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Neuronally plausible, generative or forward models are essential for

understanding how event-related fields (ERFs) and potentials (ERPs)

are generated. In this paper, we present a new approach to modeling

event-related responses measured with EEG or MEG. This approach

uses a biologically informed model to make inferences about the

underlying neuronal networks generating responses. The approach

can be regarded as a neurobiologically constrained source recon-

struction scheme, in which the parameters of the reconstruction have

an explicit neuronal interpretation. Specifically, these parameters

encode, among other things, the coupling among sources and how

that coupling depends upon stimulus attributes or experimental

context. The basic idea is to supplement conventional electromagnetic

forward models, of how sources are expressed in measurement space,

with a model of how source activity is generated by neuronal

dynamics. A single inversion of this extended forward model enables

inference about both the spatial deployment of sources and the

underlying neuronal architecture generating them. Critically, this

inference covers long-range connections among well-defined neuronal

subpopulations.

In a previous paper, we simulated ERPs using a hierarchical

neural-mass model that embodied bottom-up, top-down and lateral

connections among remote regions. In this paper, we describe a

Bayesian procedure to estimate the parameters of this model using

empirical data. We demonstrate this procedure by characterizing the

role of changes in cortico-cortical coupling, in the genesis of ERPs.

In the first experiment, ERPs recorded during the perception of

faces and houses were modeled as distinct cortical sources in the

ventral visual pathway. Category-selectivity, as indexed by the face-
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selective N170, could be explained by category-specific differences in

forward connections from sensory to higher areas in the ventral

stream. We were able to quantify and make inferences about these

effects using conditional estimates of connectivity. This allowed us to

identify where, in the processing stream, category-selectivity

emerged.

In the second experiment, we used an auditory oddball paradigm

to show that the mismatch negativity can be explained by changes in

connectivity. Specifically, using Bayesian model selection, we assessed

changes in backward connections, above and beyond changes in

forward connections. In accord with theoretical predictions, there

was strong evidence for learning-related changes in both forward

and backward coupling. These examples show that category- or

context-specific coupling among cortical regions can be assessed

explicitly, within a mechanistic, biologically motivated inference

framework.

D 2005 Elsevier Inc. All rights reserved.
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Introduction

Event-related fields (ERFs) and potentials (ERPs) have been

used for decades as putative magneto- and electrophysiological

correlates of perceptual and cognitive operations. However, the

exact neurobiological mechanisms underlying their generation are

largely unknown. Previous studies have shown that ERP-like

responses can be reproduced by brief perturbations of model

cortical networks (David et al., 2005; Jansen and Rit, 1995; Jirsa,

2004; Rennie et al., 2002). The goal of this paper was to

demonstrate that biologically plausible dynamic causal models

(DCMs) can explain empirical ERP phenomena. In particular, we

show that changes in connectivity, among distinct cortical sources,

are sufficient to explain stimulus- or set-specific ERP differences.

Adopting explicit neuronal models, as an explanation of observed

data, may afford a better understanding of the processes underlying

event-related responses in magnetoencephalography (MEG) and

electroencephalography (EEG).
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Functional vs. effective connectivity

The aim of dynamic causal modeling (Friston et al., 2003) is to

make inferences about the coupling among brain regions or sources

and how that coupling is influenced by experimental factors. DCM

uses the notion of effective connectivity, defined as the influence

one neuronal system exerts over another. DCM represents a

fundamental departure from existing approaches to connectivity

because it employs an explicit generative model of measured brain

responses that embraces their nonlinear causal architecture. The

alternative to causal modeling is to simply establish statistical

dependencies between activity in one brain region and another.

This is referred to as functional connectivity. Functional connec-

tivity is useful because it rests on an operational definition and

eschews any arguments about how dependencies are caused. Most

approaches in the EEG and MEG literature address functional

connectivity, with a focus on dependencies that are expressed at a

particular frequency of oscillations (i.e., coherence). See Schnitzler

and Gross (2005) for a nice review. Recent advances have looked

at nonlinear or generalized synchronization in the context of

chaotic oscillators (e.g., Rosenblum et al., 2002) and stimulus-

locked responses of coupled oscillators (see Tass, 2004). These

characterizations often refer to phase-synchronization as a useful

measure of nonlinear dependency. Another exciting development is

the reformulation of coherence in terms of autoregressive models.

A compelling example is reported in Brovelli et al. (2004) who

were able show that ‘‘synchronized beta oscillations bind multiple

sensorimotor areas into a large-scale network during motor

maintenance behavior and carry Granger causal influences from

primary somatosensory and inferior posterior parietal cortices to

motor cortex.’’ Similar developments have been seen in functional

neuroimaging with fMRI (e.g., Harrison et al., 2003; Roebroeck et

al., 2005).

These approaches generally entail a two-stage procedure.

First an electromagnetic forward model is inverted to estimate

the activity of sources in the brain. Then, a post hoc analysis is

used to establish statistical dependencies (i.e., functional

connectivity) using coherence, phase-synchronization, Granger

influences or related analyses such as (linear) directed transfer

functions and (nonlinear) generalized synchrony. DCM takes a

very different approach and uses a forward model that explicitly

includes long-range connections among neuronal subpopulations

underlying measured sources. A single Bayesian inversion

allows one to infer on parameters of the model (i.e., effective

connectivity) that mediate functional connectivity. This is like

performing a biological informed source reconstruction with the

added constraint that the activity in one source has to be caused

by activity in other, in a biologically plausible fashion. This

approach is much closer in sprit to the work of Robinson et al.

(2004) who show that ‘‘model-based electroencephalographic

(EEG) methods can quantify neurophysiologic parameters that

underlie EEG generation in ways that are complementary to and

consistent with standard physiologic techniques.’’ DCM also

speaks to the interest in neuronal modeling of ERPs in specific

systems. See for example Melcher and Kiang (1996), who

evaluate a detailed cellular model of brainstem auditory evoked

potentials (BAEP) and conclude ‘‘it should now be possible to

relate activity in specific cell populations to psychophysical

performance since the BAEP can be recorded in behaving

humans and animals.’’ See also Dau (2003). Although the

models presented in this paper are more generic than those
invoked to explain the BAEP, they share the same ambition of

understanding the mechanisms of response generation and move

away from phenomenological or descriptive quantitative EEG

measures.

Dynamic causal modeling

The central idea behind DCM is to treat the brain as a

deterministic nonlinear dynamical system that is subject to inputs,

and produces outputs. Effective connectivity is parameterized in

terms of coupling among unobserved brain states, i.e., neuronal

activity in different regions. Coupling is estimated by perturbing

the system and measuring the response. This is in contradistinction

to established methods for estimating effective connectivity from

neurophysiological time series, which include structural equation

modeling and models based on multivariate autoregressive

processes (Harrison et al., 2003; Buchel and Friston, 1997;

Mcintosh and Gonzalez-Lima, 1994). In these models, there is

no designed perturbation and the inputs are treated as unknown and

stochastic. Although the principal aim of DCM is to explain

responses in terms of context-dependent coupling, it can also be

viewed as a biologically informed inverse solution to the source

reconstruction problem. This is because estimating the parameters

of a DCM rests on estimating the hidden states of the modeled

system. In ERP studies, these states correspond to the activity of

the sources that comprise the model. In addition to biophysical and

coupling parameters, the DCM parameters cover the spatial

expression of sources at the sensor level. This means that inverting

the DCM entails a simultaneous reconstruction of the source

configuration and their dynamics.

Implicit in the use of neural-mass models is the assumption that

the data can be explained by random fluctuations around

population dynamics that are approximated with a point mass

(i.e., the mean or expected state of a population). This is usually

interpreted in relation to the dynamics of an ensemble of neurons

that constitute sources of signal. However, in the context of

modeling ERPs and ERFs, there is also an ensemble of trials that

are averaged to form the data. The mean-field-like assumptions that

motivate neural mass models can be extended to cover ensembles

of trials. This sidesteps questions about the trial-to-trial genesis of

ERPs. However, we have previously addressed these questions

using the same neural-mass model used in this paper (David et al.,

2005), by dissociating ‘‘the components of event-related potentials

(ERPs) or event-related fields (ERFs) that can be explained by a

linear superposition of trial-specific responses and those engen-

dered nonlinearly (e.g., by phase-resetting).’’ See David et al.

(2005) for further details.

Because DCMs are not restricted to linear or instantaneous

systems, they generally depend on a large number of free

parameters. However, because it is biologically grounded, parameter

estimation is constrained. A natural way to embody these constraints

is within a Bayesian framework. Consequently, DCMs are estimated

using Bayesian inversion and inferences about particular connec-

tions are made using their posterior or conditional density. DCM has

been previously validated with functional magnetic resonance

imaging (fMRI) time series (Friston et al., 2003; Riera et al.,

2004). fMRI responses depend on hemodynamic processes that

effectively low-pass filter neuronal dynamics. However, with ERPs,

this is not the case and there is sufficient information, in the temporal

structure of evoked responses, to enable precise conditional

identification of quite complicated DCMs. In this study, we use a
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model described recently (David et al., 2005) that embeds cortical

sources, with several source-specific neuronal subpopulations, into

hierarchical cortico-cortical networks.

This paper is structured as follows. In the Theory section, we

review the neural mass model used to generate MEG/EEG-like

evoked responses. This section summarizes (David et al., 2005)

in which more details about the generative model and associated

dynamics can be found. The next section provides a brief review

of Bayesian estimation, conditional inference and model com-

parison that are illustrated in the subsequent section. An

empirical section then demonstrates the use of DCM for ERPs

by looking at changes in connectivity that were induced, either

by category-selective activation of different pathways in the

visual system, or by sensory learning in an auditory oddball

paradigm. This section concludes with simulations that demon-

strate the face validity of the particular DCMs employed. Details

about how the empirical data were acquired and processed will

be found in the Appendix A.
Theory

Intuitively, the DCM scheme regards an experiment as a

designed perturbation of neuronal dynamics that are promul-

gated and distributed throughout a system of coupled

anatomical nodes or sources to produce region-specific

responses. This system is modeled using a dynamic input-

state-output system with multiple inputs and outputs.

Responses are evoked by deterministic inputs that correspond

to experimental manipulations (i.e., presentation of stimuli).

Experimental factors (i.e., stimulus attributes or context) can
Fig. 1. Schematic of the DCM used to model a single source. This schematic includ

states. Each source is modeled with three subpopulations (pyramidal, spiny-stella

granular and agranular cortical layers, which receive forward and backward conn
also change the parameters or causal architecture of the system

producing these responses. The state variables cover both the

neuronal activities and other neurophysiological or biophysical

variables needed to form the outputs. In our case, outputs are

those components of neuronal responses that can be detected

by MEG/EEG sensors.

In neuroimaging, DCM starts with a reasonably realistic

neuronal model of interacting cortical regions. This model is

then supplemented with a forward model of how neuronal

activity is transformed into measured responses; here, MEG/

EEG scalp averaged responses. This enables the parameters of

the neuronal model (i.e., effective connectivity) to be estimated

from observed data. For MEG/EEG data, the supplementary

model is a forward model of electromagnetic measurements

that accounts for volume conduction effects (Mosher et al.,

1999). We first review the neuronal component of the forward

model and then turn to the modality-specific measurement

model.

A neural mass model

The majority of neural mass models of MEG/EEG dynamics

have been designed to generate spontaneous rhythms (David and

Friston, 2003; Jansen and Rit, 1995; Lopes da Silva et al.,

1974; Robinson et al., 2001; Stam et al., 1999) and epileptic

activity (Wendling et al., 2002). These models use a small

number of state variables to represent the expected state of large

neuronal populations, i.e., the neural mass. To date, event-

related responses of neural mass models have received less

attention (David et al., 2005; Jansen and Rit, 1995; Rennie et

al., 2002). Only recent models have embedded basic anatomical
es the differential equations describing the dynamics of the source or regions

te and inhibitory interneurons) as described. These have been assigned to

ection, respectively.
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principles that underlie extrinsic connections among neuronal

populations.

The cortex has a hierarchical organization (Crick and Koch,

1998; Felleman and Van Essen, 1991), comprising forward,

backward and lateral processes that can be understood from an

anatomical and cognitive perspective (Engel et al., 2001). The

direction of an anatomical projection is usually inferred from the

laminar pattern of its origin and termination.

We have developed a hierarchical cortical model to study the

genesis of ERFs/ERPs (David et al., 2005). This model is used here

as a DCM. The neuronal part of the DCM comprises a network or

graph of sources. In brief, each source is modeled with three

neuronal subpopulations. These subpopulations are interconnected

with intrinsic connections within each source. The sources are

interconnected by extrinsic connections among specific subpopu-

lations. The specific source and target subpopulations define the

connection as forward, backward or lateral. The model is now

reviewed in terms of the differential equations that embody its

causal architecture.

Neuronal state equations

The model (David et al., 2005) embodies directed extrinsic

connections among a number of sources, each based on the Jansen

model (Jansen and Rit, 1995), using the connectivity rules

described in Felleman and Van Essen (1991). These rules, which

rest on a tri-partitioning of the cortical sheet into supra-,

infragranular layers and granular layer 4, have been derived from

experimental studies of monkey visual cortex. We assume that

these rules generalize to other cortical regions (but see Smith and

Populin, 2001 for a comparison of primary visual and auditory

cortices). Under these simplifying assumptions, directed connec-

tions can be classified as: (i) bottom-up or forward connections

that originate in agranular layers and terminate in layer 4; (ii) top-

down or backward connections that connect agranular layers; (iii)

lateral connections that originate in agranular layers and target all

layers. These long-range or extrinsic cortico-cortical connections

are excitatory and comprise the axonal processes of pyramidal

cells.

The Jansen model (Jansen and Rit, 1995) emulates the MEG/

EEG activity of a cortical source using three neuronal subpopula-

tions. A population of excitatory pyramidal (output) cells receives

inputs from inhibitory and excitatory populations of interneurons,

via intrinsic connections (intrinsic connections are confined to the

cortical sheet). Within this model, excitatory interneurons can be

regarded as spiny stellate cells found predominantly in layer 4.

These cells receive forward connections. Excitatory pyramidal cells

and inhibitory interneurons occupy agranular layers and receive

backward and lateral inputs. Using these connection rules, it is

straightforward to construct any hierarchical cortico-cortical net-

work model of cortical sources. See Fig. 1.

The ensuing DCM is specified in terms of its state equations

and an observer or output equation.

ẋx ¼ f x;u;hð Þ

h ¼ g x;hð Þ ð1Þ

where x are the neuronal states of cortical areas, u are exogenous

inputs and h is the output of the system. h are quantities that

parameterize the state and observer equations (see also below

under Prior assumptions). The state equations f(x, u, h) (David and
Friston, 2003; David et al., 2005; Jansen and Rit, 1995) for the

neuronal states of multiple areas are2

ẋx7 ¼ x8

ẋx8 ¼
He

se
CB þ CL þ c3I
� �

S x0ð Þ
� �

� 2x8

se
� x7

s2e

ẋx1 ¼ x4

ẋx4 ¼
He

se
CF þ CL þ c1I
� �

S x0ð Þ þ CUu
� �

� 2x4

se
� x1

s2e

ẋx0 ¼ x5 � x6

ẋx2 ¼ x5

ẋx5 ¼
He

se
CB þ CL
� �

S x0ð Þ þ c2S x1ð Þ
� � 2x5

se
� x2

s2e

ẋx3 ¼ x6

ẋx6 ¼
Hi

si
c4S x7ð Þ �

2x6

si
� x3

s2i
ð2Þ

where xj = [xj
(1),xj

(2),. . .]T. The states x0
(i),. . ., x8

(i) represent the mean

transmembrane potentials and currents of the three subpopulations

in the i-th source. The state equations specify the rate of change of

voltage as a function of current and specify how currents change as

a function of voltage and current. Fig. 1 depicts the states by

assigning each subpopulation to a cortical layer. For schematic

reasons, we have lumped superficial and deep pyramidal units

together, in the infragranular layer. The matrices CF, CB, CL,

encode forward, backward and lateral extrinsic connections,

respectively. From Eq. (2) and Fig. 1, it can be seen that the state

equations embody the connection rules above. For example,

extrinsic connections mediating changes in mean excitatory

[depolarizing] current x8, in the supragranular layer, are restricted

to backward and lateral connections. The depolarization of

pyramidal cells x0 = x2 � x3 represents a mixture of potentials

induced by excitatory and inhibitory [depolarizing and hyper-

polarizing] currents, respectively. This pyramidal potential is the

presumed source of observed MEG/EEG signals.

The remaining constants in the state equation pertain to two

operators, on which the dynamics rest. The first transforms the

average density of presynaptic inputs into the average postsynaptic

membrane potential. This transformation is equivalent to a

convolution with an impulse response or kernel,

p tð Þe ¼
He

se
texpð� t=seÞ t � 0

0 t < 0

�
ð3Þ

where subscript ‘‘e’’ stands for ‘‘excitatory’’. Similarly, the subscript

‘‘i’’ is used for inhibitory synapses. H controls the maximum

postsynaptic potential and s represents a lumped rate constant. The

second operator S transforms the potential of each subpopulation

into firing rate, which is the input to other subpopulations. This

operator is assumed to be an instantaneous sigmoid nonlinearity.

S xð Þ ¼ 1

1þ exp�rxð Þ �
1

2
ð4Þ

where r = 0.56 determines its form. Fig. 2 shows examples of

these synaptic kernels and sigmoid functions. Note that the output
,



Fig. 2. Left: form of the synaptic impulse response function, converting

synaptic input (discharge rate) into mean transmembrane potential. Right:

the nonlinear static transformation of transmembrane potential into synaptic

input. In this figure, the constants are set to unity, with the exception of r =

0.56. See main text for details.
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of the firing rate function can be negative. This ensures that the

neuronal system has a stable fixed-point, when all the states are

equal to zero. Because the states approximate the underlying

population or density dynamics, the fixed-point corresponds to the

systems equilibrium or steady state. This means all the state

variables can be interpreted as the deviation from steady-state

levels. Interactions, among the subpopulations, depend on the

constants c1,2,3,4, which control the strength of intrinsic con-

nections and reflect the total number of synapses expressed by

each subpopulation. A DCM, at the neuronal level, obtains by

coupling sources with extrinsic connections as described above. A
Fig. 3. Typical hierarchical network composed of three cortical areas.

Extrinsic inputs evoke transient perturbations around the resting state by

acting on a subset of sources, usually the lowest in the hierarchy.

Interactions among different regions are mediated through excitatory

connections encoded by coupling matrices.
typical three-source DCM is shown in Fig. 3. See David and

Friston (2003) and David et al. (2005) for further details.

Event-related input and ERP-specific effects

To model event-related responses, the network receives inputs

via input connections CU. These connections are exactly the same

as forward connections and deliver inputs u to the spiny stellate

cells in layer 4. In the present context, inputs u model afferent

activity relayed by subcortical structures and is modeled with two

components.

u tð Þ ¼ b t;g1;g2ð Þ þ Rhci cos 2p i� 1ð Þtð Þ ð5Þ

The first is a gamma density function b(t,g1,g2) = g2
g1 tg1�1

exp(�g2t) / C(g1) with shape and scale constants g1 and g2 (see

Table 1). This models an event-related burst of input that is delayed

(by g1/g2 second) with respect to stimulus onset and dispersed by

subcortical synapses and axonal conduction. Being a density function,

this component integrates to unity over peristimulus time. The second

component is a discrete cosine set modeling systematic fluctuations in

input, as a function of peristimulus time. In our implementation,

peristimulus time is treated as a state variable, allowing the input to be

computed explicitly during integration.

Critically, the event-related input is exactly the same for all ERPs.

This means that the effects of experimental factors are mediated

through ERP-specific changes in connection strengths. This models

experimental effects in terms of differences in forward, backward or

lateral connections that confer a selective sensitivity on each source,

in terms of its response to others. The experimental or ERP-specific

effects are modeled by coupling gains.

CF
ijk ¼ CF

ijGijk

CB
ijk ¼ CB

ij Gijk

CL
ijk ¼ CL

ijGijk ð6Þ

Here, Cij encodes the strength of the latent connection to the i-th

source from the j-th and Gijk encodes its k-th ERP-specific gain.

By convention, we set the gain of the first ERP to unity, so that
Table 1

Prior densities of parameters (for connections to the i-th source from the j-

th, in the k-th ERP)

Extrinsic

coupling

parameters

CF
ijk ¼ CF

ijGijk CF
ij ¼ exp hFij

� �
hFij ˜N ln32; 1

2

� �
CB
ijk ¼ CB

ij Gijk CB
ij ¼ exp hBij

� �
hBij ˜N ln16; 1

2

� �
CL
ijk ¼ CL

ijGijk CL
ij ¼ exp hLij

� �
hLij ˜N ln4; 1

2

� �
Gijk ¼ exp hGijk

� �
hGij ˜N 0; 1

2

� �
CU
i ¼ exp hUi

� �
hUi ˜N 0; 1

2

� �
Intrinsic coupling

parameters c1 ¼ 1 c2 ¼
4

5
c3 ¼

1

4
c4 ¼

1

4

Conduction

delays (ms) Dii ¼ 2 Dij ¼ exp hD
ij

� �
hD
ij ˜N ln16;

1

16

� �

Synaptic

parameters (ms)
Ti ¼ 16 T

ið Þ
e ¼ exp hTi

� �
hTi ˜N ln8; 1

16

� �
Hi ¼ 32 H

ið Þ
e ¼ exp hHi

� �
hHi ˜N ln4; 1

16

� �
Input

parameters (s)
u tð Þ ¼ b t;g1;g2ð Þ þ

P
hci cos 2p i� 1ð Þtð Þ

hci ˜N 0;1ð Þ

g1 ¼ exp hg
1

� �
hg
1 ˜N ln96; 1

16

� �
g2 ¼ exp hg

2

� �
hg
2 ˜N ln1024; 1

16

� �
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subsequent ERP-specific effects are relative to the first.3 The

reason we model experimental effects in terms of gain, as

opposed to additive effects, is that by construction, connections

are always positive. This is assured; provided the gain is also

positive.

The important point here is that we are explaining

experimental effects, not in terms of differences in neuronal

responses, but in terms of the neuronal architecture or coupling

generating those responses. This is a fundamental departure

from classical approaches, which characterize experimental

effects descriptively, at the level of the states (e.g., a face-

selective difference in ERP amplitude around 170 ms). DCM

estimates these response differentials but only as an intermediate

step in the estimation of their underlying cause; namely changes

in coupling.

Eq. (2) defines the neuronal component of the DCM. These

ordinary differential equations can be integrated using standard

techniques (Kloeden and Platen, 1999) to generate pyramidal

depolarizations, which enter the observer function to generate the

predicted MEG/EEG signal.

Observation equations

The dendritic signal of the pyramidal subpopulation of the i-

th source x0
(i) is detected remotely on the scalp surface in MEG/

EEG. The relationship between scalp data and pyramidal

activity is linear

h ¼ g x;hð Þ ¼ LKx0 ð7Þ

where L is a lead field matrix (i.e., forward electromagnetic

model), which accounts for passive conduction of the electro-

magnetic field (Mosher et al., 1999). If the spatial properties

(orientation and position) of the source are known, then the lead

field matrix L is also known. In this case, K = diag(hK) is a

leading diagonal matrix, which controls the contribution hi
K of

pyramidal depolarization to the i-th source density. If the

orientation is not known then L = [Lx,Ly,Lz] encodes sensor

responses to orthogonal dipoles and the source orientation can be

derived from the contribution to these orthogonal components

encoded by K = [diag(hx
K), diag(hy

K), diag(hz
K)]T. In this paper, we

assume a fixed orientation for multiple dipoles for each source (see

Appendix A.3) but allow the orientation to be parallel or anti-

parallel (i.e., hK can be positive or negative). The rationale for this

is that the direction of current flow induced by pyramidal cell

depolarization depends on the relative density of synapses

proximate and distal to the cell body.

Dimension reduction

For computational reasons, it is sometimes expedient to

reduce the dimensionality of the sensor data, while retaining

the maximum amount of information. This is assured by

projecting the data onto a subspace defined by its principal

eigenvectors E. These are computed from the singular value

decomposition of the data svd( y) = usvT, where E = u:,1:N. In this

paper, we reduce the sensor space to three dimensions, i.e., N = 3
3 In fact, in our implementation, the coupling gain is a function of any set

of explanatory variables encoded in a design matrix, which can contain

indicator variables or parametric variables. For simplicity, we limit this

paper to categorical (ERP-specific) effects.
(see Appendix A.4). The projection is applied to the data and

lead field.

y @ Ey

L @ EL

e @ Ee ð8Þ

Because this projection is orthonormal, the independence of the

projected errors is preserved and the form of the error covariance

components of the observation model remains unchanged. In this

paper, we reduce the sensor space to three dimensions (see

Appendix A.4).

The observation model

In summary, our DCM comprises a state equation that is based

on neurobiological heuristics and an observer based on an

electromagnetic forward model. By integrating the state equation

and passing the ensuing states through the observer, we generate a

predicted measurement. This corresponds to a generalized convo-

lution of the inputs to generate an output h(h). This generalized

convolution furnishes an observation model for the vectorized

data4 y and the associated likelihood.

y ¼ vec h hð Þ þ XhX
� �

þ e

p yjh;kð Þ ¼ N vec h hð Þ þ XhX
� �

; diag kð Þ � V
� �

ð9Þ

Measurement noise ( is assumed to be zero mean and

independent over channels, i.e., Cov(() = diag(k) � V, where k
is an unknown vector of channel-specific variances. V represents

the errors temporal autocorrelation matrix, which we assume is the

identity matrix. This is tenable because we down-sample the data

to about 8-ms. Low frequency noise or drift components are

modeled by X, which is a block diagonal matrix with a low-order

discrete cosine set for each ERP and channel. The order of this set

can be determined by Bayesian model selection (see below). In this

paper we used three components for the first study and four for the

second. The first component of a discrete cosine set is simply a

constant.

This model is fitted to data using Variational Bayes (see

below). This involves maximizing the variational free energy with

respect to the conditional moments of the free parameters h.
These parameters specify the constants in the state and

observation equations above. The parameters are constrained by

a prior specification of the range they are likely to lie in (Friston,

2003). These constraints, which take the form of a prior density

ph, are combined with the likelihood p( y|h,k), to form a

posterior density p(h|y,k) ” p( y|h,k)p(h) according to Bayes

rule. It is this posterior or conditional density we want to

approximate. Gaussian assumptions about the errors in Eq. (9)

enable us to compute the likelihood from the prediction error. The

only outstanding quantities we require are the priors, which are

described next.
4 Concatenated column vectors of data from each channel.
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Prior assumptions

Here, we describe how the constant terms, defining the

connectivity architecture and dynamical behavior of the DCM,

are parameterized and our prior assumptions about these param-

eters. Priors have a dramatic impact on the landscape of the

objective function to be extremized: precise prior distributions

ensure that the objective function has a global minimum that can be

attained robustly. Under Gaussian assumptions, the prior distribu-

tion p(hi) of the I-th parameter is defined by its mean and variance.

The mean corresponds to the prior expectation. The variance

reflects the amount of prior information about the parameter. A

tight distribution (small variance) corresponds to precise prior

knowledge.

Critically, nearly all the constants in the DCM are positive.

To ensure positivity, we estimate the log of these constants

under Gaussian priors. This is equivalent to adopting a log-

normal prior on the constants per se. For example, the for-

ward connections are re-parameterized as Cij
F = exp(uij

F), where

p(uij
F) = N(l,m). l and m are the prior expectation and variance of

lnCij
F = uij

F. A relatively tight or informative log-normal prior

obtains when m � 1/16. This allows for a scaling around the prior

expectation of up to a factor of two. Relatively flat priors, allowing

for an order of magnitude scaling, correspond to m � 1/2. The

ensuing log-normal densities are shown in Fig. 4 for a prior

expectation of unity (i.e., l = 0).

The parameters of the state equation can be divided into five

subsets: (i) extrinsic connection parameters, which specify the

coupling strengths among areas and (ii) intrinsic connection

parameters, which reflect our knowledge about canonical micro-

circuitry within an area. (iii) Conduction delays, (iv) Synaptic

parameters controlling the dynamics within an area and (v) input

parameters, which control the subcortical delay and dispersion of

event-related responses. Table 1 shows how the constants of the

state equation are re-parameterized in terms of h. It can be seen

that we have adopted relatively uninformative priors on the

extrinsic coupling m = 1/2 and tight priors for the remaining
Fig. 4. Log-normal densities on exp(h) entailed by Gaussian priors on h
with a prior expectation of zero and variances of 1/2 and 1/16. These

correspond to fairly uninformative (allowing for changes up to an order of

magnitude) and informative (allowing for changes up to a factor of two)

priors, respectively.
constants m = 1/16. Some parameters (intrinsic connections and

inhibitory synaptic parameters) have infinitely tight priors and

are fixed at their prior expectation. This is because changes in

these parameters and the excitatory synaptic parameters are

almost redundant, in terms of system responses. The priors in

Table 1 conform to the principle that the parameters we want to

make inferences about, namely extrinsic connectivity, should

have relatively flat priors. This ensures that the evidence in the

data constrains the posterior or conditional density in an

informative and useful way. In what follows, we review briefly

our choice of prior expectations (see David et al., 2005 for

details).

Prior expectations

Extrinsic parameters comprise the matrices {uF, uB, uL, uG,

uU} that control the strength of connections and their gain. The

prior expectations for forward, backward and lateral, ln32, ln16

and ln4, respectively, embody our prior assumption that forward

connections exert stronger effects than backward or lateral

connections. The prior expectation of uijk
G is zero, reflecting the

assumption that, in the absence of evidence to the contrary,

experimental effects are negligible and the trial-specific gain is

e0 = 1. In practice, DCMs seldom have a full connectivity and

many connections are disabled by setting their prior to N(�V,
0). This is particularly important for the input connections

parameterized by ui
U, which generally restrict inputs to one or

two cortical sources.

We fixed the values of intrinsic coupling parameters as

described in Jansen and Rit (1995). Interlaminar conduction

delays were fixed at 2 ms and interregional delays had a prior

expectation of 16 ms. The priors on the synaptic parameters for

the i-th area {hi
s, hi

H} constrain the lumped time constant and

relative postsynaptic density of excitatory synapses, respectively.

The prior expectation for the lumped time constant was 8-ms. This

may seem a little long but it has to accommodate, not only

dynamics within dendritic spines, but integration throughout the

dendritic tree.

Priors on the input parameters {h1
g, h2

g, h1
c, . . ., h8

c} were chosen

to give an event-related burst, with a dispersion of about 32 ms and

96 ms after trial onset. The input fluctuations were relatively

constrained with a prior on their coefficients of p(hi
c) = N(0,1). We

used the same prior on the contribution of depolarization to source

dipoles p(hi
K) = N(0,1). This precludes large values explaining

away ERP differences in terms of small differences at the cortical

level (Grave and Gonzalez-Andino, 1998). Finally, the coefficients

of the noise fluctuations were unconstrained, with flat priors

p(hX) = N(0,V).

Summary

In summary, a DCM is specified in through its priors. These

are used to specify (i) how regions are interconnected, (ii) which

regions receive subcortical inputs and (iii) which cortico-cortical

connections change with the levels of experimental factors.

Usually, the most interesting questions pertain to changes in

cortico-cortical coupling that explain differences in ERPs. These

rest on inferences about the coupling gains uijk
G. This section has

covered the likelihood and prior densities necessary for conditional

estimation. For each model, we require the conditional densities of

two synaptic parameters per source {hi
s, hi

H}, 10 input parameters

{h1
g, h2

g, h1
c, . . ., h8

c} and the extrinsic coupling parameters, gains

and delays {uF, uB, uL, uG, uU, uD}. The next section reviews
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conditional estimation of these parameters, inference and model

selection.
Bayesian inference and model comparison

Estimation and inference

For a given DCM, say model m; parameter estimation

corresponds to approximating the moments of the posterior

distribution given by Bayes rule.

p hjy;mð Þ ¼ p yjh;mð Þp h;mð Þ
p yjmð Þ ð10Þ

The estimation procedure employed in DCM is described in

Friston (2002). The posterior moments (conditional mean g and

covariance R) are updated iteratively using Variational Bayes under

a fixed-form Laplace (i.e., Gaussian) approximation to the condi-

tional density q(h) = N(g,R). This can be regarded as an

Expectation–Maximization (EM) algorithm that employs a local

linear approximation of Eq. (9) about the current conditional

expectation. The E-step conforms to a Fisher-scoring scheme (Press

et al., 1992) that performs a descent on the variational free energy

F( q,k,m) with respect to the conditional moments. In the M-Step,

the error variances k are updated in exactly the same way. The

estimation scheme can be summarized as follows:

Repeat until convergence

E� Step q @ min
q

F q;k;mð Þ

M� Step k @ min
k

F q;k;mð Þ ¼ max
k

L k;mð Þ

F q;k;mð Þ ¼ bln q hð Þ � ln p yjh;k;mð Þ � lnp hjmð Þ�q

¼ D q�p hjy;k;mð Þð Þ � L k;mð Þ

L k;mð Þ ¼ lnp yjk;mð Þ ð11Þ

Note that the free energy is simply a function of the log-

likelihood and the log-prior for a particular DCM and q(h). q(h) is
the approximation to the posterior density q(h|y,k,m) we require.

The E-step updates the moments of q(h) (these are the variational

parameters g and R) by minimizing the variational free energy. The

free energy is the divergence between the real and approximate

conditional density minus the log-likelihood. This means that the

conditional moments or variational parameters maximize the log-

likelihood L(k,m) while minimizing the discrepancy between the

true and approximate conditional density. Because the divergence

does not depend on the covariance parameters, minimizing the free

energy in the M-step is equivalent to finding the maximum

likelihood estimates of the covariance parameters. This scheme is

identical to that employed by DCM for fMRI, the details of which

can be found in Friston (2002) and Friston et al. (2003).

Conditional inference

Inference on the parameters of a particular model proceeds

using the approximate conditional or posterior density q(h).
Usually, this involves specifying a parameter or compound of

parameters as a contrast cTg. Inferences about this contrast are

made using its conditional covariance cTRc. For example, one can
compute the probability that any contrast is greater than zero or

some meaningful threshold, given the data. This inference is

conditioned on the particular model specified. In other words,

given the data and model, inference is based on the probability

that a particular contrast is bigger than a specified threshold. In

some situations, one may want to compare different models. This

entails Bayesian model comparison.

Model comparison and selection

Different models are compared using their evidence (Penny et

al., 2004). The model evidence is

p yjmð Þ ¼
Z

p yjh;mð Þp hjmð Þdh ð12Þ

The evidence can be decomposed into two components: an

accuracy term, which quantifies the data fit, and a complexity term,

which penalizes models with a large number of parameters.

Therefore, the evidence embodies the two conflicting requirements

of a good model, that it explains the data and is as simple as

possible. In the following, we approximate the model evidence for

model m, with the free energy after convergence. This rests on the

assumption that k has a point mass at its maximum likelihood

estimate (equivalent to its conditional estimate under flat priors);

i.e., lnp( y|m) = lnbp( y|k,m)�k = L(k,m). After convergence, the

divergence is minimized and

lnp yjmð Þ ¼ L k;mð Þ ,� F q;k;mð Þ ð13Þ

See Eq. (11). The most likely model is the one with the largest

log-evidence. This enables Bayesian model selection. Model

comparison rests on the likelihood ratio of the evidence for two

models. This ratio is the Bayes factor Bij. For models i and j.

lnBij ¼ lnp yjm ¼ ið Þ � lnp yjm ¼ jð Þ ð14Þ

Conventionally, strong evidence in favor of one model requires

the difference in log-evidence to be three or more. We have now

covered the specification, estimation and comparison of DCMs. In

the next section, we will illustrate their application to real data

using two important examples of how changes in coupling can

explain ERP differences.
Empirical studies

In this section, we illustrate the use of DCM by looking at

changes in connectivity induced in two different ways. In the first

experiment, we recorded ERPs during the perception of faces and

houses. It is well-known that the N170 is a specific ERP correlate

of face perception (Allison et al., 1999). The N170 generators are

thought to be located close to the lateral fusiform gyrus or

Fusiform Face Area (FFA). Furthermore, the perception of houses

has been shown to activate the Parahippocampal Place Area (PPA)

using fMRI (Aguirre et al., 1998; Epstein and Kanwisher, 1998;

Haxby et al., 2001; Vuilleumier et al., 2001). In this example,

differences in coupling define the category-selectivity of pathways

that are accessed by different categories of stimuli. A category-

selective increase in coupling implies that the region receiving the

connection is selectively more sensitive to input elicited by the

stimulus category in question. This can be attributed to a functional

specialization of receptive field properties and processing dynam-
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ics of the region receiving the connection. In the second example,

we used an auditory oddball paradigm, which produces mismatch

negativity (MMN) or P300 components in response to rare stimuli,

relative to frequent (Debener et al., 2002; Linden et al., 1999). In

this paradigm, we attribute changes in coupling to plasticity

underlying the perceptual learning of frequent or standard stimuli.

In the category-selectivity paradigm, there are no necessary

changes in connection strength; preexisting differences in respon-

siveness are simply disclosed by presenting different stimuli. This

can be modeled by differences in forward connections. However, in

the oddball paradigm, the effect only emerges once standard stimuli

have been learned. This implies some form of perceptual or sensory

learning. We have presented a quite detailed analysis of perceptual

learning in the context of empirical Bayes (Friston, 2003). We

concluded that the late components of oddball responses could be

construed as a failure to suppress prediction error, after learning the

standard stimuli. Critically, this theory predicts that learning-related

plasticity should occur in backward connections generating the

prediction, which are then mirrored in forward connections. In short,

we predicted changes in forward and backward connections when

comparing ERPs for standard and oddball stimuli.

In the first example, we are interested in where category-

selective differences in responsiveness arise in a forward process-

ing stream. Backward connections are probably important in

mediating this selectivity but exhibit no learning-related changes

per se. We use inferences based on the conditional density of

coupling-gain, when comparing face and house ERPs, to address

this question. In the second example, our question is more

categorical in nature; namely, are changes in backward and lateral

connections necessary to explain ERPs differences between

standards and oddballs, relative to changes in forward connections

alone? We illustrate the use of Bayesian model comparison to

answer this question. See Appendices A.3 and A.4 for a description

of the data acquisition, lead field specification and preprocessing.

Category-selectivity: effective connectivity in the ventral visual

pathway

ERPs elicited by brief presentation of faces and houses were

obtained by averaging trials over three successive 20-min sessions.

Each session comprised 30 blocks of faces or houses only. Each

block contained 12 stimuli presented every 2.6 s for 400 ms. The

stimuli comprised 18 neutral faces and 18 houses, presented in

grayscale. To maintain attentional set, the subject was asked to

perform a one-back task, i.e., indicate, using a button press, whether

or not the current stimulus was identical to the previous.

As reported classically, we observed a stronger N170 compo-

nent during face perception in the posterior temporal electrodes.

However, we also found other components, associated with house

perception, which were difficult to interpret on the basis of scalp

data. It is generally thought that face perception is mediated by a

hierarchical system of bilateral regions (Haxby et al., 2002). (i) A

core system, of occipito-temporal regions in extrastriate visual

cortex (inferior occipital gyrus, IOG; lateral fusiform gyrus or face

area, FFA; superior temporal sulcus, STS), that mediates the visual

analysis of faces, and (ii) an extended system for cognitive

functions. This system (intraparietal sulcus; auditory cortex;

amygdala; insula; limbic system) acts in concert with the core

system to extract meaning from faces. House perception has been

shown to activate the Parahippocampal Place Area (PPA) (Aguirre

et al., 1998; Epstein and Kanwisher, 1998; Haxby et al., 2001;
Vuilleumier et al., 2001). In addition, the Retrosplenial Cortex

(RS) and the lateral occipital gyrus are more activated by houses,

compared to faces (Vuilleumier et al., 2001). Most of these regions

belong to the ventral visual pathway. It has been argued that the

functional architecture of the ventral visual pathway is not a mosaic

of category-specifics modules, but rather embodies a continuous

representation of information about object attributes (Ishai et al.,

1999).

DCM specification

We tested whether differential propagation of neuronal activity

through the ventral pathway is sufficient to explain the differences in

measured ERPs. On the basis of a conventional source localization

(see Appendix A.3) and previous studies (Allison et al., 1999;

Haxby et al., 2001, 2002; Ishai et al., 1999; Vuilleumier et al., 2001),

we specified the following DCM (see Fig. 5): bilateral occipital

regions close to the calcarine sulcus (V1) received subcortical visual

inputs. From V1 onwards, the pathway for house perception was

considered to be bilateral and to hierarchically connect RS and PPA

using forward and backward connections. The pathway engaged by

face perception was restricted to the right hemisphere and comprised

connections from V1 to IOG, which projects to STS and FFA. In

addition, bilateral connections were included, between STS and

FFA, as suggested in Haxby et al. (2002). These connections

constituted our DCM mediating ERPs to houses and faces. This

DCM is constrained anatomically by the number and location of

regional sources that accounted for most of the variance in sensor-

space (see Appendix A.4). Face- or house-specific ERP components

were hypothesized to arise from category-selective, stimulus-bound,

activation of forward pathways. To identify these category-selective

streams, we allowed the forward connections, in the right

hemisphere, to change with category. Our hope was that these

changes would render PPAmore responsive to houses while the FFA

and STS would express face-selective responses.

Conditional inference

The results are shown in Fig. 6, in terms of predicted cortical

responses and coupling parameters. Using this DCM, we were

able to replicate the functional anatomy, disclosed by the above

fMRI studies: the response in PPA was more marked when

processing houses vs. faces. This was explained, in the model, by

an increase of forward connectivity in the medial ventral pathway

from RS to PPA. This difference corresponded to a coupling-gain

of over five-fold. Conversely, the model exhibited a much

stronger response in FFA and STS during face perception, as

suggested by the Haxby model (Haxby et al., 2002). This

selectivity was due to an increase in coupling from IOG to FFA

and from IOG to STS. The face-selectivity of STS responses was

smaller than in the FFA, the latter mediated by an enormous gain

of about nine-fold (1/0.11 = 9.09) in sensitivity to inputs from

IOG. The probability, conditional on the data and model, that

changes in forward connections to the PPA, STS and FFA, were

greater than zero, was essentially 100% in all cases. The

connections from V1 to IOG showed no selectivity. This suggests

that category-selectivity emerges downstream from IOG, at a

fairly high level. Somewhat contrary to expectations (Vuilleumier

et al., 2001), the coupling from V1 to RS showed a mild face-

selective bias, with an increase of about 80% (1/0.55 = 1.82).

Note how the ERPs of each source are successively transformed

and delayed from area to area. This reflects the intrinsic trans-

formations within each source, the reciprocal exchange of signals



Fig. 5. Model definition for the category-selectivity paradigm: the sources comprising the DCM are connected with forward (solid), backward (broken) or

lateral (gray) connections as shown. V1: primary visual cortex, RS: retrosplenial cortex, PPA: parahippocampal place area, IOG: inferior occipital gyrus, STS:

superior temporal sulcus, FFA: fusiform face area (left is on the left). Insert: transparent views of the subject’s cortical mesh from the top-right, showing the

sources that defined the lead field for the DCM: a bilateral extrinsic input acts on the primary visual cortex (red). Two pathways are considered: (i) bilaterally

from occipital regions to the parahippocampal place area (blue) through the retrosplenial cortex (green, laterally interconnected), (ii) in the right hemisphere,

from primary visual areas to inferior occipital gyrus (yellow) which projects to the superior temporal sulcus (cyan) and the lateral fusiform gyrus (magenta).

The superior temporal sulcus and lateral fusiform gyrus are laterally connected. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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between areas and the ensuing conduction delays. These trans-

formations are mediated by intrinsic and extrinsic connections and

are the dynamic expression of category-selectivity in this DCM.

The conditional estimate of the subcortical input is also shown in

Fig. 6. The event-related response input was expressed about 96 ms

after stimulus onset. The accuracy of the model is evident in the left

panel of Fig. 6, which shows the measured and predicted responses in

sensor space, after projection onto their three principal eigenvectors.

Auditory oddball: effective connectivity and sensory learning

Auditory stimuli, 1000 or 2000 Hz tones with 5 ms rise and fall

times and 80 ms duration, were presented binaurally for 15 min,

every 2 s in a pseudo-random sequence. 2000-Hz tones (oddballs)

occurred 20% of the time (120 trials) and 1000-Hz tones

(standards) 80% of the time (480 trials). The subject was instructed

to keep a mental record of the number of 2000-Hz tones.

Late components, characteristic of rare events, were seen in

most frontal electrodes, centered on 250 ms to 350 ms poststim-

ulus. As reported classically, early components (i.e., the N100)

were almost identical for rare and frequent stimuli. Using a

conventional reconstruction algorithm (see Appendix A.3), cortical

sources were localized symmetrically along the medial part of the

upper bank of the Sylvian fissure, in the right middle temporal

gyrus, left medial and posterior cingulate and bilateral orbitofrontal

cortex (see insert in Fig. 7). These locations are in good agreement

with the literature: sources along the upper bank of the Sylvian

fissure can be regarded as early auditory cortex, although they are
generally located in the lower bank of the Sylvian fissure (Heschls

gyrus). Primary auditory cortex has major interhemispheric

connections through the corpus callosum. In addition, these areas

project to temporal and frontal lobes following different streams

(Kaas and Hackett, 2000; Romanski et al., 1999). Finally, cingulate

activations are often found in relation to oddball tasks, either

auditory or visual (Linden et al., 1999).

DCM specification

Using these sources and prior knowledge about the functional

anatomy of the auditory system, we constructed the following

DCM (Fig. 7): an extrinsic (thalamic) input entered bilateral

primary auditory cortex (A1) which was connected to ipsilateral

orbitofrontal cortex (OF). In the right hemisphere, an indirect

forward pathway was specified from A1 to OF through the superior

temporal gyrus (STG). All these connections were reciprocal. At

the highest level in the hierarchy, OF and left posterior cingulate

cortex (PC) were laterally and reciprocally connected.

Model comparison

Given these nodes and their connections, we created four

DCMs that differed in terms of which connections could show

putative learning-related changes. The baseline model precluded

any differences between standard and oddball trials. The remaining

four models allowed changes in forward F, backward B, forward

and backward FB and all connections FBL, with the primary

auditory sources. The results of a Bayesian model comparison

(Penny et al., 2004) are shown in Fig. 7, in terms of the respective



Fig. 6. DCM results for the category-selectivity paradigm: Left: predicted (thick) and observed (thin) responses in measurement space. These are a projection of

the scalp or channel data onto the first three spatial modes or eigenvectors of the channel data (Faces: gray. Houses: black). The predicted responses are based

on the conditional expectations of the DCM parameters. The agreement is evident. Right: reconstructed responses for each source and changes in coupling for

the DCM modeling category-specific engagement of forward connections, in the ventral visual system. As indicated by the predicted responses in PPA and

FFA, these changes are sufficient to explain an increase response in PPA when perceiving houses and, conversely, an increase in FFA responses during face

perception. The coupling differences mediating this category-selectivity are shown alongside connections, which showed category-specific differences

(highlighted by solid lines). Differences are the relative strength of forward connections during house presentation, relative to faces. The percent conditional

confidence that this difference is greater than zero is shown in brackets. Only changes with 90% confidence or more are reported and are highlighted in bold.
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log-evidences (referred to the baseline model with no coupling

changes). There is very strong evidence for conjoint changes in

backward and lateral connections, above and beyond changes in

forward or backward connections alone. The FB model supervenes

over the FBL model that was augmented with plasticity in lateral

connections between A1. This is interesting because the FBL

model had more parameters, enabling a more accurate modeling of

the data. However, the improvement in accuracy did not meet the

cost of increasing the model complexity and the log-evidence fell

by 4.224. This means that there is strong evidence for the FB

model, in relation to the FBL model. Put more directly, the data are

e4.224 = 68.3 times more likely to have been generated by the FB

model than the FBL model. The results of this Bayesian model

comparison suggest that the theoretical predictions were correct.

Other theoretical perspectives suggest that the MMN can be

explained simply by an adaptation to standard stimuli that may

only involve intrinsic connections (see, for example, Ulanovsky et

al., 2003). This hypothesis could be tested using stimulus-specific

changes in intrinsic connections and model selection to assess

whether the data are explained better by changes in intrinsic

connectivity, extrinsic connectivity or both. We will pursue this in a

future communication.

Conditional inference

The conditional estimates and posterior confidences for the FB

model are shown in Fig. 8 and reveal a profound increase, for rare
events, in all connections. We can be over 95% confident that these

connections increased. As above, these confidences are based on the

conditional density of the coupling-gains. The conditional density of

a contrast, averaging over all gains in backward connections, is

shown in Fig. 9. We can be 99.9% confident that this contrast is

greater than zero. The average is about one, reflecting a gain of about

e1 � 2.7, i.e., more than a doubling of effective connectivity.

These changes produce a rather symmetrical series of late

components, expressed to a greater degree, but with greater

latency, at hierarchically higher levels. In comparison with the

visual paradigm above, the subcortical input appeared to arrive

earlier, around 64 ms after stimulus onset. The remarkable

agreement between predicted and observed channel responses is

seen in the left panel, again shown as three principal eigenvariates.

In summary, this analysis suggests that a sufficient explanation

for mismatch responses is an increase in forward and backward

connections with primary auditory cortex. This results in the

appearance of exuberant responses after the N100 in A1 to

unexpected stimuli. This could represent a failure to suppress

prediction error, relative to predictable or learned stimuli, which

can be predicted more efficiently.

Simulations

In this introductory paper, we have focussed on the motivation

and use of DCM for ERPs. We hope to have established its



Fig. 7. DCM specification for the auditory oddball paradigm: Left: graph depicting the sources and connections of the DCM using the same format as Fig. 5:

A1: primary auditory cortex, OF: orbitofrontal cortex, PC: posterior cingulate cortex, STG: superior temporal gyrus. Insert: localized sources corresponding to

the lead fields that entered the DCM: a bilateral extrinsic input acts on primary auditory cortex (red) which project to orbitofrontal regions (green). In the right

hemisphere, an indirect pathway was specified, via a relay in the superior temporal gyrus (magenta). At the highest level in the hierarchy, orbitofrontal and left

posterior cingulate (blue) cortices were assumed to be laterally and reciprocally connected. Lower right: results of the Bayesian model selection among DCMs

allowing for learning-related changes in forward F, backward B, forward and backward FB and all connections FBL. The graph shows the Laplace

approximation to the log-evidence and demonstrates clearly that the FB model supervenes. The log-evidence is expressed relative to a DCM in which no

connections were allowed to change. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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construct validity in relation to other neurobiological constructs

(i.e., the functional anatomy of category-selectivity as measured

by fMRI and predictive coding models of perceptual learning).

There are many other aspects of validity that could be addressed

and will be in future communications. Here, we briefly establish

face validity (the procedure estimates what it is supposed to) of

the particular DCM described above. This was achieved by

integrating the DCM and adding noise to simulate responses of a

system with known parameters. Face validity requires the true

values to lie within the 90% confidence intervals of the

conditional density. We performed two sets of simulations. The

first involved changing one of the parameters (the gain in the

right A1 to STG connection) and comparing the true values with

the conditional densities. The second used the same parameters

but different levels of noise (i.e., different variance parameters).

In short, we reproduced our empirical study but with known

changes in connectivity. We then asked whether the estimation

scheme could recover the true values, under exactly the same

conditions entailed by the empirical studies above. Note that the

estimations used the simulated channel data, and only the channel

data.

The first simulations used the conditional estimates from the FB

model of the auditory oddball paradigm. The gain on the right A1

to STG connection was varied from one half to two, i.e., u62
G was

increased from �ln2 to ln2 in 16 steps. The models were integrated
to generate responses to the estimated subcortical input and

Gaussian noise was added using the empirical ReML variance

estimates. The conditional densities of the parameters were

estimated from these simulated data in exactly the same way as

for the empirical data. Note that this is a more stringent test of face

validity than simply estimating connection strengths: we simulated

an entire paradigm and tried to recover the changes or gain in

coupling subtending the oddball effect. The results of these

simulations are shown in Fig. 10 for the connection that changed

(right A1 to STG: upper panel) and for one that did not (right OF to

A1: lower panel). In both cases, the true value fell within the 90%

confidence intervals. This speaks to the sensitivity (upper panel)

and specificity (lower panel) of conditional inferences based on

this model.

The results of the second simulations are shown in Fig. 11.

Here, we repeated the above procedure but changed the variance

parameters, as opposed to a coupling parameter. We simply scaled

all the error variances by a factor that ranged from a half to two, in

16 steps. Fig. 11 shows that the true value (of the right A1 to STG

connection) again fell well within the 90% conditional confidence

intervals, even for high levels of noise. These results also speak to

the characteristic shrinkage of conditional estimators: note that the

conditional expectation is smaller than the true value at higher

noise levels. The heuristic, behind this effect, is that noise or error

induces a greater dependency on the priors and a consequent



Fig. 8. DCM results for the auditory oddball (FB model). This figure adopts the same format as Fig. 6. Here, the oddball-related response shows many

components and is expressed most noticeably in mode 2. The mismatch response is expressed in nearly every source (black: oddballs, gray: standards), and

there are widespread learning-related changes in connections (solid lines: changes with more than 90% conditional confidence). In all connections, the coupling

was stronger during oddball processing, relative to standards.
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shrinkage of the conditional expectation to the prior expectation of

zero. Having said this, the effect of doubling error variance in this

context is unremarkable.
Fig. 9. Conditional density of a contrast averaging over all learning-related

changes in backward connections. It is evident that change in backward

connections is unlikely to be zero or less given our data and DCM.
Discussion

We have described a Bayesian inference procedure in the

context of DCM for ERPs. DCMs are used in the analysis of

effective connectivity to provide posterior or conditional distribu-

tions. These densities can then be used to assess changes in

effective connectivity caused by experimental manipulations.

These inferences, however, are contingent on assumptions about

the architecture of the model, i.e., which regions are connected and

which connections are modulated by experimental factors. Bayes-

ian model comparison can be used to adjudicate among competing

models, or hypotheses, as demonstrated above. In short, DCMs can

be used to test hypotheses about the functional organization of

macroscopic brain activity. In neuroimaging, DCMs have been

applied to fMRI data (Friston et al., 2003; Penny et al., 2004; Riera

et al., 2004). We have shown that MEG/EEG event-related

responses can also be subject to DCM.

The approach can be regarded as a neurobiologically con-

strained source reconstruction scheme, in which the parameters of

the reconstruction have an explicit neuronal interpretation, or as a

characterization of the causal architecture of the neuronal system

generating responses. We hope to have shown that it is possible to

test mechanistic hypotheses in a more constrained way than

classical approaches because the prior assumptions are physiolog-

ically informed.

Our DCMs use a neural mass model that embodies long-range

cortico-cortical connections by considering forward, backward and



Fig. 11. Results of simulations showing true and conditional estimates of

coupling-gain (right A1 to STG) as a function of error variance. The format

of this figure is the same as Fig. 10. The variance of simulated observation

error was scaled, from half to twice the maximum likelihood estimates of

the error variance from the empirical analysis (using the FB model). These

simulations demonstrate, heuristically, how conditional uncertainty

increases with noise. Note that even at high levels of noise the 90%

confidence interval still permits an inference that this connection changed

(i.e., zero gain falls well outside the gray region).

Fig. 10. Results of simulations showing true and conditional estimates of

the connection whose gain was changed (top panel: right A1 to STG) and

one whose gain remained the same (lower panel: right OF to A1). The solid

lines are the conditional expectations and the broken lines are the true

values. The gray areas encompass the 90% confidence region, based on the

conditional variance. In all cases, the true values falls within the 90%

confidence region (just). These simulations used the conditional expect-

ations and maximum likelihood variance components from the empirical

analysis (using the FB model) to demonstrate, heuristically, sensitivity and

specificity of conditional inferences with this DCM.
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lateral connections among remote areas (David et al., 2005). This

allows us to embed neural mechanisms generating MEG/EEG

signals that are located in well-defined regions. This may make the

comparison with fMRI activations easier than alternative models

based on continuous cortical fields (Liley et al., 2002; Robinson et

al., 2001) However, it would be interesting to apply DCM to

cortical field models because of the compelling work with these

models.

Frequently asked questions

In presenting this work to our colleagues we encountered a

number of recurrent questions. We use these questions to frame our

discussion of DCM for ERPs.

How do the results change with small changes in the priors?

Conditional inferences are relatively insensitive to changes in

the priors. This is because we use relatively uninformative priors
on the parameters about which inferences are made. Therefore,

confident inferences about coupling imply a high conditional

precision. This means that most of the conditional precision is

based on the data (because the prior precision is very small).

Changing the prior precision will have a limited effect on the

conditional density and the ensuing inference.

What are the effects of wrong network specification (e.g., including

an irrelevant source or not including a relevant source or the

wrong specification of connections)?

This is difficult to answer because the effects will depend on the

particular data set and model employed. However, there is a

principled way in which questions of this sort can be answered.

This uses Bayesian model comparison: if the contribution of a

particular source or connection is in question, one can compute the

log-evidence for two models that do and do not contain the source

or connection. If it was important, the differences in log-evidence

will be significant. Operationally, the effects of changing the

architecture are reformulated in terms of changing the model.

Because the data do not change, these effects can be evaluated

quantitatively in terms of the log-evidence (i.e., likelihood of the

data given the models in question).

How sensitive is the model to small changes in the parameters?

This is quantified by the curvature of the free energy with

respect to parameters. This sensitivity is in fact the conditional

precision or certainty. If the free energy changes quickly as one

leaves the maximum (i.e., conditional mode or expectation), then

the conditional precision is high. Conversely, if the maximum is

relatively flat, changes in the parameter will have a smaller effect

and conditional uncertainty is higher. Conditional uncertainly is a

measure of the information, about the parameter, in the data.
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What is the role of source localization in DCM?

It has no role. Source localization refers to inversion of an

electromagnetic forward model. Because this is only a part of the

DCM, Bayesian inversion of the DCM implicitly performs the

source localization. Having said this, in practice, priors on the

location or orientation (i.e., spatial parameters) can be derived from

classical source reconstruction techniques. In this paper, we used a

distributed source reconstruction to furnish spatial priors on the

DCM. However, these priors do not necessarily have to come from a

classical inverse solution. Our current evaluations of DCM, using

somatosensory evoked potentials (whose spatial characteristics are

well known), suggest that the conditional precision of the orientation

is much greater than the location. This means that one could

prescribe tight priors on the location (from source reconstruction,

from fMRI analyses or from the literature) and let DCM estimate the

conditional density of the orientation. We will report these and

related issues in Kiebel et al. (submitted for publication).

How do you select the sources for the DCM?

DCM is an inference framework that allows one to answer

questions about a well-specified model of functional anatomy. The

sources specify that model. Conditional inferences are then

conditional on that model. Questions about which is the best

model use Bayesian model selection as described above. In

principle, it is possible to compare an ensemble of models with

all permutations of sources and simply select the model that has the

greatest log-evidence. We will illustrate this in a forthcoming

multisubject study of the MMN in normal subjects.

How do you assess the generalizability of a DCM?

In relation to a particular data set, the conditional density of the

parameters implicitly maximizes generalizability. This is because

the free energy can be reformulated in terms of an accuracy term

that is maximized and a complexity term that is minimized (Penny

et al., 2004). Minimizing complexity ensures generalization. This

aspect of variational learning means that we do not have to use ad

hoc measures of generalization (e.g., splitting the data into training

and test sets). Generalization is an implicit part of the estimation. In

relation to generalization over different data sets, one has to

consider the random effects entailed by different subjects or

sessions. In this context, generalization and reproducibility are a

more empirical issue. We will report an analysis of the MMN in a

large cohort of normal subjects (Garrido et al., in preparation).

How can you be sure that a change in connectivity is not due to a

wrong model?

There is no such thing as a wrong model. Models can only be

better or worse than other models. We quantify this in terms of the

likelihood of each model (i.e., the log-evidence) and select the best

model. We then usually make conditional inferences about the

parameters, conditional on the best model. One could of course

argue that all possible models have not been tested, but at least one

has a framework that can accommodate any alternative model.

What is the basis for the claim that the neural mass models and

DCMs are biologically grounded?

This is based largely on the use of the Jansen and Rit model

(1995) as an elemental model for each source. We deliberately

chose an established model from the EEG literature for which a

degree of predictive and face validity had already been established.

This model has been evaluated in a range of different contexts and
its ability to emulate and predict biological phenomena has been

comprehensively assessed (David and Friston, 2003; Jansen and

Rit, 1995 and references therein). The biological plausibility of the

extrinsic connections has been motivated at length in David and

Friston (2003), where we show that a network of Jansen and Rit

sources can reproduce a variety of EEG phenomena.

Why did we exclude thalamus from our models?

Because it was not necessary to answer the question we wanted

to ask. In the models reported in this paper, the effects of

subcortical transformations are embodied in the parameters of the

input function. If one thought that cortico-subcortical interactions

were important, it would be a simple matter to include a thalamic

source that was invisible to measurement space (i.e., set the lead

field’s priors to zero). One could then use Bayesian model

comparison to assess whether modeled cortico-thalamic interac-

tions were supported by the data.

Does DCM deal with neuronal noise?

No. In principle, DCM could deal with noise at the level of

neuronal states by replacing the ordinary differential equations

with stochastic differential equations. However, this would call for

a very different estimation scheme in which there was conditional

uncertainty about the [hidden] neuronal states. Conventionally,

these sorts of systems are estimated using a recurrent Bayesian

update scheme such as Kalman or Particle filtering. We are

working on an alternative (Dynamic Expectation Maximization)

but it will be some time before it will be applied to DCM.

Why are the DCMs for EEG and fMRI not the same?

This is an important question, especially if one wants to use a

DCM to explain both fMRI and EEG responses in the context of

multimodal fusion. The DCM for EEG is considerably more

complicated than the models used previously for fMRI. In fact, the

bilinear form for the dynamics in fMRI is formally the same as the

bilinear approximation to the state equations used in this paper. The

reason that DCM for EEG rests on more complicated models is that

there is more conditional information in electromagnetic data about

the parameters. This means that more parameters can be estimated

efficiently (i.e., with greater conditional certainty). It would be

perfectly possible to replace the bilinear approximation in DCMs

for fMRI with the current neuronal model. However, Bayesian

model comparison would show that the bilinear approximation was

much better because it is not over-parameterized for fMRI data.

Conversely, model comparison using both fMRI and EEG data

should select the detailed model used here.

Why try to explain evoked responses solely by a change in effective

connectivity?

In DCM, most of the biophysical parameters are rate or

connectivity parameters that fall into three groups: (i) extrinsic

connections among areas, (ii) intrinsic connections within an area,

(i.e., among the three subpopulations) and (iii) within subpopulation

(i.e., the rate or time constants governing self-inhibition or

adaptation). We have chosen to explain experimental differences

in terms of coupling changes between areas. This is motivated by

theoretical considerations that suggest that sensory and perceptual

learning involves experience-dependent changes in extrinsic for-

ward and backward connections. However, the DCM machinery

could easily be adapted (by a different choice of priors on the

parameters) to explain differences in terms of changes in intrinsic
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connections, or even time constants within a subpopulation.

Furthermore, using Bayesian model comparison, we can compare

models to ask, for example, whether changes in intrinsic or extrinsic

connections are the most likely explanation for observed responses.

Conclusion

We have focused, in this paper, on the changes in connectivity,

between levels of an experimental factor, to explain differences in

the form of ERFs/ERPs. We have illustrated this through the

analysis of real ERPs recorded in two classical paradigms: ERPs

recorded during the perception of faces vs. houses and the auditory

oddball paradigm. We were able to differentiate two streams within

the ventral visual pathway corresponding to face and house

processing, leading to preferential responses in the fusiform face

area and parahippocampal place area, respectively. These results

concur with fMRI studies (Haxby et al., 2001; Vuilleumier et al.,

2001). We have shown how different hypotheses about the genesis

of the MMN could be tested, such as learning-related changes in

forward or backward connections. Our results suggest that bottom-

up processes have a key role, even in late components such as the

P300. This finding is particularly interesting as top-down processes

are usually invoked to account for late responses.

The long-term agenda of our modeling program is to establish

the validity of neuronal network models so that they can be used

as forward models to explain MEG/EEG and fMRI data. As

shown in this study, the key advantage, afforded by neuronally

plausible models in comparison to conventional analyses, is the

ability to pinpoint specific neuronal mechanisms underlying

normal or pathological responses. By integrating knowledge from

various fields dealing with the study of the brain, i.e., cognitive

and computational neuroanatomy, neurobiology and functional

imaging, it may be possible in the near future to construct ever

more realistic and constrained models that will allow us to test

functionally specific hypotheses. The goal of this paper was to

demonstrate the feasibility of this approach in noninvasive

electrophysiology.
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Appendix A

A.1. Integrating delay differential equations

Here, we describe integration of delay differential equations of

the form

ẋxi tð Þ ¼ fi x1 t � si1ð Þ;N ;xn t � sinð Þð Þ ðA:1Þ
for n states x = [x1(t), . . . , xn(t)]

T, where state j causes changes in

state i with delay sij. By taking a Taylor expansion about s = 0, we

get, to first order

ẋxi tð Þ ¼ fi x tð Þð Þ �
X
j

sijflfi=flsij ¼ fi x tð Þð Þ �
X
j

sijJijẋx tð Þj ðA:2Þ
where J = flf/flx is the systems Jacobian. Eq. (A.2) can be

expressed in matrix form as

ẋx tð Þ ¼ f � s : J ẋx tð Þ ðA:3Þ
where : denotes the Hadamard or element-by-element product. On

rearranging Eq. (A.3), we obtain an ordinary differential equation

that can be integrated in the usual way (see Appendix A.2).

ẋxi tð Þ ¼ D�1f x tð Þð Þ

D ¼ I þ s : J ðA:4Þ
A.2. Integration

In this work, integration of the ordinary differential equations,

ẋx tð Þ ¼ f x;uð Þ ðA:5Þ

proceeded using the Taylor expansion of the change in states

Dx sð Þ ¼ x t þ sð Þ � x tð Þ ¼ sflD=flsþ 1

2
s2fl2D=fls2 þ N ¼ Uf xð Þ

U ¼ sþ 1

2
s2J þ N

� �
¼ exp sJð Þ � Ið ÞJ�1 ðA:6Þ

J = flf(x, u) / flx. To avoid matrix inversion, U can be computed

efficiently with the following pseudo-code.

U ¼ Q ¼ sI

for i ¼ 1 : 256

Q ¼ 1

i
sQJ

U ¼ U þ Q

end ðA:7Þ
Critically, U is only re-evaluated whenever the input u changes.

This provides a very efficient integration scheme for systems with

sparse inputs (e.g., ERP models). However, this efficiency is at the

cost of inaccuracies due to ignoring changes in the Jacobian with

states (i.e., nonlinearities in Eq. (A.5)). These inaccuracies are

limited because the nonlinear state equation is evaluated fully at

each update Dx = Uf(x, u).

A.3. Data acquisition and source reconstruction

Both data sets were acquired from the same subject, in the

same session, using 128 EEG electrodes and 2048 Hz sampling.

Before averaging, data were referenced to mean activity and

band-pass filtered between 1 and 20 Hz. Trials showing ocular

artifacts (¨30%) and 11 bad channels were removed from further

analysis.

EEG electrodes were co-registered with subject’s structural

MRI and meshes of the scalp and of the white-gray matter interface

were extracted (Mangin et al., 2005). 7204 current dipoles were

then distributed over and normal to the cortical surface. For each

dipole, the EEG scalp topography was computed using a single

shell spherical model (Mosher et al., 1999). Regions of interest

(patches) were selected as follows: (i) About 0.5% of dipoles were

selected by retaining the most significant dipoles from the initial

set (David et al., 2002). (ii) The dipoles at the center of mass of the

ensuing clusters were selected and neighboring dipoles were added

isotropically, to create patches corresponding to cortical patches of
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about 1–2 cm2. (iii) The lead field of each source (columns of the

lead field matrix L) was then computed by averaging the lead field

of each dipole in the corresponding patch. This assumes a uniform

current density within each cortical patch.

This is quite an involved procedure. It should be noted that a

lead field could be computed for a small set of equivalent current

dipoles, or Fvirtual electrodes_ placed at the maxima of distributed

source reconstructions. The DCM models electrical responses of

discrete sources that are defined anatomically by the lead fields.

In our example, these sources were the cortical patches above. It

is important to note that reconstruction procedure is only

necessary to define the lead field of the forward model to

provide anatomical priors on the model. The analysis per se uses

the original data in measurement space (or some projection) and,

in principle, could proceed without lead fields (i.e., without any

anatomical constraints).

A.4. Data preprocessing

To reduce the dimensionality of the data, they were projected

onto the first three spatial modes following a singular value

decomposition of the scalp data, between 0 and 500 ms. This

was for computational expediency. Reduction using principal

eigenvariates preserves the most information in the data, in this

case about 70%. This selection of channels or modes that should

enter a DCM will be the subject of a technical note (Kiebel et

al., submitted for publication). Finally, the data were down-

sampled in time to 8-ms time bins. Again, this was for

computational reasons (equivalent results were obtained with 4

ms bins; however, the integration scheme became unstable with

16 ms bins).
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