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Abstract: We present a review of dynamic causal modeling (DCM) for magneto- and electroencepha-
lography (M/EEG) data. DCM is based on a spatiotemporal model, where the temporal component is
formulated in terms of neurobiologically plausible dynamics. Following an intuitive description of the
model, we discuss six recent studies, which use DCM to analyze M/EEG and local field potentials.
These studies illustrate how DCM can be used to analyze evoked responses (average response in
time), induced responses (average response in time-frequency), and steady-state responses (average
response in frequency). Bayesian model comparison plays a critical role in these analyses, by allowing
one to compare equally plausible models in terms of their model evidence. This approach might be
very useful in M/EEG research; where correlations among spatial and neuronal model parameter esti-
mates can cause uncertainty about which model best explains the data. Bayesian model comparison
resolves these uncertainties in a principled and formal way. We suggest that DCM and Bayesian model
comparison provides a useful way to test hypotheses about distributed processing in the brain, using
electromagnetic data. Hum Brain Mapp 30:1866-1876, 2009.  © 2009 Wiley-Liss, Inc.
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INTRODUCTION

Many questions in imaging neuroscience can be framed
in terms of competing models or hypotheses about how
data are generated. To compare different models one has
to infer the brain states causing observed data. With mag-
neto/electroencephalography (M/EEG), these hidden
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brain states are observed indirectly by sensors, as mixtures
from widespread brain sources. Consequently, one of the
central themes in M/EEG methods research is the devel-
opment of models that solve the “spatiotemporal inverse
problem,” i.e., which brain sources caused the observed
spatial and temporal pattern in the sensors, see Scherg
and von Cramon [1985]. Over the past decade, M/EEG
research has focused on these spatiotemporal models and
has produced many solutions that are not only sophisti-
cated but are also proving useful in routine analysis of M/
EEG data [Auranen et al.,, 2007, Daunizeau et al., 2006;
Friston et al., 2008; Jun et al., 2006; Nummenmaa et al.,
2007b; Zumer et al., 2008].

DYNAMIC CAUSAL MODELING

Dynamic Causal Models (DCM) for M/EEG are spatio-
temporal models designed to answer questions about the
architecture of underlying neuronal dynamics and to make
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inferences about key neuronal parameters. In this mini-
review, we describe the DCM in general terms and refer
to the relevant modeling papers for technical details [Chen
et al.,, 2008; David et al., 2006; Fastenrath et al., 2009;
Kiebel et al., 2006, 2007; Moran et al., 2008]. The basic idea
behind DCM is that M/EEG data can be modeled as the
response of a dynamic input-output system to experimen-
tal perturbations [David et al., 2006; Kiebel et al., 2006].
We assume that sensory inputs are processed by a net-
work of discrete but interacting neuronal sources. To
model the neuronal dynamics of each source, we use a
neural mass model, which can be thought of as a simpli-
fied model of a macro-column [Jansen and Rit, 1995]. Each
source is described in terms of the average post-membrane
potentials and mean firing rates of three neuronal subpo-

Neural mass model

pulations, deployed in a three-layer structure (comprising a
granular, infragranular, and supragranular layer; Fig. 1).
The granular layer is populated by spiny stellate cells, while
infragranular and supragranular layers contain pyramidal
cells and inhibitory interneurons. Each subpopulation has
its own (intrinsic) dynamics, described by the neural mass
equations and has intrinsic (i.e., within-source) connections
with the other two subpopulations. Each source receives ex-
trinsic input, which is specified either as direct or exoge-
nous sensory input or input from other sources. A source
can send or receive three types of directed connections: (i)
forward connections that originate in the infragranular
layers and terminate in the granular layer, (ii) backward
connections that connect infragranular to agranular layers,
and (iii) lateral connections that originate in infragranular
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Figure I.

A graphical overview of the generative model for DCM for
evoked responses. Left: The neural mass model of a single
source comprises three neuronal subpopulations (pyramidal
cells, spiny stellate cells, inhibitory interneurons), which are con-
nected by four intrinsic connections. Mean firing rates from
other sources arrive via forward, backward, and lateral connec-
tions. Similarly, exogenous input enters receiving sources. Mid-
dle: The input arrives as a function of peristimulus time at input
area(s). The input perturbs the system, which is described by

differential equations f, which are a function of the states x, the
parameters 0, and the input u. Here, we show a simple example
network of just two sources. The depolarisations of the pyramidal
cells constitute the sources’ output, which is shown, for two condi-
tions, as blue and red time-series. Right: At each time-point, the
resulting dynamics at the source level cause an instantaneous signal
in the sensors, formed by the lead-field function g. The linear super-
position of all source signals forms the evoked responses (M/EEG).
Here, we show just a single evoked response.
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layers and target all layers. These three types of cortico-cort-
ical connections are assumed to be excitatory and mediated
by the axons of pyramidal cells. The dynamics of the sour-
ces and their interactions are specified fully by a set of first-
order differential equations [Kiebel et al., 2008b] that are
formally related to other neural mass models used in com-
putational models of M/EEG [Breakspear et al., 2006; Mar-
reiros et al., 2008; Rodrigues et al., 2006; Sotero et al., 2007;
Sotero and Trujillo-Barreto, 2008].

To complete the model of observed signals, we assume
that the depolarization of the pyramidal cell populations
gives rise to M/EEG responses; the expression of these
responses in the sensors are specified through a lead-
field"; where each source corresponds to an equivalent
current dipole (ECD) [Kiebel et al., 2006], as in standard
spatial models [Bijma et al., 2004, Mosher et al, 1999;
Salmelin and Hamalainen, 1995; Scherg and von Cramon,
1985]. The full spatiotemporal model then takes the form
of a nonlinear state-space model with hidden (unobserved)
neuronal states, whereas the expression of the sources in
the sensors (through the lead-fields) is instantaneous and
linear in the states (see Fig. 1).

DCM regards an experiment as a designed perturbation of
neuronal dynamics that are promulgated and distributed
throughout the network to produce source-specific
responses. Responses are evoked by deterministic inputs
that correspond to experimental manipulations (e.g., presen-
tation of stimuli)®. Experimental factors (stimulus features or
context) can also change the parameters or causal architec-
ture of the system producing these responses. In particular,
differential responses to different experimental factors are
modeled by changes in connection strengths within or
between sources [David et al., 2006; Kiebel et al., 2007].

Having described the forward model we now consider its
“inversion,” i.e., how one estimates the model parameters
that best explain how observed data have been generated.
DCM requires a spatiotemporal inversion, because we
invert a model that describes the data both in space (i.e., the
sensors) and time. The parameters of the neuronal model
include things like the connectivity strength and propaga-
tion delays among sources and various synaptic rate con-
stants. The spatial parameters comprise the location and
orientation of equivalent current dipoles [Kiebel et al.,
2008b]. Note that all the spatial parameters, e.g. dipole loca-
tions, are free parameters. When using an ECD model, we
use uninformed priors on the three orientation (or two
angles and one moment) and informed priors on the spatial
locations. This means the sources can change their location
according to the data, for details see [Kiebel et al., 2006].

As with any M/EEG model, we can infer these parame-
ters with only a degree of certainty. In DCM, we account

!The lead-field describes how a source will be measured in the sen-
sors, i.e. the lead-field is a parameterized function of the source
parameters.

%See below for an application example, where we deal with the case
that there is no deterministic input.

for three distinct causes of uncertainty: (i) noise in the
measurements, (ii) conditional dependencies among
parameters of a particular model, and (iii) uncertainty
about which model caused the data. In DCM, measure-
ment noise is dealt with in a straightforward fashion by
estimating the variance of the noise directly from the data
during model inversion. Note that the variance is not esti-
mated separately; e.g. using the baseline or some rest
period, but along with the other parameters. Second and
more importantly, a complex model like DCM, which
models the rich dynamics of M/EEG data, usually induces
conditional dependencies or ambiguities, among groups of
parameters. To deal with this kind of uncertainty, empiri-
cal or hierarchical Bayesian approaches are required. These
allow for the formal introduction of constraints or priors
that ensure robust parameter estimation [Auranen et al.,
2007; Nummenmaa et al., 2007a; Penny et al., 2007; Zumer
et al., 2007]. Bayesian inversion of each model provides a
posterior distribution, which encodes uncertainty about
model parameters after observing the data. Finally, there
is not only uncertainty about the parameters of a particu-
lar model but uncertainty about the model itself. For
example, one DCM might assume that some data can be
explained by two sources, whereas another employs four.
This uncertainty must be quantified to argue that one
model is better than an alternative. This is addressed with
Bayesian model comparison using an approximation to the
model evidence, the negative free-energy. This is the prob-
ability of the data given a specific model and is also
known as the integrated or marginal likelihood [Friston et
al., 2003]. Bayesian model comparison is used to decide
which model, amongst a set of competing models, best
explains the data [Penny et al., 2004]. This evidence-based
approach accounts for model complexity and enables com-
parisons of M/EEG models with different parameters
(e.g., with different numbers of sources or connections)
[Fastenrath et al., 2009; Kiebel et al., 2008a]. In summary, a
DCM analysis entails; (i) the inversion of multiple models
for each data set, (ii) selection of the best model using the
model-evidence, and (iii) inference on the parameters of
the best model, using their posterior distributions.

APPLICATIONS

In this section, we will review recent application of
DCM to show how the approach can be used to analyze
typical M/EEG studies. These summaries focus on key
aspects of the analyses and their motivation; the reader is
referred to the original publications for details. We will
review DCM for evoked responses, induced responses and
finally steady-sate responses. All are based on the same
principles described in the previous section.

Modeling Mismatch Responses

In several studies, we used DCM for evoked responses
to analyse multi-subject EEG data acquired under a
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mismatch negativity (MMN) paradigm [Garrido et al.,
2007b, 2008]. The MMN is a negative peak that occurs af-
ter an unpredictable change in the acoustic environment.
For example it is elicited, when deviant sounds are embed-
ded in a stream of repeated sounds, or standards. In this
case, the MMN is the negative component of the wave-
form obtained by subtracting the response to a standard
from the response to a deviant. The MMN peaks at about
100-200 ms from change onset [Sams et al., 1985] and is
distributed over fronto-temporal areas.

The MMN is thought to reflect the updating of an inter-
nal model of the acoustic environment [Sussman and Win-
Kler, 2001; Winkler et al., 1996]. This updating consists of
two processes: first, it requires the registration of the
change within the acoustic environment (auditory cortex),
and second the updating of a model of expected stimuli.
This might engage higher level brain structures (e.g., pre-
frontal cortex). It has been shown that the temporal and
frontal MMN sources have distinct behaviors over time
[Rinne et al., 2000] and that these sources seem to interact
with each other [Jemel et al., 2002]. One use of DCM is to
ask how sources interact within this network and, specifi-
cally, whether the MMN can be explained by plastic
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changes in the sensitivity of specific sources to extrinsic
(between-source) connections. In our work, we tested the
hypothesis that the MMN, i.e., the difference between the
evoked responses for standards and deviants, is caused by
a stimulus-specific changes in connectivity, in a fronto-
temporal network.

A DCM for mismatch responses

We motivated our prior source locations using findings
in the MMN literature [Doeller et al., 2003; Opitz et al,
2002]. We assumed five sources over left and right pri-
mary auditory cortices (A1), left and right superior tempo-
ral gyrus (STG), and right inferior frontal gyrus (IFG) (see
Fig. 2). Left and right primary auditory cortex (Al) served
as cortical input stations for the stimuli. Al were con-
nected to ipsilateral STG and right STG with the right IFG.
Inter-hemispheric  (lateral) connections were placed
between left and right STG. All connections were recipro-
cal (i.e., connected with forward and backward connec-
tions). We tested three models using this network
structure. These models differed in which connections
could change to explain differences between evoked

c d
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Figure 2.

Mismatch negativity: model specification. The sources comprising
the network are connected with forward (dark gray), backward
(gray), or lateral (light gray) connections. Al, primary auditory
cortex; STG, superior temporal gyrus; IFG, inferior temporal
gyrus. Three models were tested within the same architecture
(a—c), allowing for stimulus-related changes in forward F, back-

ward B, and forward and backward FB connections, respectively.
The broken lines indicate the connections we allowed to change.
(d) Sources of activity, modelled as dipoles (estimated posterior
moments and locations), are superimposed in an MRI of a stand-
ard brain in MNI space.
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Mismatch negativity: Bayesian model selection among DCMs for
the three models, F B, and FB, expressed relative to a null
model. The graphs show an approximation (the free-energy) to
the log-evidence (i.e. the log of the model evidence). (a) Log-
evidence for models F, B, and FB for each subject (relative to

responses to standard or deviant tones. Models F, B, and
FB allowed changes in forward, backward, and conjoint
forward and backward connections, respectively (see
Fig. 2). All three models were compared against a baseline
or null model. The null model had the same architecture
described above but precluded any coupling changes.
Figure 3 summarizes the log-model evidences for all
models and subjects®. The FB-model was the best in 7 of 11
subjects. The F-model was better in four subjects but with
strong evidence only in three. In all but one subject, the F
and FB-models were better than the B-model. Figure 3b
shows the log-evidences for the three models at the group

By “best” we mean that there was strong evidence for a model, over
all other tested models. In Bayesian model comparison, one states
strong evidence for a specific model, if its log-model evidence is
greater than the log-model evidence of any other model, by at least 3
[Penny et al., 2004].

the null model). The diamond attributed to each subject identi-
fies the best model on the basis of the subject’s highest log-evi-
dence. (b) Log-evidence at the group level, i.e., pooled over
subjects, for the three models.

level. The log-evidence for a model of data from a group of
subjects is the sum of the log-evidences over subjects,
because the data from each subject must be conditionally in-
dependent. Both F and FB are clearly more likely than B and
there is very strong evidence in favour of model FB over
model F, when pooling data from all subjects.

In summary, we found that the best model included
modulations of both forward and backward connections.
These results support and extend previous findings that a
fronto-temporal network seems to be involved in generat-
ing mismatch responses and that this generation entails an
interaction between top-down and bottom-up exchange
between cortical sources. Having identified this best
model, one can now proceed with a detailed analysis of
the coupling under that model; see [Garrido et al., 2007b].
Similar results were found in another study, where we
used a “roving" design in which physically identical stim-
uli play the role of standard and deviant tones [Garrido
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et al., 2008]. In this article, we showed that in addition to
changes in extrinsic connectivity, the primary auditory cor-
tex sources modulate their intrinsic dynamics [Kiebel
et al., 2007].

Looking for Feedback Loops

In M/EEG, early components (less than 100 ms in peristi-
mulus time) are assumed to be stimulus dependent and
reflect the integrity of primary afferent pathways. Late com-
ponents (greater than 100 ms) are thought to be stimulus-
independent and reflect endogenous dynamics involving
top-down influences [Gaillard, 1988]. This implies that late
components rest upon backward cortico-cortical connec-
tions that enable recurrent dynamics. This hypothesis can
be tested with DCM in a straightforward manner by model-
ing evoked responses as a function of time, and comparing
models with and without backward connections.

We used the multisubject EEG data described earlier but
only analyzed the responses to deviant stimuli [Garrido
et al.,, 2007a]. The network architecture was the same as
employed above; i.e. five sources with bilateral Al, bilat-
eral STG and right IFG, see Figure 2. We tested two mod-
els: model FB had reciprocal, i.e., forward and backward
connections and model F lacked backward connections,
having forward connections only. In other words, model
FB enables recurrent dynamics, with bottom-up and top-
down processing, whereas model F emulates a purely bot-
tom-up mechanism. Note that these F and FB models have
the same network structure used above but model only a
single evoked response, as opposed to two evoked
responses and their differences.

We inverted the two models using data from stimulus
onset to a series of post-stimulus times (ranging from
120 ms to 400 ms). We compared the evidence of the two
models as a function of increasing length of peristimulus
time windows for both the grand average ERP across sub-
jects and for each subject individually. Both analyses
revealed the same thing: The longer evoked responses
evolve, the more likely models with backward connections
are. This is evident in Figure 4, which shows that, across
subjects, the model with backward connections (FB) super-
venes over the model without (F). This is particularly clear
later in peri-stimulus time (after 220 ms post-stimulus).
This means that forward connections are sufficient to
explain early ERP components but backward connections
become essential for later components. This does not mean
that backward connections are “switched off" early in peri-
stimulus time; it means their effects are not detectable in
the data until later. At this point, backwards connections
become necessary to explain the data.

Modeling-Induced Responses

Evoked responses are just one aspect of brain
responses to stimuli measured with M/EEG. Instead of
averaging trial-specific responses in time, an alternative
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Figure 4.

Evidence for feedback loops: Bayesian model comparison across
subjects. Comparison of the model with backward connections
(FB) against the model without (F), across all subjects over peri-
stimulus windows of length 180260 ms. The dots correspond
to differences in log-evidence for || subjects over time. The
solid line shows the average log-evidence differences over sub-
jects. The points outside the gray zone imply very strong for FB
over F for positive values and the converse for negative values.

strategy is to analyze induced responses, which are
expressed in the average power following a time-fre-
quency decomposition [Bastiaansen and Hagoort, 2006;
Donner et al., 2007; Gross et al., 2007; Gruber et al.,
2006; Jensen et al., 2007; Klimesch, 1999]. The analysis of
induced responses enables one to look at frequency
responses localized in peristimulus time. Importantly,
induced responses are sensitive to response components
that are jittered with respect to stimulus onset [Tallon-
Baudry and Bertrand, 1999]. The principle of modeling
M/EEG data-features as the output of a network of
sources can also be applied to induced responses. In this
case, the DCM parameters encode the frequency
response to exogenous input and coupling among differ-
ent frequencies within and between sources [Chen et al,,
2008]. These sorts of models may be useful for modeling
abnormal synchronization in conditions like Parkinson’s
disease [Brown, 2007].

One key aspect of DCM for induced responses is that it
differentiates between linear and nonlinear coupling,
which corresponds to within and between-frequencies cou-
pling respectively. In this model, we do not use neural
mass equations explicitly but a second-order approxima-
tion. This gives a simpler and more phenomenological
model, where the dynamics within- and between sources
are governed by linear differential equations. This simplifi-
cation allows us to test for nonlinear coupling directly by
comparing models with and without between-frequency
coupling. In contrast to DCM for evoked responses, the
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DCM for induced responses: results for nonlinear coupling
between sources in a four-source “face perception” network,
where LV and RV are left and right visual sources, and LF and RF
are left and right fusiform gyrus sources. The arrows show the
directed connections from one source to another. The coupling

spatial locations of the sources are not optimized and
must be fixed a-priori. This is because one has to estimate
the spectral responses at each source before modeling
these responses with DCM. This might influence the ensu-
ing parameter estimates and renders their interpretation
conditional on the sources chosen. The choice of sources
could be based on a prior source localization step or other
knowledge about the system in question; for details see
[Chen et al., 2008]. As an illustration of DCM for induced
responses, we analyzed EEG data acquired during face
perception. We used a four-source network: two sources
in visual cortex (left visual LV and right visual RV), and
two in the fusiform gyrus (LF and RF). As shown in Fig-
ure 5, DCM estimates coupling strengths as a function of

strengths are represented as coupling functions of frequency x
frequency. These show the effects the spectral density in one
source has on the density in another. The right panel is a zoom-
in onto the low-frequency coupling from source RV to RF and
illustrates (nonlinear) alpha to beta coupling.

frequency-to-frequency coupling. These matrices indicate
how power at a specific frequency, in a source, will influ-
ence changes in the (same or different) frequencies in a
target source. In the described version, DCM for induced
responses is based on the average of the time-frequency
power spectra of single trial data. This means that the
modeled data contains both induced and evoked
responses, and that, for example, the alpha coupling, could
be caused by either induced or evoked coupling. The
example in Figure 5 shows that cross-frequency coupling
in spectral characterizations of EEG and MEG time-series
can be modelled, using a DCM, as dynamic broad-band
power changes as a consequence of linear and nonlinear
coupling among brain sources.
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Modeling Steady State Responses

In the examples mentioned earlier, we dealt with
evoked or induced responses as a function of peri-stimu-
lus time. However, one can also analyze the frequency
profile (i.e., the spectrum) of data measured over hun-
dreds of milliseconds to minutes under local stationarity
assumptions. This frequency-only data-feature is useful
when the exact timing of exogenous input is unknown or
when the dynamics are purely endogenous; for example,
in sleep research. Another example would be the compari-
son of steady-state responses with and without the appli-
cation of a drug. In such studies, one can posit that the
responses have been induced by endogenous (or subcorti-
cal) input with a stationary statistical distribution, for
example white noise. For steady-state responses, a system
can be understood as a filter with an associated transfer
function. This function describes how any spectral input is
shaped to produce spectral output. With DCM, we can use
the concept of transfer functions by estimating both a
physiologically plausible input distribution and the neuro-
nal parameters determining the transfer function, given
the output spectrum. This allows one to establish a map-
ping from the system parameters to the predicted fre-
quency spectrum [Moran et al, 2007]*. As with evoked
responses, this enables us to model differences between
two or more spectra, acquired under different conditions,
as consequences of specific parameter changes. These pa-
rameters might be intrinsic or extrinsic connections, but
can also be, for example, excitatory rate constants which
have a marked influence on the frequency spectrum
[Moran et al.,, 2007]. The idea is to manipulate the (real)
system; e.g., by experimental changes in the level of a neu-
rotransmitter, model this change in terms of changes in
specific DCM parameters, and then test hypotheses using
Bayesian inference. This strategy has been applied to local
field potentials (LFP) using one [Moran et al., 2008] and
multiple sources [Moran et al., 2009]. Note that although
we used LFP data, the same analysis can be applied to M/
EEG data: LFP data do not require a sophisticated spatial
electromagnetic forward model, ie. lead-field, but just a
gain parameter on the electrode.

Inference on parameters

LFP recordings were taken from electrodes in the pre-
frontal cortex of two rat populations. Normal rats were
reared in their normal social environment, while isolated
rats were brought up in isolation. Isolation provides a
well-established model of sensorimotor abnormalities
found in schizophrenic patients [Geyer et al., 1993]. The
associated reduction in extracellular neurotransmitter lev-
els usually leads to an up-regulation of neurotransmitter
uptake and a sensitization of post-synaptic responses

“Note that this approach entails a linearization of the neural-mass
differential equations used in DCM.

[Jabaudon et al., 1999]. As detailed in Moran et al. [2009],
this suggests that the effects of isolation can be modeled
as increase in the amplitude of the excitatory postsynaptic
potentials elicited by presynaptic input (i.e., intrinsic cou-
pling parameters).

The data set analyzed here was an average spectral
response over a 10-min period. During this period, the rats
(two groups with six rats each) were behaving freely in their
environment. Preprocessing involved a Fast Fourier Trans-
form of the data, using the frequencies from 1 to 48 Hz. The
inversion was performed separately using each rat’s spec-
tral response. The model could account for differences in
spectral response, between the two groups, in various pa-
rameters. Population differences between their estimates
were significant in the case of the excitatory synaptic kernel
amplitude and a gain parameter that controls the mean fir-
ing rate; see Figure 6. As predicted, the intrinsic coupling
parameters were larger in the isolated than in the control
group. These results suggest a sensitization of post-synaptic
responses; i.e., an increase in the response amplitude, and
an overall decrease in firing rate for the isolated group due
to decreased gain in membrane potential to firing rate trans-
fer (Fig. 6 bottom right). This neural mass parameter is a
proxy for neuronal adaptation and highlights a greater ad-
aptation in the isolated group. This is consistent with
reduced levels of extracellular neurotransmitter, which
were measured concurrently with the LFP recordings. For a
detailed discussion of these results, see [Moran et al., 2008].

Inference on models

In another study, we showed that DCM for steady-state
responses can disambiguate the direction of coupling
between two areas. We showed this using data from a
fear-learning study in mice [Seidenbecher et al., 2003],
where mice were subject to a typical Pavlovian condition-
ing paradigm using acoustic tones (CS+ and CS—) and
foot-shock (US) [Moran et al.,, 2009]. After conditioning,
mice display characteristic behavioural fear responses
(freezing) to the CS+ alone [Brady, 2005]. The retrieval of
negative memories, in response to a CS, has been found to
be correlated with 6-band coupling between the hippocam-
pus (CA1) and the lateral nucleus of the amygdala (LA)
[Seidenbecher et al.,, 2003]. The question here is: Using
DCM, can we go beyond this assessment of undirected
correlations between these two areas?

We performed a top-down heuristic model search to
identify the most likely model. This can be expedient when
all possible combinations of connection types and architec-
tures create an intractably large model search space. To do
this, we sequentially optimized various model attributes,
starting with complex models and removing connections to
identify the best architecture [Moran et al., 2009] by ensu-
ing the free-energy bound on log-model evidence always
increased. The results suggested that the hippocampus and
amygdala influence each other through bidirectional con-
nections: Sounds which have been associated with shocks
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Figure 6.

Steady-state response study using local field potentials and a sin-
gle source DCM, results: The left panel shows the coupling pa-
rameters of the different cell groups within a source. The mean
estimates of the excitatory intrinsic connectivity parameters
Y1,Y2, and v3 are shown with the associated P-value in parenthe-

(CS+) lead to decreased directed amygdala-hippocampal
connectivity and increased hippocampal-amygdala connec-
tivity (as compared to neutral sounds, i.e. CS—) [Moran
et al., 2009].

CONCLUSION AND FUTURE DIRECTIONS

In this review, we summarized the fundamental assump-
tions of dynamic causal modeling (DCM), a spatiotemporal
model for EEG/MEG and LFP data. We illustrated the anal-
ysis principles using evoked, induced, and steady state
responses.

DCM is not limited to the neural mass model [Jansen
and Rit, 1995], or the ECD model described in this review.
The current implementation of DCM supports the
exchange of generative models, both temporal or neuronal
and spatial. In Marreiros et al. [2009], we discuss replacing
the neural-mass with a mean-field model of neuronal

ses (blue: control, red: isolated group). The right panels display
the inferred excitatory impulse response function and sigmoid
firing function for both groups (blue: control, red: isolated). See
[Moran et al, 2008] for the definitions of the model
parameters.

dynamics. Furthermore, for the spatial model, one can also
relax the assumption that each source expresses itself as a
focal ECD source and use small parameterised patches on
the cortical surface [Daunizeau et al.,, submitted]. Crit-
ically, in DCM, all these models can be evaluated using
Bayesian model comparison. In practice this enables one to
compare various combinations of temporal and spatial
models within DCM for a given data set. In addition, one
can compare DCMs with different source and network
configurations, see e.g. [Garrido et al., 2007b, 2008]. This
gives the experimenter a wide range of potential models,
which might explain the data. Although the search in this
space of models might appear a daunting task, Bayesian
model comparison, in combination with search heuristics,
appears to be a reliable guide to identify the best models
[Moran et al., 2009]. Changes in models are not only
restricted to the form of the model; the network structure
or the specifics of neuronal dynamics. One can also change
the prior distributions on the model parameters. For
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example, one can use informed priors on the spatial pa-
rameters, to inform the model about expected source loca-
tions, or symmetry [Fastenrath et al., 2009].

Note that DCMs for M/EEG are necessarily complex,
because they reflect the inherent complexity of the proc-
esses generating M/EEG data. The advantage of DCM is
that hypotheses about the underlying functional architec-
ture can be tested in a way that cannot be addressed with
other approaches. The disadvantage is that a potentially
large number of alternative models must be analyzed to
establish the best model, using Bayesian model compari-
son. This takes a lot of computing time, because the inver-
sion of each model can take several minutes (In some
cases, as in the second study of steady-state responses, an
exhaustive search of model-space is practically intractable).
Furthermore, specifying the space of all plausible models
requires a lot of neurophysiological and anatomical knowl-
edge. The exploration of models space can only be heuris-
tic, in the sense that one cannot test all possible models.
The heuristics used to choose the models are usually moti-
vated by a careful consideration of their validity, in rela-
tion to other knowledge and studies. In summary, users
cannot test all possible models but should instead moti-
vate their model search in a careful and qualified fashion;
and interpret their findings in the light of the choices
made. One useful guide to finding the right level of model
complexity and detail is to ensure that the data contains
evidence that can disambiguate among them. Practically,
this is seen as meaningful differences in the log-evidences.
If all the models have the same evidence, this usually (but
not necessarily) means that they are too complex or too
simple for the data in question.

In our examples, we used at most two responses,
which were acquired under two different conditions and
modeled the difference in terms of changes in key param-
eters. However, DCM is not restricted to two responses;
in general, we model differences between multiple
responses as a function of changes in selected DCM pa-
rameters [Garrido et al., under review]. For example, one
might vary a stimulus property or the difficulty of task
over five levels, and assume that there is a linear relation-
ship between difficulty and some connectivity parame-
ter(s). This could be used to test hypotheses about how
parametric manipulations (e.g., difficulty) are expressed
at the level of neuronal computations and connectivity.
These parametric modulations can be modelled in the
current DCM software (see software note) in a straightfor-
ward fashion.

SOFTWARE NOTE

All procedures described in this note have been imple-
mented as Matlab (MathWorks) code. The source code is
freely available in the DCM and neural model toolboxes of
the Statistical Parametric Mapping package (SPMS8) at
http://www fil.ion.ucl.ac.uk/spm/.
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