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ABSTRACT

In this note, we describe a variant of dynamic causal modelling for evoked responses as measured with
electroencephalography or magnetoencephalography (EEG and MEG). We depart from equivalent current
dipole formulations of DCM, and extend it to provide spatiotemporal source estimates that are spatially
distributed. The spatial model is based upon neural-field equations that model neuronal activity on the
cortical manifold. We approximate this description of electrocortical activity with a set of local standing-
waves that are coupled though their temporal dynamics. The ensuing distributed DCM models source as a
mixture of overlapping patches on the cortical mesh. Time-varying activity in this mixture, caused by activity
in other sources and exogenous inputs, is propagated through appropriate lead-field or gain-matrices to
generate observed sensor data. This spatial model has three key advantages. First, it is more appropriate than
equivalent current dipole models, when real source activity is distributed locally within a cortical area.
Second, the spatial degrees of freedom of the model can be specified and therefore optimised using model
selection. Finally, the model is linear in the spatial parameters, which finesses model inversion. Here, we
describe the distributed spatial model and present a comparative evaluation with conventional equivalent
current dipole (ECD) models of auditory processing, as measured with EEG.

© 2009 Elsevier Inc. All rights reserved.

Introduction

We have previously introduced a dynamic causal modelling (DCM)
for event-related potentials and fields as measured with EEG and MEG
(David and Friston 2003; David et al., 2005, 2006; Kiebel et al., 2006;
Kiebel et al., 2007; Garrido et al., 2007). This extended the application
of DCM beyond fMRI (Friston et al., 2003; Marreiros et al., 2008a) to
cover EEG, MEG and local field potentials (Moran et al., 2007).
However, all current DCMs model hemodynamic or electromagnetic
signals as arising from a network of sources, where each source is
considered to be a point process; i.e., an equivalent current dipole. In
other words, the network is modelled as a graph, where sources
correspond to nodes and conditional dependencies among the hidden
states of each node are mediated by effective connectivity (known as
edges). In this work, we replace the nodes with a distributed and
continuous set of sources on the cortical surface. This provides a more
realistic spatial model of underlying activity and, in the context of
electromagnetic models, renders the DCM linear in its spatial
parameters (c.f,, Fuchs et al., 1999). The aim of this note is to describe
this extension and compare it with models based upon point-sources
or equivalent current dipoles (ECD). This model rests on the notions of
mesostates (Daunizeau and Friston 2007) and anatomically informed
basis functions (Phillips et al., 2002) but is motivated using neural-
field theory (Amari, 1995; Jirsa and Haken, 1996; Liley et al., 2002).
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DCM entails the specification of a generative model for an observed
time-series and the inversion of this model to make inferences on
model space and the parameters of each model. These inferences use
the model evidence and posterior density of the parameters,
respectively. In DCM, the underlying generative model is based on
some state-equations (i.e., a state-space model) that describe the
evolution of hidden states as a function of themselves and exogenous
inputs (e.g., a stimulus function). The state-equations are supple-
mented with an observer function of the states to generate observed
responses. By integrating the state-equation and applying the
observer function, one obtains predicted responses. Under Gaussian
assumptions about observation error these predictions furnish a
likelihood model of observed responses. This likelihood model is
combined with priors on the parameters to provide a full forward
model of the data, which can be inverted using standard techniques
(e.g., Friston et al., 2007a). These techniques generally rest on
optimising a free-energy bound on the models log-evidence to
approximate the posterior density of the model parameters.

In this work, we focus on the mapping from neuronal states to
observed measurements at the sensors. We depart from equivalent
current dipole models and employ an approximate neural-field
model. Neural-field models describe electrocortical activity in terms
of neuronal states (e.g. mean firing rate and post-synaptic membrane
depolarisation) that are continuous over space (Amari 1995; Jirsa
1996; Liley 2002). This approach has shown how local and distal
connectivity can interact to generate realistic spatiotemporal patterns
of cortical activity that might underlie EEG rhythms (Nunez 1974) and
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their perceptual correlates, like visual hallucinations (Ermentrout and
Cowan 1979). The patterns studied using neural-field models include
bumps (transient clustering of activity) and travelling waves (which
have been associated with synchronous discharges seen during
epileptic seizures; Connors and Amitai 1993). These patterns are
engendered by local (mesoscopic) connectivity. However, several
authors have pointed out the importance of large-scale (macroscopic)
connectivity in stabilizing local spatiotemporal dynamics (Jirsa and
Kelso 2000; Breakspear and Stam 2005; Qubbaj and Jirsa 2007; Hutt
and Atay 2005).

In this paper, we use theoretical results from neural-field theory,
which combine mesoscopic and macroscopic connectivity, to model
M/EEG. Specifically, we approximate the neural-field description of
electrocortical activity with a set of distributed and continuous
cortical sources that behave as standing-waves with compact local
support. These standing-waves are coupled by temporal dynamics and
follow from a truncated space-time decomposition of the solution of
the underlying neural-field equations. The aims of this note are to (i)
describe this neural-field DCM, (ii) compare it with established
equivalent current dipole variants and (iii) to provide a framework for
more realistic neural-field DCMs. We discuss these models in relation
to the subtle balance between their face validity and identifiability.

In the first section of this paper, we derive a standing-wave
approximation to the neural-field formulation and the ensuing
parameterization of the DCM for distributed responses. In the second
section, we present a comparative evaluation of DCMs based upon
ECDs and distributed sources. We compare these models in terms of
their relative log-evidence using a multi-subject EEG dataset, acquired
during an auditory mismatch negativity paradigm. We conclude with
a discussion of the benefits and potential uses of DCM for distributed
responses.

DCM for distributed responses

In this section, we approximate a neural-field description of
electrocortical activity with local standing-waves. We then combine
the ensuing spatial model with the temporal state-space models used
in previous DCMs for event-related responses (David and Friston
2003; David et al., 2005, 2006; Kiebel et al., 2006, 2007; Garrido et al.,
2007). This combination provides a full spatiotemporal DCM for
distributed responses, which can be fitted or inverted in the usual way.

From neural-fields to standing-waves
Neural-fields and mesoscopic modelling

We start with a description of the dynamics of a single neuron
within an ensemble of neurons. These dynamics can be modelled as a

temporal convolution of the average (mean-field) firing of the local
population that is seen by the neuron:
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Here, x{(t) is the post-synaptic membrane potential (PSP) of the
j-th neuron in the i-th population; G is the alpha-kernel; H is the
Heaviside function that models firing above depolarisation threshold
0; Kk is a lumped rate-constant and y controls the maximum post-
synaptic potential. Eq. 1 assumes that any neuron senses all the
neurons in the population it belongs to. This means endogenous input
(from this population) can be written as the expected firing rate over
that population (cf., Marreiros et al., 2008c). Here exogenous input
(from another population or stimulus-bound subcortical input) is

modelled as an injected current u scaled by the parameter 7y;,. Eq. 1
can be reformulated in terms of an ODE (cf,, David and Friston, 2003):

}éj(vi) — K27<<H(x;i) _9>>. + ymu> + 2:«')2}” + sz;i) =0. (2)
i

Given Eq. 2 we can now model the dynamics of the population
mean PSP by taking its expectation over neurons u® = (x?')>j

(Marreiros et al., 2008b):
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where u’ corresponds to the mean PSP in each population j sending
exogenous input. This is a conventional neural-mass model that
effectively applies a linear synaptic (alpha) kernel to input—s?, from
other populations. This input is a nonlinear (sigmoid) function of
depolarisation (Jansen and Rit 1995), which can be thought of as the
cumulative probability distribution of PSPs over the population
sending afferent signals. See Fig. 1, which shows the explicit form of
the state-equations for a cortical source containing three fields or
populations.

In DCM, a cortical source is typically modelled using three neuronal
subpopulations corresponding roughly to spiny stellate input cells (in
the granular layer) intrinsic inhibitory interneurons (assigned to the
supragranular layer) and deep pyramidal output cells in the infragra-
nular layer. The connectivity within (intrinsic) and between (extrinsic)
sources conforms to the laminar rules articulated in Felleman and Van
Essen (1991). This is implicitly modelled in Eq. 3 through the mixture of
exogenous and endogenous inputs ¢ that depends on the connectivity or
coupling parameters—y;;. This sort of neural-mass model has been used
to emulate electrophysiological recordings (e.g. Jansen and Rit 1995;
Wendling et al., 2000; David et al., 2005) and as a generative model for
event-related potentials in DCM (David et al., 2006).

However, these neural-mass models are not formulated to model
spatially extended cortical regions (a square centimeter or so); they
model the states of point processes, typically one macrocolumn (about
10,000 neurons, or a square millimeter of cortex; Breakspear and Stam,
2005). Neural-field models are important generalizations of neural-
mass models, which account for the spatial spread of activity, through
local connectivity between macrocolumns. In these models, states like
the PSP of each cortical layer can be regarded as a continuum or field,
which is a function of space r and time: p)(t) — p(r,t). This allows
one to formulate the dynamics of each field in terms of partial
differential equations (PDE). These are essentially wave-equations that
accommodate lateral interactions among neural-masses (e.g., cortical
columns). Key forms for neural-field equations were proposed and
analyzed by Nunez (1974) and Amari (1975). Jirsa and Haken (1996)
generalized these models and also considered delays in the propaga-
tion of spikes over space. The introduction of delays leads to dynamics
that are reminiscent of those observed empirically. Typically, neural-
field models can be construed as a spatiotemporal convolution that can
be written in terms of a Green function (see e.g. Jirsa et al., 2002):

pO () = / Gr — vt — t/)c(r t)de'dr
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Here, G is a Green function (modelling mesoscopic lateral
connectivity), [r—r’| is the distance between r and r’, c is the speed
of spike propagation, y controls the spatial decay of lateral
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Neural mass model for a cortical source
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Fig. 1. Neural-mass model. This figure depicts the schematic cytoarchitectonics of a cortical source, along with the differential equations used to model the dynamics of each of the
three subpopulations (pyramidal, spiny stellate and inhibitory interneurons). These subpopulations have been assigned to granular and agranular cortical layers, which receive
forward and backward connections, respectively. Here we have expressed the second-order ODEs in the text with pairs of first-order ODEs. This clarifies how the coupling parameters
mediate influences among and between sources. Note that the infragranular population comprises two subpopulations (one excitatory and the one inhibitory). Source or region-

specific superscripts have been dropped here for clarity.

interactions (within a neural-field) and, as above, the input ¢
models both the effective connectivity between the neural-fields of
different populations or layers. Eq. 4 is formulated as a simple
convolution'; the corresponding second-order equations of motion
are the neural wave-equations (see Appendix 1):

32 0 2 35 (i)
2 + 2K§ + K —5¢ v? ,u (r t) = cke(1,b) (5)

where k= c/yand v is the Laplacian operator that returns the spatial
curvature. Note the similarity in form of Eqs. 3 and 5. These sorts of
models have been extremely useful in modelling spatiotemporally
extended dynamics, which unfold on the cortical manifold (see Deco et
al. (2008) for a recent review, Coombes et al. (2007) for a more
informed derivation of 2D neural fields and Robinson et al. (1997) for a
seminal analysis of the properties of coupled neural-fields).

Approximating the dynamics of neural-fields

In what follows, we will try to approximate the dynamics
described by the partial differential equations above, with a system
whose dynamics can be described with the ordinary differential
equations used in neural-mass formulations. Using separation of
variables, it is fairly easy to show (see Appendix 2) that the solution of
the neural-field equations can be expressed as a superposition of
spatiotemporal modes that can be factorised into spatial and temporal
components. For the i-th field or population:

prn = S v owl o). 6)
k

Here, w{(r) is the k-th spatial mode or pattern and is the solution
to the eigenvalue problem V2wf”+ A w{?=0. Note that this

! When considering 2D neural fields on the cortical manifold, Eq. 3 is an
approximation that is valid whenever the spatial decay of lateral interaction is short
enough (typically smaller than the average distance between two cortical sulci; see
Appendix 1).

eigenvalue problem has to satisfy Dirichlet boundary conditions, i.e.
the spatial modes are zero at the edges of the cortical region
supporting the neural field. The temporal expressions of these
modes are the eigenfunctions vi?(t) of the field, which obey the
following second-order ODE:

o . 3

VY + 2kv)) + < i}‘k )vk) = crcy (t) (7)
where the scalar input seen by each mode cf”(
the input field ¢? (r,t) onto that mode

t) is given by projecting
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This means the solution of the partial differential equations
describing the spatiotemporal dynamics of neural-fields (Eq. 6) can
be decomposed into spatial modes, wi’(r), weighted by the solutions
of the coupled ODEs in Eq. 7, which describe the temporal dynamics of
the neural-field.

We now want to simplify this description without compromising
the dynamical repertoire of the model. Previous work on EEG/MEG
source reconstruction suggests that most of the variance in EEG/
MEG measurements can be accounted for by a set of temporally
coherent and spatially extended cortical sources (see Daunizeau et
al., 2006; Daunizeau and Friston, 2007; and Friston et al., 2007a,b).
This coarse-grain description of electrocortical activity corresponds
to a truncated spatiotemporal decomposition, in which each cortical
region has just one spatial mode, whose activity is modulated over
time (see also Jirsa et al. 2002; Wennekers 2008; and Robinson et al.,
2001). Here, we motivate a related approximation based on
equilibrium arguments. In the absence of exogenous input, each
spatial mode decays at a rate that is proportional to k(1 + 5\/%)\7
This is important, because high propagation velocities ¢, will
dissipate the spatial modes quickly, with the exception of the
fundamental mode wy, which has a zero eigenvalue; A = 0. This
means that, after a short period of time, the depolarisation of the i-th
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population or field will become a standing-wave; corresponding to
fluctuations of the fundamental mode:

wp' () () (6) + 269 (0) + K25 () = crwg (D) (©): (9)

Here, v{"(t) describes the temporal evolution of this mode. Critically,
these dynamics have exactly the same form as the neural-mass model;
i.e, when A{) =0, Eq. 9 is formally identical to Eq. 3. This suggests that
we can model distributed responses using a single mode or pattern,
whose fluctuations are coupled by the dynamics of conventional
neural-mass models (see Appendix for details).

In summary, by ignoring all but the fundamental mode, we can
model the spatiotemporal dynamics of each population or layer as
fluctuations in a single spatial mode—w¢"(r). Under this approxima-
tion, the dynamics of coupled populations become a simple system of
coupled standing-waves, each of which behaves like a neural-mass.
The temporal dynamics vd”(t) of these modes are exactly the same as
neural-mass models, where the mean PSP is replaced by the
eigenfunction:

V0 4+ 2500 + KV = ekl (t)
§0 = vu+ 3 vS(w')

]
D= /wg)(r);(")(r,,t)dr. (10)

These approximations allow us to relate neural-mass DCMs to
more realistic neural-field models. From the perspective of neural-
fields, neural-mass models correspond to an approximation, which is
valid when the system is close to equilibrium; i.e. when the
interactions between the modes do not drive the system into
autonomous behaviour (bumps or travelling waves) and most
modes decay quickly. This is typically assumed to be the case for
event-related responses (ERPs), which are generally slow damped
oscillatory responses to stimulation (e.g. Kiebel et al., 2007; Garrido et
al., 2008). It would be possible to increase the number of modes per
population or field to provide a more complete neural-field model;
however, this is beyond the scope of the present work. Our model now
comprises a set of neural-masses, whose dynamics modulate the
expression of some unknown but fixed spatial modes. Next, we
consider how these modes are modelled.

The spatial model

Due to the Dirichlet constraints at the boundary of the cortical
regions and local variations in cortical curvature, the fundamental
mode w§ of the Laplacian operator can have an arbitrary spatial
profile. Therefore, we model it as a mixture of spatial basis functions,
derived from the gain-matrix associated the cortical region:

wy = > UYBY. (11)
n

Here, U are the spatial eigenvectors of the gain-matrix L
associated with the set of vertices of the cortical mesh belonging to
the i-th source or region, and 3§ are the unknown spatial parameters
of our DCM. In addition, we assume that each cortical layer (neuronal
population) within each region can contribute to the EEG/MEG signal
measured at the sensors. This leads to the following DCM for
distributed responses:

yt)y =Y 1%y ST v () + e (12)
i 7

where y(t) is the column vector of instantaneous EEG/MEG scalp
measurements and L) are the gain-matrices for the i-th region.

The unknown relative contributions J; of the eigenfunctions v§?(t)
of the j-th population in the i-th cortical region are assumed to be
the same for all regions. Note that the fundamental mode is the
same for all populations within the same region because it
depends only on the geometry of the regional cortical manifold.
The free-parameters of the DCM now comprise the spatial
parameters 9> {B,J} (Eq. 11) and the neuronal parameters 9> {k,y}
of the ODE (Eq. 10); these encode synaptic rate-constants and coupling
parameters, respectively.

The decomposition of the spatial mode into the principal
components of the gain-matrix (Eq. 11) suppresses redundancy in
the spatial model; in the sense that spatial modes that cannot be
seen by the sensors are precluded. In our implementation, the
user specifies the coordinates of the sources comprising the
network in canonical space (Mattout et al, 2007; Talairach and
Tournoux 1988). The mesh points constituting each source are
then identified automatically as those points lying within a sphere
centred on the prior source location. We then take the first eight
eigenvectors of LOLYT to produce the spatial basis functions U,
The lead-fields are computed using BrainStorm (http://neuroimage.
usc.edu/brainstorm/ ), after co-registering the channel locations to a
subject-specific canonical mesh (Mattout et al., 2007). This involves
warping a template mesh (in canonical space) to match the
anatomy of each subject; so that individual differences in anatomy
are accommodated but the mapping between subject-specific
meshes and canonical space is preserved. The warping uses
standard nonlinear spatial normalisation tools in SPM (http://
www.fil.ion.ucl.ac.uk/spm).

Model inversion

Model inversion proceeds using standard variational techniques
under the Laplace assumption as described in previous commu-
nications (e.g., Friston et al, 2007a). The products of this
inversion are a free-energy approximation to the model's log-
evidence In p(y|m) and an approximating posterior density on the
model parameters, q(9)=N(uy,y), where p, is the posterior
expectation and 3, is the posterior covariance. This inversion
entails the computation of the gradients and curvatures of the
log-likelihood function, provided by the likelihood model (Eq. 11).
This involves computing the derivatives of the predicted response
with respect to model parameters; i.e., integrating the neuronal
state-equations to see how they respond to stimulus-related input
(a parameterized Gaussian bump-function of peristimulus time)
and then repeating this under small perturbations of the
parameters. Critically, the computation of the derivatives with
respect to the spatial parameters can be simplified greatly if the
response is linear in the parameters. This is the case for the
distributed source model, under which

oy (i)77() (ii)

—— =L"0 A%

oBY ! zj:] ’
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Jj ,- i

This is not the case for the DCMs based on ECDs, which have
nonlinear observer functions with six spatial parameters (encoding
the location of the source and its orientation). With the present spatial
model, we only have to integrate the system once, given the current
estimate of the neuronal parameters, 7, k to get v{’). These are then
used to compute the gradients in Eq. 13. This speeds up the iterative
variational scheme, as compared to the conventional DCMs based on
ECDs.

In what follows, we will focus on model comparison under ECD
and distributed spatial models, using the same temporal model. We
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Simulation series |
{prior source location)

Cl'x=2mm

€0 00

Fig. 2. Simulation series I: changing the prior locations. This figure depicts the three levels of perturbation to the prior location of the sources, as quantified by the standard deviation
oy of the distance between the true (simulated) position of the sources and the location that has been used to specify the DCM. (a) The 50 random samples of prior location of the five

sources (for oy=1mm). (b) Id for oy =2mm. (c) Id for oy =4mm.

will use Monte Carlo simulations to assess sensitivity and real ERP
data to compare the spatial models in terms of their evidence. A
difference in log-evidence of three is usually considered significant;
because this suggests a relative likelihood of 20:1. Under flat priors on
the models, this means that one can be 95% confident that one model
is better than the other.

Comparative evaluations
A sensitivity analysis

We are primarily interested in making inferences about the
connectivity of the network generating data (encoded by <yy).
However, the estimation of these parameters will be sensitive to the
specification of the generative model (e.g. the prior position of the
sources). In this section, we quantify the relative robustness (if any)
of the DCM for distributed responses, relative to ECD models, to
variations of the generative model. To assess robustness we

compared the changes in the posterior estimates of the neuronal
parameters (i.e. synaptic efficacies and rate-constants, which are
common to both models) when changing the prior or likelihood of
the DCM.

To equate the degrees of freedom (number of parameters) in
both models, we used six spatial basis functions to model each
mode (ECD models have six spatial parameters encoding the
location and orientation of each dipole). First, we computed the
predictions y after fitting two DCMs (ECD and distributed) to real
mismatch negativity event-related potentials (ERPs) (see next
section). This produced two sets of data, generated by ECD and
distributed DCMs, with different but known neuronal parameters.
These were then used as synthetic data for a series of DCM
inversions, as follows:

We ran two sets of simulations. In series I, we perturbed the prior
mean of the [five] source locations. We examined three levels of
perturbation: oy €{1,2,4} mm, where 0, was the standard deviation of
random Gaussian perturbations to the prior mean (see Fig. 2). In series

Simulation series Il
(signal to noise)

—_
QO
~—

SNR =4 dB

(b)

SNR =8 dB

SNR =16 dB

30

30 5 g ;

data PCA modes (A.U.)

: 1 : 30 ; ; ;

100 200
time (in msec)

-100 0

100

time (in msec)

5 i I a0 ; ; ;
200 300 400 -100 0 00 200
time (in msec)

300 400

Fig. 3. Simulation series II: changing signal to noise. This figure shows the three levels of measurement noise in the synthetic data as quantified by the signal-to-noise ratio (SNR). (a)
One sample of a synthetic data set (projected onto the sixteen spatial components of a PCA decomposition), at SNR=4 dB. (b) at SNR=8 dB. (c) at SNR=16 dB.
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Simulation series |
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5 1;6 é 4
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Fig. 4. Monte Carlo simulation results-squared error loss. Both graphs show the squared error loss (SEL) as a function of the level of prior dislocation and noise (error bars correspond
to one standard deviation). (a) SEL as a function of perturbation on the prior location of the sources—a. (b) SEL as a function of signal to noise-SNR. Except for the highest level of SNR
(16 dB), where both ECD and distributed DCMs behave similarly, the spatially distributed DCM is consistently better than its ECD variant.

I, we perturbed the likelihood by adding Gaussian noise to the data;
using three signal-to-noise ratios: SNR&{4,8,16} dB. SNR is defined as:
SNR=10 In var (f/\)/var(e) (see Fig. 3). We used 50 Monte Carlo
samples for both series.

Given the true parameters of the generative model and their
posterior estimator, we can evaluate the squared error loss:

SELo) = 3 (9, —&-)2

i

(14)

where 9 is the i-th neuronal parameter. The SEL is a standard
estimation error measure, whose posterior expectation is minimized

by the mean of the posterior density. This means that using the
posterior mean as an estimator 9 = (9), of unknown ¥ is optimal
with respect to squared error loss.

We investigated how the SEL changed as a function of prior
location and SNR, for both the ECD and the distributed solutions (see
Fig. 4). It can be seen that the distributed DCM is consistently better
than its ECD homologue, except at the highest SNR (16 dB), where
both models show the same squared error loss. In short, the
estimation error on the neuronal parameters, as measured by the
squared error loss is much smaller for the distributed DCM, which is
less sensitive to noise and inaccurate priors than its ECD variant. In
addition, we evaluated the quality of posterior confidence intervals:
under the Laplace approximation; q(8)= N(us,%s), this reduces to

distributed

prior 7 40
location ¢°

70 : :

60 y=28"+8.1

S0

30

* (Var,SEL) |
=== linear fit |1

70

60

. (\IIaI,SEL)

=== linear fit

* (Var,SEL)
=== linear fit

(Var,SEL)
=== linear fit

EL

16

18 2

Fig. 5. Monte Carlo results—posterior confidence. Both graphs show the expected (x-axis) versus the observed (y-axis) squared error loss (SEL) for both series of simulations and
spatial variants of the DCM. Top: changes in prior locations. Bottom: changes in signal to noise. Left: ECD-DCM. Right: distributed DCM. Although there is an order of magnitude
difference between the predicted and observed SEL, they are strongly correlated. Note the increase in correlation for distributed DCMs over ECD-DCMs (bottom right).
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assessing the accuracy of the posterior covariance in relation to the
SEL, since;

EL(q) = (SEL(9))q = tr(Zy). (15)

where the expected loss EL(q) is the Bayesian estimator of SEL (see
Robert, 1992). This equivalence means we can assess the posterior
covariance in terms of the relationship between the expected and the
sampled SEL; for both the ECD and distributed solutions. A good
correlation between the expected EL(q) =tr(Zy) and observed SEL
means that the inference scheme is self-consistent; i.e., it adapts its
level of confidence in proportion to the real (observed) estimation
error. Fig. 5, shows the expected versus the observed SEL for both
series of simulations and DCMs. Although there is an order of
magnitude difference between the predicted and the observed SEL,
they are strongly correlated. In addition, the correlation between EL
(q) and SEL under different levels of noise is significantly higher for
the distributed DCM.

In summary, the DCM of distributed responses is more robust to
violations of priors and levels of noise; furthermore, it is more self-
consistent in that the observed and expected estimation loss is
more tightly coupled, relative to ECD models. We now turn to

empirical comparisons, using the relative evidence for both models
in real data.

Model comparisons using EEG data

In this section, we apply both ECD and distributed DCMs to the
grand-mean responses from an eleven-subject auditory mismatch
negativity study (Garrido et al., 2007). The term ‘mismatch negativity’
(MMN) describes an evoked response component elicited by the
presentation of a rare auditory stimulus in a sequence of repetitive
standard stimuli (Ndatdnen, 2003). The rare stimulus typically causes
a more negative response. The difference between deviant and
standard tone reaches a minimum at about 100 ms, and exhibits a
second minimum later between 100 and 200 ms.

We first performed a conventional imaging source reconstruction
to specify the underlying neuronal network, in terms of the number
and prior expectations of source locations (Friston et al., 2007b). Fig. 6
shows the results of a source reconstruction for the first subject and
highlights the prior source locations selected for the DCM analyses.
This network is shown in Fig. 7a, which includes the extrinsic
(between source) connections (cf. Garrido et al., 2007). In brief, we
allowed for forward and backward connections between an early

(a) Standard condition
{(~200 ms after stimulus onset)
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Fig. 6. Mismatch negativity study: scalp data and source reconstructions. The mismatch negativity (MMN) is the pattern elicited when contrasting a standard condition (repeated
high-pitched tones) with a deviant condition (sparse low-pitched tones). This figure shows both the scalp topography and the corresponding source reconstructions at the time of
the maximum difference (approx. 200 ms after onset). (a) Standard condition: the maximum intensity projection (MIP) on the source reconstruction shows five key sources: right/
left primary auditory cortex (A1), right/left superior temporal gyrus (STG) and right inferior frontal gyrus (IFG). (b) Deviant condition: the MIP shows the same five sources (with

different amplitudes).
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DCM: Connectivity architecture
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permitted condition-specific gains (standard vs. deviant)

forward backward

intrinsic A1 intrinsic all

Fig. 7. Mismatch negativity study: DCM architectures. The five sources identified by source reconstruction MIP (see Fig. 6) were used to construct a DCM network as follows: (a) both
primary auditory sources were coupled with forward and backward connections to ipsilateral STG sources. The latter were reciprocally connected through lateral connections, and
right STG was coupled with forward and backward connections to rIFG. Within this graph, we compared eleven models, corresponding to different combinations of connectivity
changes between the standard and the deviant conditions of the MMN paradigm. These condition-specific changes are depicted in (b): four sets of connections were allowed to
change: forward connections, backward connections, intrinsic connections for bilateral A1, and all intrinsic connections. We then derived eleven DCMs from combinations of these

four sets; “F”, “B”, “FB”, “FI", “BI", “FBI”, “FA”, “BA”, “FBA”, and “0” (see Table 1).

bilateral auditory (rA1 and 1A1) source and bilateral superior temporal
gyrus (rSTG and ISTG) areas, as well as forward and backward
connections between the right STG and a source located in the inferior
frontal gyrus (rIFG). We also included transcallosal lateral connections
between the STG sources.

The conventional understanding of the MMN rests on change-
sensitive neuronal populations. In Kiebel et al., (2007), we considered
two hypotheses, which explain the MMN either by adaptation or
within a predictive coding framework (Friston, 2005; Garrido et al.,
2008). We have shown that hypotheses like these can be formulated
and tested using DCM, by allowing connections to change between the
deviant and the standard conditions. In particular, we can test
hypotheses about the mechanisms underlying the MMN by modelling
the response evoked by a deviant using the same parameters as for the
standard response, except for a gain in selected connections. Here, we
repeat this analysis using both spatial variants of DCM.

Table 1 shows the different architectures we considered in terms of
which connections were allowed to change (from the deviant to
standard conditions). In brief, these different models correspond to
different explanations for the MMN: the adaptation hypothesis
(change in intrinsic connections) and the predictive coding hypoth-
esis (change in intrinsic and extrinsic connections). We refer the
interested reader to Kiebel et al., (2007):

Four sets of connections were allowed to change between the
deviant and the standard conditions (see Fig. 7b); ‘forward’ implies
permissible changes in all forward connections; ‘backward’, all
backward connections; intrinsic A1/, changes in connectivity intrinsic
to A1 and ‘intrinsic all’, all intrinsic connections. We then constructed
eleven DCMs from combinations of these four basic differences,
namely; “F”, “B”, “FB”, “FI”, “BI”", “FBI”", “FA”, “BA”, “FBA”, and “0” (see
Table 1). The last model precluded any changes between the two
conditions and constitutes a null model.

In these comparative analyses, we also investigated the effect
of changing the spatial support of the cortical regions in the

distributed DCMs. This was achieved by varying the radius (1, 2, 4,
8, 16 and 32 mm) of the sphere (centred on the prior location),
which defines the mesh vertices in each cortical region. We used
the free-energy approximation to the log-evidence to compare the
11x7=77 models; eleven DCMs with seven spatial models (six
distributed models with different spheres and one ECD model).
The ensuing log-evidences are shown in Fig. 8. For almost all
DCMs, the ECD models were significantly less likely than
distributed DCMs (maxX Fgjstributed — MaxFecp =294.8). Note that
this model comparison automatically accommodates differences in
model complexity. These differences were small because the ECD
and the distributed and ECD-DCMs had the same number of
parameters.

When the sphere radius in the distributed DCM is reduced, the
DCMs have very similar log-evidences (Fig. 8a). Note also that the
model evidence of the best DCM (FBA) for distributed DCM with small
(1, 2, and 4 mm) spheres and the ECD model are very close to each
other. This means that these spatial models converge when inverting a

Table 1

Condition-specific effects (standard versus deviant): gain in coupling strength.
Forward Backward Intrinsic A1 Intrinsic all

F X

B X

FB X X

FI X X

BI X X

FBI X X X

FA X X

BA X X

FBA X X X

A X

0
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Fig. 8. Mismatch negativity study: Bayesian model comparison results. Bayesian model comparison was applied to an 11 x 7 factorial model space. Eleven condition effects (see Fig.6b)
and 7 spatial variants of each DCM (6 distributed DCMs, with different cortical regions (sphere radii €1, 2, 4, 8,16, and 32 mm) and one ECD-DCM. (a) Free-energies (log-evidences) for
each of the 11 x 7 models. The star indicates that the best of all DCMs is a distributed FBA model (in which all connections were allowed to change) with the largest region. (b) Marginal

posterior probabilities of the eleven DCMs (marginalising over spatial models).

well-specified neuronal model. In other words, there is no significant
difference in model evidence between ECD and small patches, since
the latter are approximated well by a single dipole. Fig. 8 also shows
the marginal posterior probabilities of the eleven DCMs; margin-
alising over all spatial variants. This integrates out dependency on the
spatial parameters and replicates the finding of Garrido et al., (2007)
that the most plausible DCM seems to combine changes in forward,
backward and intrinsic connections. For this DCM, there was strong
evidence that the distributed DCM (all radii) was a better model than
the ECD equivalent.

Discussion

We have described a variant of dynamic causal modelling for
event-related potentials or fields as measured with EEG and MEG. We
motivated this DCM as an approximation to a continuous neural-field
model, using a mixture of overlapping patches, with compact spatial
support, on the cortical surface. Time-varying activity in this mixture,
caused by activity in other sources and experimental inputs, is
propagated through appropriate lead-field or gain-matrices to
generate observed channel data. In comparison to ECD variants of
DCM, this distributed DCM has three advantages; it has greater face
validity, the degrees of freedom of the spatial model can be specified
(and therefore optimised using model selection) and the model is
linear in the spatial parameters (which finesses computational load).
Both our simulations and the application to an EEG auditory mismatch
negativity dataset demonstrated the superiority of distributed DCMs,
when compared to their ECD homologues.

The greater face validity of spatially distributed DCMs is similar to
that of imaging source reconstruction solutions, when compared to
ECD-like solutions: the spatial extent of each regional source must be
modelled properly when inverting such models (see below).
Furthermore, the neural-mass models we use (Jansen and Rit 1995)
were designed originally to model mesoscopic electrocortical activity,
at a spatial scale finer than that of EEG/MEG. Using simple
approximations of neural-field models, we have proposed a simple
modification of neural-mass models that render them able to emulate
macroscopic spatiotemporal dynamics. Specifically, these modifica-
tions allow us to account for the spatial deployment of sources, which
appears to be necessary to explain EEG/MEG data (see MMN results
section).

Although not pursued here, the number of basis functions or
different sizes of cortical regions could be optimised. One would
repeat the inversion using different basis functions and evaluate the

model evidences (as for the analysis of cortical sources in Fig. 8). This
would allow one to optimise the degrees of freedom of the spatial
model, in relation to the spatial information supported by the data;
similarly for the size of the cortical patches used to model source-
specific activity.

Note that there is a formal link between the spatially distributed
DCM proposed in this work and EEG/MEG source reconstruction
techniques (see e.g. Daunizeau et al., 2006; Friston et al., 2007b).
The key difference between these two approaches rests on the
formal constraints used by DCM. These constrain the temporal
expression of source activity to conform to a biologically plausible
time-course (Scherg and Von Cramon 1985). The interpretation of a
DCM analysis is not usually concerned with the spatial profile of
source activity but focuses on the coupling parameters and how
they change with experimental manipulations. However, it is
interesting to regard the DCM inversion as a biophysically and
neurobiologically informed imaging source reconstruction (see
Kiebel et al., 2006). In other words, one can regard the Bayesian
inversion of spatially distributed DCM as a generalisation of classical
forward model inversion used to reconstruct source activity from
observed EEG or MEG data. The only difference between classical
inversion and DCM is that the source activity has to conform to a
biophysically plausible model. Generally, this model entails inter-
actions among sources so that activity in one source is caused by
activity in others. Classical forward models focus exclusively on the
spatial observer function of the hidden states and ignore formal
constraints on the temporal expression of source activity. The
resulting spatial models are either ECD-based models or distributed
source models of the sort used in image reconstruction (Baillet and
Garnero 1997; Pascual-Marqui 2002; Phillips et al., 2005). Exactly
the same distinction between ECD and distributed reconstructions
can be applied in the context of DCM. In this note, we have
described a distributed spatial model that complements existing
ECD dynamic causal models.

In the future, it is possible that DCMs will be based on models that
are closer to full neural-field models. These models might be more
appropriate for EEG and MEG data because they account for
continuous lateral interactions within each cortical region. Neural-
field models can generate time-dependent dynamics that are
expressed as bumps or propagating waves over the cortical surface.
In this work, we truncated our space-time decomposition to the
fundamental mode (a zero-order approximation). As a consequence,
the neural-fields behave as interacting standing-waves; i.e. regionally
specific invariant patterns of activity oscillating in response to mutual
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influence. This space-time separation is a simplified variant of the sort
of the spatiotemporal behaviours that could be obtained using a more
realistic wave-equation (c.f. Eq. 6). Our zero-order approximation
could be relaxed to increase the complexity of the neural-field model.
This can be done by including more modes (see Eqgs. 7 and 8 and
Appendix 2). This would allow one to replace a full PDE to a set of
coupled ODEs.

Two additional comments should be made: first, the derivation of
the 2D neural field PDE relies on the assumption that lateral
(isotropic) interactions are deployed over a small spatial scale (see
Appendix 1). As a consequence, only long spatial wavelengths
(relative to the spatial decay of lateral interactions) can be expressed
in the 2D cortical neural field. This means that mesoscale phenomena
like patchy feature maps (e.g. orientation preference or ocular
dominance) in V1 might not be captured accurately (see Bressloff
2003 for a recent discussion of isotropic connectivity and Coombes et
al., 2007 for an extension of the long-wavelength approximation to
patchy propagators).

Second, we motivated our standing wave (fundamental mode)
approximation to the neural field by noting that at high propagation
velocity, higher harmonics will dissipate quickly. This is consistent
with more realistic models (including axonal propagation), which also
suggest that higher harmonics are damped more heavily (Nunez
1995). However, our standing wave approximation to experimentally
manipulated (excited) neural fields is different in nature from the
emergence of global standing-waves as proposed in Nunez and
Srinivasan (2006). The latter global waves are thought to underlie
global coherence of cortical activity in the absence of stimulation (e.g.
eyes-closed resting alpha-band activity). Global standing-waves can
be thought of as a resonance phenomenon, whose wavelength is
related to the size of the brain. Nunez points out that mental tasks
“enhance cell assembly activity [i.e. functional segregation], thereby
reducing global field behaviour”. This is in contradistinction to the
present work, which postulates that local standing-waves emerge
from the interaction of segregated neural ensembles. According to this
view, segregation is necessary for the standing-waves to emerge, in
the sense that it prevents activity spreading over the cortical mantle.
In turn, this makes extrinsic functional integration (i.e. between
region top-down and bottom-up effects, as opposed to within region
lateral interactions) the principal mechanism responsible for sus-
tained large-scale cortical activity.

Software note

All the routines and ideas described in this paper can be implemented
with the academic freeware SPM8 (http://www.fiLion.uclLac.uk/spm).
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Appendices
Approximate 2D neural fields on the cortical manifold

Deriving the partial differential equation describing the spatiotem-
poral dynamics of neural fields from the underlying integrodifferential
equation is a difficult problem because: (i) even on a Euclidean space,
the Fourier analysis of the 2D neural field is not exact and (ii) on curved
(Riemannian) manifolds, Euclidean distance measures do not apply. In
this appendix, we discuss approximate solutions to these problems.

First, we consider the neural field unfolding on a planar surface
tangential to the cortical manifold. Let r = (,0) denote the 2D position

(in polar coordinates) on this Euclidean space. Recall that the
spatiotemporal convolution that operates on the input ¢(rt) is given
by Eq. 4

J(rt) = G(rt)*s(r,t)

G(rt) = 8(t — %r)%exp(—%r) (A1)
I 1/

lateral interaction

where * denotes convolution and G is the convolution kernel,
whose spatial scale is controlled by the decay of lateral inter-
actions +y. Therefore, if the Fourier transform G(k,®) of G can be
represented in the rational form G(k,w) = R(k? iw) / P(k? i), we have
P(k%,iw)G(k,w) =R(k%io){(k,w). By identifying k* — —v? and
iw<0 / ot, an inverse Fourier transform will yield the PDE in terms
of spatial and temporal derivatives (see Coombes et al., 2007). Given
the functional form of the lateral interactions, Liley et al. (2002)
proposed an expansion of P(k?iw) near k=0, yielding the “long-
wavelength” approximation:

52 0 2 3 9.9
3z + 255 + K= 5€ V7 u(rt) = cke(r.t) (A2)

where k= c/y. This expression is very close but not identical to that
obtained more simply (and exactly) for 1D neural fields (e.g. Deco et
al., 2008). The long-wavelength approximation basically implies that
k<1/y, i.e. Ar>"y, where Ar is the typical spatial wavelength. This is
not a critical assumption when modelling EEG scalp data; since the
head volume conductor acts as a low-pass spatial filter such that scalp
potentials are dominated by the long-wavelength components
engendered by cortical sources (Nunez and Srinivasan 2006).

The PDE (A2) derives from the spatially invariant form of the Green
function above (A1), which, on a 2D Riemannian manifold is:

Grr't) = 5<t —@) %exp( —@), (A3)

where r(resp. r’) is the position on the cortical surface of the target
(resp. source) neuron of the neural field, and d(r,r’) is the distance
metric on the cortical manifold. Note that the cortical manifold more
precisely, each hemisphere) is homotopic to a sphere, which means
that its metric is well-behaved and that local geographic (angular)
coordinates can be defined on the cortical mantle (Toro and Burnod
2003). This implies that a patch of the cortical mantle is homotopic to
an open set in R?, where there is a bijective mapping from the angular
coordinates to the Euclidean polar coordinates above. If the fall-off
distance vy is small compared to the inverse curvature (smoothness) of
the manifold A, the Green function can be approximated by a spatially
invariant convolution kernel:

Ir= f")%exp( - “;—”)Ecu — ). (A4)

Gy t) =% 5(r -

This is because contributions from the manifold that diverge from
the tangent surface (e.g. neighbouring sulci) will be negligible. Note
that this “short-scale lateral connectivity” is required because the
assumption of isotropic lateral interaction posits that the boundary
effects are negligible far from boundaries. Moreover, it justifies the
above “long-wavelength” approximation, in the sense that such a
system can almost only resonate at long-wavelength harmonics
(relative to y). One can think of the short-scale lateral connectivity
in a 1D neural field as a string of interacting (infinitesimal) elements
(e.g., under tension). The energy required to excite the string is
proportional to the frequency of its harmonics, which means that
higher harmonics (short wavelengths) will decay quickly. These
considerations mean that under “short-scale lateral connectivity”, the
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PDE obtained from the lateral interaction function above (A4) is
approximately valid.

Approximate solutions for neural-fields

The neuronal activity of_a cortical layer or population can be
modelled as a neural-field p7(r,t) that satisfies the following partial
differential equation (PDE):

o a 3¢ ,

+ 2K — —V It @ rt
<6t2 )IJ (rt) = fU(rt) (A5)
O = CHQ(i)(r,t) — k()

Here, u¥(rt) is the field associated with the i-th population. In

(A5), we have lumped input and decay terms into f@(rt). Using
separation of variables, we can express the solution of this PDE as:

pwe = Y vl owm (A6)
k
where the spatial modes w{”(r) are the solutions to the eigenvalue
problem:
v2 wk + }\ wk =0. (A7)

Note that the self-adjoint property of the Laplacian operator v
ensures the eigenvalues AP are real and the spatial eigenvectors or
modes w{(r) are real and orthonormal

[ ow e = by (A8)

This orthonormal property means we can express the eigenfunc-
tions viP(t) as

_ / w0 (x.)dr. (A9)

If we differentiate (A9) with respect to time and use (A5) to
eliminate 1", we obtain

= / w;f) (r) (19 (x,t)dr

oo s (A10)
=5 <—/ wy jidr + zcz/wfj)vzp(’)dr + '/w,i')fdr)A
From the form of the solution (A6) and (A7), we have
i) = kaa)(t)w,i")(r)
ka OV @ = YNV oW (). (A11)

k

The input f9(r,t) and its stimulus-related component can also be
expressed as a transform pair

O = Zf,ﬁ”(t)w,i”(r)

fk / wk dr

= Zuk t)wk r)
k

U (t) = / wl (ryu(r.t)dr

Substituting these expressions into (A10), we can use the
orthogonality of the modes (A8) to eliminate terms that depend on
r and express the temporal dynamics as an ODE

i 1 (i 3, 0 (i
vy (6) = o <_Z‘Skk’v;<l')(t) +5¢ > s A v ()
% %

1( i 32, ;
=5 (—v;:)(t) + 3EM(0) + f,j”(t))

(A12)

+> B (U)

k’

(A13)

Rearranging (A13) and substituting for f{(t) from (A5) and (A12)
gives

0* 2 3.0 2.0
vk (t) + 2F\ vk (t) - i}\k v (t)

= CK/wk' ) (x,t)dr.

Recall that p is the parameter of the sigmoid activation
function S(u®) in Eq. 3. We can further simplify the expression

(A14)

for the input using the first-order approximation S(u®)~ pu®(r, t)
to give:
) = yaurd) + Y S o)
j
u(rr) = Zukmw;:’)(r) (A15)

S(uf )—pu

pz Vk Wk

Here, we have made the simplifying assumption that all the
populations have the same spatial support and modes; and that the
coupling between layers, <y; is uniform. This allows us to further
approximate the input for the k-th mode with:

/W;:)( (1’ t dr = Yiu Zbkk U t) + Zyupz akk Vk
Kk

S Yl®) + s (vk ) (A16)

In effect, the modes are uncoupled by their orthogonality. This
means the mean-field effects are only communicated within, not
between modes. Substituting (A16) into (A14) gives an approximate
ODE for the temporal expression of each mode:

o “i 3 .
V() + 2600 (1) + ( - SN\ ) v (t) = ekl (t)

;;ci)(t) = Yiullg(t) + Z 7,‘]'5<V;<j)(t)).
J
(A17)

If we retain only the fundamental mode, then Af’ =A§’=0 and
(A17) has exactly the same form as the neural-mass model in Eq. 3 but
where the mean depolarisation is replaced by the eigenfunction of
each mode. This also describes the fluctuations of the standing-wave
in Eq. 9.

More generally, when different populations have different spatial
modes (i.e., populations in different cortical regions), one would have
to replace y;; with e’ and sum over modes and populations; where
the parameter T'y‘%) couples the k-th mode of the i-th population to
the k’-th mode in population j. This parameter can model inhomo-
geneous extrinsic connections that couple spatial modes in different
parts of the brain; this is the implicit meaning of y;; = 4 in the main
text.
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