross spectra that can be estimated, for example, using
autoregressive (AR) model. Specifically, we use a fourth-order auto-
regressive model to ensure smooth sample cross spectra of the sort pre-
dicted by the generative model. The frequencies usually considered for
fMRI range from 1

128 Hz to the Nyquist frequency (half the sampling
rate) in 32 evenly spaced frequency bins.

In summary, both sDCM and spDCM furnish estimates of the effective
connectivity of endogenous brain networks from BOLD data acquired at
rest, using different inversion schemes. We suppose that these resting
state networks emerge from the dynamical instabilities and critical
slowing near transcritical bifurcations. Hidden neuronal activity is
modelled with random differential equations, which can be estimated
using stochastic inversion schemes (like generalised filtering in sDCM),
or by deterministic scheme modelling observed functional connectivity
(specifically the cross spectral densities in the case of spDCM). In what
follows, we use Monte Carlo simulations to assess the performance of
these schemes.

Comparative inversions and face validity

In this section,we address the face validity of the two schemes, com-
paring the models based on deterministic and stochastic modelling of
neuronal fluctuations. Simulated time series were generated from a
four node graph (producing data over 512 time bins with a repetition
time of 2 s) with known effective connectivity (see Eq. (13) and
Fig. 1). Smooth neuronal fluctuations (resp. observation noise) driving
each node were independently generated based on an AR(1) process
with an autoregressive coefficient of one half, scaled to a standard devi-
ation of one fourth (resp. one eighth). The equations of motion in
Eq. (1), together with haemodynamic observation Eq. (2) were used
to generate synthetic slow-varying time series, reminiscent of BOLD
data acquired at rest (Fig. 1). With these parameters, we produce a
maximum fMRI signal change of around 2%. The upper panels in
Fig. 1 show the variations in the amplitude of endogenous fluctua-
tions that drive the changes in the hidden and haemodynamic states
(cyan), which in turn produce the observed BOLD response. It is
worth noting that the haemodynamic signal is much smoother than
the neuronal variations – that reflect the low-pass filter-like effect of
the haemodynamic transfer function – with a time constant of several
seconds.

To assess the face validity of both schemes, we used sDCM and
spDCM to estimate the underlying effective connectivity of the same
data. For this, we used the usual priors for the hidden states, parameters
(and hyperparameters) for stochastic DCM as described previously (Li
et al., 2011), as well as the same priors for {A, α, β} in spectral DCM as
described in (Friston et al., 2014b). The effective connectivity matrix
used for generating the simulations had four nodes with bottom-up
(i.e. forward) and lateral connections having positive coupling, and
the top-down edges having negative coupling (lower right panel of
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Fig. 1). This architecture corresponds to the directed and cyclic connec-
tivity matrix:

A ¼
−0:5 0 −0:3 −0:1
0:4 −0:5 0:2 0
0 0:2 −0:5 −0:1
0:1 0:3 0 −0:5

2664
3775: ð13Þ

Note that the equations ofmotion given by Eq. (5)— only yield critical
neuralfluctuationswhen the principal eigenvalues of the Jacobian (i.e.,A)
are close to zero (see Spasojevic et al., 1996). The effective connectivity
matrix chosen here does not meet this criterion because of the strongly
damped self-connections — which are usually fixed (a priori) at −0.5
to preclude any run-away excitation.

The ensuing data we used to recover the known connection
strengths in Eq. (13) using the original time series (for stochastic
DCM) or their sample cross spectral density (for spectral DCM). The pre-
dicted and observed data features are presented in Fig. 2. The sampled
(dashed lines) and predicted (solid lines) cross spectra of the data
using spDCM were well matched. The upper left and right panels
show the real and imaginary parts of the cross spectra respectively,
whilst the second half of the upper left panel includes the cross covari-
ance function (which is real in nature). The lower panel reports the pre-
dicted time series for each region (conditional expectations— solid lines)
and errors (red dashed lines) from the sDCM inversion. As previously
demonstrated (Li et al., 2011), the prediction error remained low,
generating a predicted time series that very much resembled the ob-
served data.

The posterior estimates of the effective connectivity are shown in
Fig. 3. Posterior expectations are presented as grey bars with pink bars
indicating the 90% Bayesian confidence intervals. We have also
superimposed the true connectivity as black bars for comparison. The
upper left panel shows the posterior expectations for the spDCM inver-
sion (shown as spectral in title), whilst the lower left panel shows the
results for the stochastic scheme using generalised filtering. Clearly,
the spectral DCM's estimates are very accurate,withmost of the extrinsic
connection strengths falling within 90% confidence intervals. The intrin-
sic connections (i.e. the self-connections) are modelled as a (log) scale
parameter and have a prior mean of zero. These connections are still es-
timated with good accuracy showing around a 20% underestimation of
the self-connectivity. The stochastic scheme also performed well, with
estimates tending towards the true values but not as accurately as the
deterministic (spectral) scheme. This reiterates the point that stochastic
DCM can find it difficult to recover effective connectivity from data gen-
erated from graphswith reciprocal connectivity.We have also presented
these results in a scatter plot to illustrate the relative accuracies of the
spectral and stochastic estimates (the posterior estimates of spDCM are
closer to the true parameters than those generated by the model based
on sDCM). It can also be seen that the stochastic model underestimates
the parameters, a behaviour which has previously been reported (Li
et al., 2011) and is generally characteristic of approximate Bayesian in-
ference schemes that contend with conditional dependencies.
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Fig. 2. This figure reports the results of Bayesianmodel inversion using data shown in the previousfigure. This inversion produced predictions (solid lines) of sample cross spectra (dashed
lines) and cross covariance functions, shown in the upper two panels for spectral DCM. The real values are shown on the left and the imaginary values on the right. Imaginary values are
produced only by extrinsic (between regions) connections. The first half of these responses and predictions correspond to the cross spectra between all pairs of regions, whilst the second
half are the equivalent cross covariance functions — note that cross covariance only has real part. The lower panel shows the predicted response, in time, for the four regions and the
associated error between the predictions and the observed responses.
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Estimation accuracy and session length

In this section, we examine the accuracy of the estimates from the
two DCMs as a function of the number of time bins sampled. It has
previously been shown that including neural state noise yields more
accurate estimates for sDCM compared to its deterministic version –

which was extended to account for neural fluctuations by projecting
the state noise to some temporal basis functions – especially so in the
presence of nonlinearities (Daunizeau et al., 2012). The spectral DCMdif-
fers from earlier deterministic formulations; here we are parameterising
the neuronal state noise in frequency domain meaning, in principle, we
are still using the same stochastic model but now the model inversion
uses second order data statistics— like their cross spectra.

When assessing the accuracy of the spectral and stochastic versions,
we were primarily interested in establishing whether both versions can
predict network parameters with an acceptable accuracy, whilst
acknowledging their respective differences. The accuracy of sDCM has
been assessed previously (Daunizeau et al., 2012; Li et al., 2011). Here
the objective is to compare and contrast the accuracy of stochastic and
spectral schemes. For this purpose we use the statistical measure of
root mean squared error:

RMSθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nθ

X
j¼1

nθ θ j−θ̂ j

� �2
s

; ð14Þ

where θand θ̂ are the true and estimated parameter vectors respectively,
and nθ is the length of these vectors. As argued inDaunizeau et al. (2012),
the (root) mean squared error is an optimal measure of estimation
accuracy — in terms of Bayesian decision theory.

In Monte-Carlo simulations, we generated the time series of various
lengths ranging from 128 time points to 1024 time points with a step
size of 128. We simulated 32 realisations (as a proxy for number of
participants) for each run length and calculated the root mean squared
error. The mean RMS error for each run length (averaging over 32 sim-
ulations for each run length) is presented in Fig. 4. For spDCM, RMS
error decreases as the number of time points increases. It is satisfying
to note that the RMS drops below the typical effective connectivity
value of 0.1 Hz, for times series with 384 time points, corresponding
to around 13 min of scanning (with a repetition time of 2 s). Whilst
the sDCM RMS also decreases with longer time series, the errors for
sDCM estimates are greater than those for spDCM, and fail to reach
the 0.1 Hz threshold. Whilst the accuracies of the sDCM estimates are
impressive, demonstrating the scheme insensitivity to the run length,
the estimation accuracy (for this particular graph) was inferior to
spDCM. The Bayesian parameter averages (ignoring posterior correla-
tions) of the effective connectivity are shown in Fig. 5 as a function of
session length. As has been previously noted (Friston et al., 2014),
these Bayesian parametric averages do not change greatly when com-
paring, for example, run lengths of 256 and 1024. As we are pooling
over many simulations, the confidence intervals around these Bayesian
parameter averages are fairly small. This suggests thatwhen a sufficient
number of participants are used, shorter run lengths may provide rea-
sonably accurate estimates.

In summary, on the basis of the simulations reported here (and
many others not shown) it appears that spectral DCM outperforms sto-
chastic DCM in terms of accuracy — as measured by deviation from the
true parameters generating data. Having said this, the main difference
between the two schemes is a greater shrinkage of Bayesian estimators
for the stochastic scheme, which is consistent with the conditional de-
pendencies between hidden states and parameters it has to contend
with. In terms of construct validation, it is reassuring that both schemes
provide qualitatively similar (internally consistent) estimates — and
that both are consistentwith the parameters of process generating data.
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Fig. 3. This figure shows the posterior estimates that result from the Bayesian inversion of the simulated time series. The posterior means (grey bars) and 90% confidence intervals (pink
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not for stochastic DCM. The right panel shows the same results but plotting the estimated connection strengths against their true values. For spectral DCM (resp. stochastic DCM), the blue
(resp. cyan) circles correspond to extrinsic connections and the red (resp. magenta) circles to intrinsic connectivity.
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Although being able to estimate effective connectivity from resting
state fMRI may be interesting in and of itself, the usual questions in
the setting are about differences in effective connectivity amongcohorts,
which we now look at more closely.
Comparative inversions testing for group differences

In this section, we examine whether group differences in effective
connectivity can be detected by the two schemes. Group differences
were simulated in the following way: Time series of 512 time points
were generated for 48 participants using the above 4 node DCM (with
16 connections in total). The first 24 instances used the connectivity
matrix given by (13), whilst the second 24 simulations were generated
using an altered matrix — the strength of the extrinsic coupling from
node 2 to node 3 was made more excitatory (increased from 0.2 to
0.5 Hz). It should be noted that by making this connection stronger,
we also break the symmetry in reciprocal connectivity between nodes
2 and 3, hence making it more difficult for model inversion to recover
these connections. Additionally, we also introduced a backward con-
nection between nodes 3 and 4 by increasing the inhibition from 0.0
to −0.3 Hz. We used both Bayesian and classical inference (t-tests) to
see if these differences can be reliably detected by the two DCMs.
The Bayesian parameter averages of the groupdifferences for each of
the coupling estimates are presented in Fig. 6. The spectral scheme pro-
duces both highly accurate and precise estimates of the differences at
the two connections manipulated. Any changes in coupling strengths
that were not changed were b0.05 Hz, and can thus be considered a
small (and standardised) effect size in quantitative terms. Regarding
stochastic DCM, group differences were less accurate but remain quali-
tatively similar (i.e., they are still in the correct direction). Estimates of
differences in other parameters again remainedb0.05Hz.When applying
classical inference (as appears routine in such studies) to the Bayesian
parameter averages, both schemes detected significant changes in the
two manipulated parameters. The dotted red line corresponds to the
thresholds for a nominal level of p= 0.05 uncorrected, whereas the bro-
ken red line corresponds to the corrected thresholds for the 16 tests. We
used the self-connections for the correction but do not report the (non-
significant) differences. For spectral DCM, both forward and backward
connections are highly significant, even after correcting for multiple
comparisons, and no other connection reached uncorrected threshold.
Regarding stochastic DCM, although both backward and forward connec-
tions are still detected as the two most statistically significant connec-
tions, small changes estimated in a few other connections were found
to be significant at corrected statistical thresholds, suggesting that sDCM
is sensitive to group differences, but perhaps not as specific as spDCM.
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Fig. 4. This figure reports the results of Monte Carlo simulations assessing the accuracy of
posterior estimates in terms of root mean square error (RMS) from the true value. Both
panels show the results of 32 simulations (reddiamonds) for different runor session lengths.
For the upper panel – that reports the results for spectral DCM – the average root mean
square error (black bars) decreases with increasing run length to reach acceptable (less
than 0.1 Hz) levels after about 300 scans. In the lower panel – that reports the results for
the stochastic DCM – we see same trend of average root square error decreasing with in-
creasing run lengths but it never attains the (heuristic) threshold of 0.1 Hz.
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We further investigatedwhat effect changing the priors onmeasure-
ment noise has when characterising group differences. The more pre-
cise belief that measurement noise is small may cause stochastic DCM
to increase estimated neuronal fluctuations, whichmay shift parameter
estimates towards their true values— andmake the performance of the
stochastic DCMapproach that of spectral DCM. The results in Fig. 6were
obtainedwith a default value of 6 for the prior expectation of (log) noise
precision and 1/128 for its prior covariance. To evaluate the effect of
measurement noise on the group differences we kept the (hyper)
prior covariance constant at 1/128 whilst varying the (hyper) prior
expectation from 2 to 10 in steps of 2. The results are reported in
Fig. 7. We notice that increasing the expected noise (log) precision pro-
vided increasingly accurate estimates for spectral DCM, whereas the
most accurate estimates for stochastic DCM were recovered whilst
using the default value of 6.
Finally, we evaluated the sensitivity of the twomethods in detecting
group differences when we varied one connection over a range of
values. The results are reported in Fig. 8. In this simulation, we kept all
the connectivity parameters fixed across both groups of 24 subjects,
except the connection fromnode 4 to node 3.We varied this connection
in second set of 24 subjects between −0.4 and 0.2 in steps of 0.1. This
changes the connection from being highly inhibitory to excitatory. The
consequent group differences are in the range of 0.3 to −0.3 with a
sign change to make it more interesting. We see that spectral DCM per-
formed better than stochastic DCM which usually underestimated the
differences. Importantly, spectral DCM was very efficient in recovering
the sign change, whereas stochastic DCM failed when the change was
subtle. As the change becomes larger stochastic DCM improved
although not attaining the sensitivity of spectral DCM.

An empirical application

There has been interest in the connectivity within the default mode
network (DMN)— a distinct brain system that is activated when an indi-
vidual engages in introspection likemindwandering or daydreaming. The
DMN comprises part of the medial prefrontal cortex (mPFC), posterior
cingulate cortex (PCC) and parts of inferior parietal lobe and superior
frontal regions. The regions within the DMN are highly interconnected
at rest and show developmental changes during adolescence (Fair et al.,
2008), whilst the coherence among DMN regions diminishes in healthy
ageing (Andrews-Hanna et al., 2007). Furthermore, alterations in the
functional connectivity among DMN regions are seen in Alzheimer's
disease (Greicius et al., 2004), and schizophrenia (Calhoun et al., 2008;
Harrison et al., 2007). However, there are relatively very few studies
characterising either effective or directed functional connectivity within
the DMN. Examples of such studies include Granger causality modelling
in healthy controls (Jiao et al., 2011; Zhou et al., 2011), Bayesian network
analysis in AD (Li et al., 2013; Wu et al., 2011), and DCM in healthy con-
trols (Di and Biswal, 2014; Li et al., 2012).

We compared the model structure and posterior coupling estimates
among a subset of nodes comprising theDMNusing stochastic DCMand
spectral DCM. Data were downloaded from the open access dataset
from the FC1000 project. This dataset contains 22 adults (12 males)
with a mean age of 29 years. Scanning was performed at the University
of Oxford Centre for Clinical Magnetic Resonance Research using a 3-T
Siemens Trio scanner with a 12-channel head coil. Whole-brain func-
tional imaging was performed using a gradient echo EPI sequence
(TR = 2000 ms, TE = 28 ms, flip angle = 89°, field of view = 224 mm,
voxel dimension = 3 × 3 × 3.5 mm, acquisition time = 6 min 4 s).
High-resolution 3D T1-weighted MRI scans were acquired using a
magnetization-prepared rapid gradient echo sequence (TR =
2040ms, TE= 4.7 ms, flip angle= 8°, field of view= 192mm, voxel di-
mension = 1 mm isotropic, acquisition time = 12 min). Participants
were instructed to lie in dimmed light with their eyes open, thinking
of “nothing in particular” and not to fall asleep. From the functional
data containing 180 consecutive image volumes per participant, the
first five volumes from each participant were removed. Data were
pre-processed in the normal way: data were realigned, normalized to
MNI space, and spatially smoothed using a 6 mm (FWHM) Gaussian
kernel. A GLM containing only movement (confound) regressors was
constructed and inverted. An adjusted time series from the lateral ven-
tricle was included in subsequent GLMs as an additional confound.

To identify nodes of the DMN, the resting statewasmodelled using a
GLM containing a discrete cosine basis set with frequencies ranging
from 0.0078 to 0.1 Hz (Fransson, 2005; Kahan et al., 2014), in addition
to the aforementioned nuisance regressors. Data were high-pass fil-
tered to remove any slow frequency drifts (b0.0078 Hz) in the normal
manner. An F-contrast was specified across the discrete cosine trans-
forms (DCT), producing an SPM that identified regions exhibiting
BOLD fluctuations within the frequency band. Our DMN graph com-
prised of four nodes; the posterior cingulate cortex (PCC), the right



Fig. 5. This figure reports the Bayesian parameter averages of the effective connection strengths using the same format as in Fig. 3. Because we have pooled over 32 simulated subjects, the
confidence intervals aremuch smaller (and also note the characteristic shrinkage one obtainswith Bayesian estimators). The right column (resp. left column) shows the results for spectral
DCM (resp. stochastic DCM) revealing the similarity between the Bayesian parameter averages from long runs (upper panel) and shorter runs (lower panel), of 1024 and 256 scans,
respectively.
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Fig. 6. This figure reports the results of a simulated group comparison studyof two groups of 24participants (with 512 scans per participant). The upper row shows the Bayesianparameter
averages of the differences using the same format as previousfigures. For the spectral DCM (left panel) it can be seen that increases in the extrinsic forward connections from the second to
the third region (seventh parameter) has been estimated accurately. Similarly, the decrease in the backward connection from the fourth to the third region is also estimated accurately. For
the stochastic DCM (right panel), the estimation of the differences in the two parameter sets is not as accurate— although the direction is detected correctly. The equivalent classical in-
ference— basedupon the t-statistic is shownon lower row. Here theposteriormeans fromeachof 48 subjectswere usedas summary statistics and entered into a series of univariate t-tests
to assess differences in groupmeans. The red lines correspond to significance thresholds at a nominal false-positive rate of p=0.05 corrected (solid lines) and uncorrected (broken lines).
Clearly the connections with differences survive the corrected threshold for spectral DCM (left panel) whereas for the stochastic DCM (right panel) few other connections are also above
threshold.
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Fig. 7. This figure reports the results of changing the priors onmeasurement noisewhen characterising group differences for both spectral and stochastic DCMs. The left column shows the
Bayesian parameter averages of the differences for spectral DCM and the right column for stochastic DCM— using the same format as in the previousfigures. For these results, we kept the
prior covariance of the (log) precision parameters constantwhilst varying the prior expectation of (log) precision parameterswithin the range of 2 and 10with a step size of 2 (except the
value of 6 for which the results are already reported in Fig. 6).
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and left intraparietal cortex (R/LIPC), and the medial prefrontal cortex
(mPFC). The PCC node was identified using this GLM: the principal
eigenvariate of a (8 mm radius) sphere was computed (adjusted
for confounds), centred on the peak voxel of the aforementioned
F-contrast. The ensuing region of interest wasmasked by a (8mm radi-
us) sphere centred on previously reported MNI coordinates for the PCC
[0, −52, 26] (Di and Biswal, 2014). The remaining DMN nodes were
identified using a standard seed-based functional connectivity analysis,
using the PCC as the reference time series in an independent GLM
containing the same confounds. A t-contrast on the PCC time series
was specified, and the resulting SPM was masked by spheres centred
on previously reported coordinates for the RIPC [48, −69, 35], LIPC
[−50,−63, 32], andmPFC [3, 54,−2] (Di and Biswal, 2014). The princi-
pal eigenvariate froma (8mmradius) sphere centred on the peak t-value
from each region was computed for each region and corrected for
confounds. The time series extracted from each of the four regions – for
typical subject – are shown in Fig. 9.

For each participant, a fully connected DCM, with no exogenous
inputs, was specified. The DCM was inverted using both stochastic
DCM, and spectral DCM. Following inversion of the full model, post-hoc
model optimizationwas employed to search themodel space for reduced
models with the highest model evidence (Friston et al., 2011).

Post-hoc model optimization found the fully connected model to
have the largest free energy, consistent with previous similar analyses
(Li et al., 2012). Bayesian parameter averaging (BPA) was then used to
calculate the expected posterior connectivity estimates, and posterior
confidence intervals. The concordance between stochastic and spectral
results was subsequently examined qualitatively. In Fig. 10, we show
the results of both the stochastic and spectral DCM schemes. The left
columns show the results of BPA. To focus on non-trivial connections,
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greater than 0.5 Hz (and omit self-connections for simplicity). The upper row shows the results for the spectral DCM in same format in previous figures for simulated data. The leftmost
panel shows the Bayesian parametric averages over 22 subjects. The middle panel shows the results of classical t-tests reporting t-statistics for each connection, whereas the right panel
shows only those edges on the graph that survive the corrected threshold in themiddle panel. The lower row reports the results for stochastic DCM in the same format as for the spectral DCM.
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we only report connection strengths that exceed 0.05 Hz in strength.
We also omit self-connections in these plots for simplicity. BPA results
are fairly consistent when compared between the two schemes, espe-
cially the connections originating from the bilateral intraparietal cortex.
There is some disagreement in someother connections originating from
the PCC and mPFC. Furthermore, coupling strengths from stochastic
DCM are relatively smaller in magnitude than those from the spectral
DCM, which is in accordance with previous simulations demonstrating
that stochastic DCM tends to underestimate the effective connectivity
(see also above). In the middle column, we show the results of classical
t-tests to see which of the connections are significantly different from
zero. In the last column, only the significant connections surviving the
corrected threshold (the broken red line) are shown.

Previous studies of the coupling between regions within DMN have
produced some inconsistent results. For example (Di and Biswal, 2014)
(using DCM), and (Jiao et al., 2011; Zhou et al., 2011) (using Granger
causality) found a causal influence from mPFC to PCC but not vice
versa. We see this connection to be present in stochastic DCM but not
in spectral DCM. Li et al. (2012) (using stochastic DCM) showed an in-
fluence from PCC to mPFC which we also see in both schemes. A more
consistent finding is that bilateral IPC drives PCC (Di and Biswal, 2014;
Jiao et al., 2011; Zhou et al., 2011), which is also the case in both of
our DCM results. We also see that mPFC is driven by LIPC, again consis-
tent with most previous studies (Di and Biswal, 2014; Jiao et al., 2011;
Zhou et al., 2011). Di and Biswal (2014) and Jiao et al. (2011) reported
that an influence from RIPC tomPFC that we failed to detect in either of
the DCMs, is in line with previous studies (Zhou et al., 2011). Interest-
ingly, there is a reciprocal connection between bilateral IPC in both
DCM models, also reported in Li et al. (2012). Zhou et al. (2011) found
influence from RIPC to LIPC but not vice versa, and Di and Biswal
(2014) and Jiao et al. (2011) did not find any interaction at all between
bilateral IPC.

The empirical demonstrations in this section should not be over
interpreted. Their purpose is to illustrate the application of the proce-
dures described to real data. For example, the fact that the nodes included
in the DCM were identified using correlations with a seed region may
preclude the identification of subgraphs that show a sparse connectivity.
In principle, similar procedures can be applied with relatively unbiased
region identification; using, for example, independent component anal-
ysis (as suggested by one of our reviewers). Bayesianmodel comparison
may then reveal sparser connectivity.

Finally, to assess the comparative reproducibility of spectral and
stochastic DCM estimates we examined the distribution of connection
strengths (and their respective confidence intervals) for themost signif-
icant connection (from left to right IPC) over subjects— ranked from the
highest to the lowest posterior expectation. The two distributions for
spectral (upper left) and stochastic estimators (lower left) are shown
in Fig. 11. It can be seen that there is a remarkable consistency over sub-
jects for both estimators— except that one participant's connectionwas
in the opposite direction for spectral DCM. Furthermore, again we see
that stochastic estimators are shrunk towards the prior expectations
(of zero) relative to the spectral estimators. We also included a scatter
plot of the two distributions (right panel) over participants which
showed high correlations over participants' estimates.

Discussion

In this technical note we address the construct validation of deter-
ministic spectral DCM for the resting state fMRI by comparing it to a
stochastic DCM scheme for estimating effective connectivity from
resting state fMRI datasets. Spectral DCM is particularly useful for interro-
gating group differences in effective connectivity, or the time constants of
the neuralfluctuations,where the latter can be assessed in the formof the
autocorrelation function of endogenous neuronal fluctuations.

The disadvantage of this deterministic DCM for cross spectra rests on
linear systemanalysis, which precludes state or time-dependent changes
in effective connectivity (Breakspear, 2004). In other words, unlike de-
terministic DCM for time series, one cannot model – in a simple way –

changes in effective connectivity caused by experimental manipulations
or nonlinear state-dependencies. Having said this, most applications of
resting state fMRI focus on group differences—as opposed to state or
set-dependent differences that are usually modelled with time-
dependent (e.g., bilinear) changes in coupling. Furthermore, spectral
DCM is computationally very efficient, compared to stochastic DCM.
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Fig. 11. This figure plots the distribution of the posterior expectations of the two schemes over subjects for the strongest connection from left IPC to right IPC (see Fig. 10). The posterior
expectations were ranked in descending order. The upper left panel shows the posterior expectations (light grey bars) for the spectral DCMwith superimposed confidence interval (pink
bars). A similar plot for stochastic DCM is shown in the lower left panel. We also show scatter plot of the posterior expectations over subjects for the two schemes.
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This is because spectral DCM does not require the estimation of the hid-
den states per se. Compared to stochastic DCM, the inversion of spectral
DCM takes about 10 s per iteration for a 10 node graph,with convergence
achieved usually between 16 and 64 iterations. It is noteworthy that the
inversion of spectral DCM is even faster than conventional deterministic
DCM; since it does not require the integration of differential equations.
The computational efficiency could further be increased by using more
efficient (e.g., adjoint) gradient computation methods. DCM uses finite
differences to compute the gradients during the optimization of free
energy to update model parameters. Using advanced gradient computa-
tion methods based on the adjoint could further improve the computa-
tional efficiency of DCM (Sengupta et al., 2014).

Furthermore, using prior constraints that bound the number of free
parameters, the Bayesian inversion of large graphs (nodes N32) can be
made computationally very efficient. This simple but graceful solution
uses prior (functional connectivity)modes to reduce the dimensionality
of the problem in an informed way (Seghier and Friston, 2013). In
future, we foresee employing such constraints with spectral DCM to
invert large DCMs of resting state fMRI data. Finally, as we have noted
previously — the ability to estimate weighted and directed adjacency
matrices summarising functional brain architectures also opens the
door to graph theoretic analyses that may leverage important advances
in network theory (Rubinov and Sporns, 2010).
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