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Abstract

In this paper we present an approach to the identification of nonlinear input—state—output systems. By using a bilinear approximation
to the dynamics of interactions among states, the parameters of theimplicit causal model reduce to three sets. These comprise (1) parameters
that mediate the influence of extrinsic inputs on the states, (2) parameters that mediate intrinsic coupling among the states, and (3) [bilinear]
parameters that alow the inputs to modulate that coupling. Identification proceeds in a Bayesian framework given known, deterministic
inputs and the observed responses of the system. We developed this approach for the analysis of effective connectivity using experimentally
designed inputs and fMRI responses. In this context, the coupling parameters correspond to effective connectivity and the bilinear
parameters reflect the changes in connectivity induced by inputs. The ensuing framework allows one to characterise fMRI experiments,
conceptually, as an experimental manipulation of integration among brain regions (by contextual or trial-free inputs, like time or attentional
set) that is revealed using evoked responses (to perturbations or trial-bound inputs, like stimuli). As with previous analyses of effective
connectivity, the focus is on experimentally induced changes in coupling (cf., psychophysiologic interactions). However, unlike previous
approaches in neuroimaging, the causal model ascribes responses to designed deterministic inputs, as opposed to treating inputs as unknown
and stochastic.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction or synaptic activity istransformed into ameasured response.

This enables the parameters of the neuronal model (i.e.,

This paper is about modelling interactions among neu-
rona populations, at a cortical level, using neurcimaging
(hemodynamic or electromagnetic) time series. It presents
the motivation and procedures for dynamic causal model-
ling of evoked brain responses. The aim of this modelling is
to estimate, and make inferences about, the coupling among
brain areas and how that coupling is influenced by changes
in experimental context. Dynamic causal modelling repre-
sents a fundamental departure from existing approaches to
effective connectivity because it employs a more plausible
generative model of measured brain responses that em-
braces their nonlinear and dynamic nature.

The basic idea is to construct a reasonably redlistic neu-
ronal model of interacting cortical regions. This moddl is
then supplemented with a forward model of how neuronal
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effective connectivity) to be estimated from observed data.
These supplementary models may be forward models of
electromagnetic measurements or hemodynamic models of
fMRI measurements. In this paper we will focus on fMRI.
Responses are evoked by known deterministic inputs that
embody designed changes in stimulation or context. Thisis
accomplished by using adynamic input—state—output model
with multiple inputs and outputs. The inputs correspond to
conventional stimulus functions that encode experimental
manipulations. The state variables cover both the neuronal
activities and other neurophysiological or biophysical vari-
ables needed to form the outputs. The outputs are measured
electromagnetic or hemodynamic responses over the brain
regions considered.

Intuitively, this scheme regards an experiment as a de-
signed perturbation of neurona dynamics that are promul-
gated and distributed throughout a system of coupled ana-
tomical nodes to change region-specific neuronal activity.
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These changes engender, through a measurement-specific
forward model, responses that are used to identify the ar-
chitecture and time constants of the system at the neuronal
level. This represents a departure from conventional ap-
proaches (e.g., structural equation modelling and autore-
gression models, Mclntosh and Gonzalez-Lima, 1994;
Buchel and Friston, 1997; Harrison et al., in press), in which
one assumes the observed responses are driven by endoge-
nous or intrinsic noise (i.e., innovations). In contradistinc-
tion, dynamic causal models assume the responses are
driven by designed changes in inputs. An important con-
ceptual aspect of dynamic causal models, for neuroimaging,
pertains to how the experimental inputs enter the model and
cause neuronal responses. Experimental variables can elicit
responses in one of two ways. First, they can elicit re-
sponses through direct influences on specific anatomical
nodes. This would be appropriate, for example, in model-
ling sensory-evoked responses in early visual cortices. The
second class of input exerts its effect vicariously, through a
modulation of the coupling among nodes. These sorts of
experimental variables would normally be more enduring;
for example, attention to a particular attribute or the main-
tenance of some perceptua set. These distinctions are seen
most clearly in relation to existing analyses and experimen-
tal designs.

1.1. DCM and existing approaches

The central idea behind dynamic causal modelling
(DCM) is to treat the brain as a deterministic nonlinear
dynamic system that is subject to inputs and produces out-
puts. Effective connectivity is parameterised in terms of
coupling among unobserved brain states (e.g., neurona ac-
tivity in different regions). The objective isto estimate these
parameters by perturbing the system and measuring the
response. Thisisin contradistinction to established methods
for estimating effective connectivity from neurophysiolog-
ical time series, which include structural equation modelling
and models based on multivariate autoregressive processes.
In these models, there is no designed perturbation and the
inputs are treated as unknown and stochastic. Multivariate
autoregression models and their spectral equivalents like
coherence analysis hot only assume the system is driven by
stochastic innovations, but are restricted to linear interac-
tions. Structural equation modelling assumes the interac-
tions are linear and, furthermore, instantaneous in the sense
that structural equation models are not time-series models.
In short, DCM is distinguished from alternative approaches
not just by accommodating the nonlinear and dynamic as-
pects of neuronal interactions, but by framing the estimation
problem in terms of perturbations that accommodate exper-
imentally designed inputs. This is a critical departure from
conventional approaches to causal modelling in neuroimag-
ing and brings the analysis of effective connectivity much
closer to the conventional analysis of region-specific ef-
fects. DCM calls upon the same experimental design prin-

ciples to elicit region-specific interactions that we use in
experiments to elicit region-specific activations. In fact, as
shown later, the convolution model, used in the standard
analysis of fMRI time series, is aspecial and simple case of
DCM that ensues when the coupling among regions is
discounted. In DCM the causal or explanatory variables that
compose the conventional design matrix become the inputs
and the parameters become measures of effective connec-
tivity. Although DCM can be framed as a generalisation of
the linear models used in conventiona analyses to cover
bilinear models (see below), it also represents an attempt to
embed more plausible forward models of how neuronal
dynamics respond to inputs and produces measured re-
sponses. This reflects the growing appreciation of the role
that neuronal models may have to play in understanding
measured brain responses (see Horwitz et a., 2001, for a
discussion).

This paper can be regarded as an extension of our pre-
vious work on the Bayesian identification of hemodynamic
models (Friston, 2002) to cover multiple regions. In Friston
(2002) we focussed on the biophysical parameters of a
hemodynamic response in a single region. The most impor-
tant parameter was the efficacy with which experimental
inputs could elicit an activity-dependent vasodilatory signal.
In this paper neuronal activity is modelled explicitly, allow-
ing for interactions among the neuronal states of multiple
regions in generating the observed hemodynamic response.
The estimation procedure employed for DCM is formally
identical to that described in Friston (2002).

1.2. DCM and experimental design

DCM is used to test the specific hypothesis that moti-
vated the experimental design. It is not an exploratory tech-
nique; as with al analyses of effective connectivity the
results are specific to the tasks and stimuli employed during
the experiment. In DCM designed inputs can produce re-
sponses in one of two ways. Inputs can €licit changesin the
state variables (i.e., neuronal activity) directly. For example,
sensory input could be modelled as causing direct responses
in primary visual or auditory areas. The second way in
which inputs affect the system is through changing the
effective connectivity or interactions. Useful examples of
this sort of effect would be the attentional modulation of
connections between parietal and extrastriate areas. Another
ubiquitous example of this second sort of contextual input
would be time. Time-dependent changes in connectivity
correspond to plasticity. It is useful to regard experimental
factors as inputs that belong to the class that produces
evoked responses or to the class of contextual factors that
induces changes in coupling (although, in principle, al
inputs could do both). The first class comprises trial- or
stimulus-bound perturbations whereas the second estab-
lishes a context in which effects of the first sort evoke
responses. This second class is typically trial-free and es-
tablished by task instructions or other contextual changes.
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contextual inputs - u,
{e.g. cognitive set or time}

Stimulus-free

Stimulus-bound

perturbations - u,
{e.g. visual words}

Fig. 1. Thisis a schematic illustrating the concepts underlying dynamic causal modelling. In particular it highlights the two distinct ways in which inputs
or perturbations can elicit responses in the regions or nodes that compose the model. In this example there are five nodes, including visua areas V1 and V4
in the fusiform gyrus, areas 39 and 37, and the superior temporal gyrus STG. Stimulus-bound perturbations designated u, act as extrinsic inputsto the primary
visual area V1. Stimulus-free or contextual inputs u, mediate their effects by modulating the coupling between V4 and BA39 and between BA37 and V4.
For example, the responses in the angular gyrus (BA39) are caused by inputs to V1 that are transformed by V4, where the influences exerted by V4 are
sensitive to the second input. The dark square boxes represent the components of the DCM that transform the state variables z in each region (neuronal

activity) into a measured (hemodynamic) response y,.

Measured responses in high-order cortical areas are medi-
ated by interactions among brain areas elicited by tria-
bound perturbations. These interactions can be modulated
by other set-related or contextual factors that modulate the
latent or intrinsic coupling among areas. Fig. 1 illustrates
this schematically. The important implication here for ex-
perimental designin DCM isthat it should be multifactorial,
with at least one factor controlling sensory perturbation and
another factor manipulating the context in which the sen-
sory-evoked responses are promulgated throughout the sys-
tem (cf., psychophysiological interaction studies; Friston et
al., 1997).

In this paper we use bilinear approximations to any
DCM. The bilinear approximation reduces the parameters to
three setsthat control three distinct things: first, the direct or
extrinsic influence of inputs on brain statesin any particular
area; second, the intrinsic or latent connections that couple
responses in one area to the state of others; and, finaly,
changes in this intrinsic coupling induced by inputs. Al-
though, in some instances, the relative strengths of intrinsic
connections may be of interest, most analyses of DCMs
focus on the changes in connectivity embodied in the bilin-
ear parameters. The first set of parameters is generaly of
little interest in the context of DCM but is the primary focus

in classical analyses of regionaly specific effects. In clas-
sical analyses the only way experimental effects can be
expressed is through a direct or extrinsic influence on each
voxel because mass-univariate models (e.g., SPM) preclude
connections and their modulation.

We envisage that DCM will be used primarily to answer
questions about the modulation of effective connectivity
through inferences about the third set of parameters de-
scribed above. These will be referred to as bilinear in the
sense that an input-dependent change in connectivity can be
construed as a second-order interaction between the input
and activity in a source region when causing a response in
a target region. The key role of bilinear terms reflects the
fact that the more interesting applications of effective con-
nectivity address changes in connectivity induced by cog-
nitive set or time. In short, DCM with a bilinear approxi-
mation alows one to clam that an experimental
manipulation has “activated a pathway” as opposed to a
cortical region. Bilinear terms correspond to psychophysi-
ologic interaction terms in classical regression analyses of
effective connectivity (Friston et a., 1997) and those
formed by moderator variables (Kenny and Judd, 1984) in
structural equation modelling (Buchel and Friston, 1997).
This bilinear aspect speaks again to the importance of mul-
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tifactorial designs that allow these interactions to be mea-
sured and the central role of the context in which region-
specific responses are formed (see Mclntosh, 2000).

1.3. DCM and inference

Because DCMs are not restricted to linear or instanta-
neous systems they are necessarily complicated and, poten-
tially, need a large number of free parameters. This is why
they have greater biological plausibility in relation to alter-
native approaches. However, this makes the estimation of
the parameters more dependent upon constraints. A natural
way to embody the requisite constraintsiswithin a Bayesian
framework. Consequently, dynamic causal models are esti-
mated using Bayesian or conditional estimators and infer-
ences about particular connections are made using the pos-
terior or conditional density. In other words, the estimation
procedure provides the probability distribution of acoupling
parameter in terms of its mean and standard deviation.
Having established this posterior density, the probability
that the connection exceeds some specified threshold is
easily computed. Bayesian inferences like this are more
straightforward and interpretable than corresponding classi-
cal inferences and furthermore eschew the multiple com-
parison problem. The posterior density is computed using
the likelihood and prior densitites. The likelihood of the
data, given some parameters, is specified by the DCM (in
one sense al models are simply ways of specifying the
likelihood of an observation). The prior densities on the
connectivity parameters offer suitable constraints to ensure
robust and efficient estimation. These priors harness some
natural constraints about the dynamics of coupled systems
(see below) but also allow the user to specify which con-
nections are likely to be present and which are not. An
important use of prior constraints of this sort is the restric-
tion of where inputs can elicit extrinsic responses. It is
interesting to reflect that conventional analyses suppose that
all inputs have unconstrained access to all brain regions.
This is because classical models assume activations are
caused directly by experimental factors, as opposed to being
mediated by afferents from other brain aress.

Additional constraints on the intrinsic connections and
their modulation by contextual inputs can also be specified
but they are not necessary. These additional constraints can
be used to finesse amodel by making it more parsimonious,
allowing one to focus on a particular connection. We will
provide examples of this below. Unlike structural equation
modelling, there are no limits on the number of connections
that can be modelled because the assumptions and estima-
tions schemes used by dynamic causal modelling are com-
pletely different, relying upon known inputs.

1.4. Overview

This paper comprises a theoretical section and three
validation sections. In the theoretical section we present the

conceptual and mathematical fundaments that are used in
the remaining sections. The later sections address the face,
predictive, and construct validity of DCM, respectively.
Face validity ensures that the estimation and inference pro-
cedure identifies what it is supposed to. We have tried to
establish face validity, using model systems and simulated
data, to explore the performance of DCM over a range of
hyperparameters (e.g., error variance, serial correlations
among errors, etc). Some of these manipulations deliber-
ately violate the assumptions of the model, embedded in
priors, to establish that the estimation procedure remains
robust in these circumstances. The subsequent section on
predictive validity uses empirical data from an fMRI study
of singleword processing at different rates. These datawere
obtained consecutively in a series of contiguous sessions.
This allowed us to repeat the DCM using independent
realisations of the same paradigm. Predictive validity, over
the multiple sessions, was assessed in terms of the consis-
tency of the effective connectivity estimates and their pos-
terior densities. The final section on construct validity re-
visits changes in connection strengths among parietal and
extrastriate areas induced by attention to optic flow stimuli.
We have established previously attentionally mediated in-
creases in effective connectivity using both structural equa-
tion modelling and a Volterra formulation of effective con-
nectivity (Buchel and Friston, 1997; Friston and Biichel,
2000). Our aim here isto show that DCM leads to the same
conclusions. This paper ends with a brief discussion of
DCM, its limitations and potential applications. This paper
is primarily theoretical and hopes to introduce the concepts
of DCM and establish its validity, at least provisionally.

2. Theory

In this section we present the theoretical motivation and
operational details upon which DCM rests. In brief, DCM is
a fairly standard nonlinear system identification procedure
using Bayesian estimation of the parameters of determinis-
tic input—state—output dynamic systems. In this paper the
system can be construed as a number of interacting brain
regions. Wewill focus on a particular form for the dynamics
that corresponds to a bilinear approximation to any analytic
system. However, the idea behind DCM is not restricted to
bilinear forms.

The identification scheme described below conformsto a
posterior density analysis under Gaussian assumptions. The
details of this approach have aready been described in
relation to biophysical models of hemodynamic responses
in a single brain region (Friston, 2002). That paper can be
seen as a prelude to the current paper where we extend the
model to cover multiple interacting regions. In the previous
paper we were primarily concerned with estimating the
efficacy with which input elicits a vasodilatory signal, pre-
sumably mediated by neuronal responses to the input. The
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causal models in this paper can be regarded as a collection
of hemodynamic models, one for each area, in which the
experimental inputs are supplemented with neural activity
from other areas. The parameters of interest now embrace
not only the direct efficacy of experimental inputs but also
the efficacy of neuronal input from distal regions, i.e., ef-
fective connectivity (see Fig. 1).

This section is divided into four parts. First, we describe
the DCM itself and then summarise the estimation proce-
dure used to find the posterior distribution of its parameters.
This procedure requires priors on the parameters, which are
considered in the third part. Finally, we describe conditional
inferences about the parameters. Posterior density analyses
find the maximum or mode of the posterior density of the
parameters (i.e., the most likely coupling parameters given
the data) by performing a gradient assent on the log poste-
rior. The log posterior requires both likelihood and prior
terms. The likelihood obtains from Gaussian assumptions
about the errors in the observation model implied by the
DCM. This likelihood or forward model is described next.

2.1. Dynamic causal models

The dynamic causal model here is a multiple-input mul-
tiple-output system that comprises m inputs and | outputs
with one output per region. The m inputs correspond to
designed causes (e.g., boxcar or stick stimulus functions).
Theinputs are exactly the same as those used to form design
matrices in conventional analyses of fMRI and can be ex-
panded in the usual way when necessary (e.g., using poly-
nomials or temporal basis functions). In principle, each
input could have direct access to every region. However, in
practice the extrinsic effects of inputs are usually restricted
to a single input region. Each of the | regions produces a
measured output that corresponds to the observed BOLD
signal. These | time series would normally be taken as the
average or first eigenvariate of key regions, selected on the
basis of a conventional analysis. Each region has five state
variables. Four of these are of secondary importance and
correspond to the state variables of the hemodynamic model
presented in Friston et al. (2000). These hemodynamic
states comprise a vasodilatory signal, normalised flow, nor-
malised venous volume, and normalised deoxyhemoglobin
content. These variables are required to compute the ob-
served BOLD response and are not influenced by the states
of other regions.

Central to the estimation of effective connectivity or
coupling parameters are the first state variables of each
region. These correspond to neuronal or synaptic activity
and are a function of the neuronal states of other brain
regions. We will deal first with the eguations for the neu-
ronal states and then briefly reprise the differential equa-
tions that constitute the hemodynamic model for each re-
gion.

2.1.1. Neuronal state equations

Restricting ourselves to the neuronal states z =
[z, ...,2)]", one can posit any arbitrary form or model for
effective connectivity

z=F(z,u, 0), (0]

where F is some nonlinear function describing the neuro-
physiological influences that activity zin al | brain regions
and inputs u exert upon changes in the others. 6 are the
parameters of the model whose posterior density we require
for inference. Some readers will note that Eq. (1) is a
departure from the usual form of casual models in neuro-
imaging, in which the states are a static function of them-
selvesz= F(z, u, 0) (e.g., z= 0z + u, where u playstherole
of an error process or innovation). These static models, such
as those used by structural equation modelling, are a limit-
ing case of the dynamic causal models considered in this
paper that obtain when the inputs vary slowly in relation to
neuronal dynamics (see Appendix A.1 for details).

It is not necessary to specify the form of Eq. (1) because
its bilinear approximation provides a natural and useful
reparameterisation in terms of effective connectivity. The
bilinear form of Eq. (1) is:

z~Az+ D uBz+ Cu

= (A+ QuB)z+Cu

oF 9z
T 9z 9z
9°F 9 0z

i

T 9zou ou 0z

C—aF 2

The Jacobian or connectivity matrix A represents the first-
order connectivity among the regions in the absence of
input. Effective connectivity is the influence that one neu-
ronal system exerts over another in terms of inducing a
response 9z/0z. In DCM aresponse is defined in terms of a
change in activity with time z This latent connectivity can
be thought of as the intrinsic coupling in the absence of
experimental perturbations. Notice that the state, which is
perturbed, depends on the experimental design (e.g., base-
line or control state) and therefore the intrinsic coupling is
specific to each experiment. The matrices B! are effectively
the change in coupling induced by the jth input. They
encode the input-sensitive changesin 92/9z or, equivalently,
the modulation of effective connectivity by experimental
manipulations. Because B! are second-order derivatives
these terms are referred to as bilinear. Finaly, the matrix C
embodies the extrinsic influences of inputs on neuronal
activity. The parameters 6° = {A, B/, C} are the connectiv-
ity or coupling matrices that we wish to identify and define
the functional architecture and interactions among brain
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regions at a neurona level. Fig. 2 shows an example of a
specific architecture to demonstrate the relationship be-
tween the matrix form of the bilinear model and the under-
lying state equations for each region. Notice that the units of
connections are per unit time and therefore correspond to
rates. Because we are in a dynamic setting a strong connec-
tion means an influence that is expressed quickly or with a
small time constant. It is useful to appreciate this when
interpreting estimates and thresholds quantitatively. Thisis
illustrated below.

The neuronal activities in each region cause changes in
volume and deoxyhemoglobin to engender the observed
BOLD response y as described next. The ensuing hemody-
namic component of the model is specific to BOLD-fMRI
and would be replaced by appropriate forward models for
other modalities; for example, models based on classical
electromagnetics for EEG signals, caused by postsynaptic
currents measured at the scalp. In principle, it would be
possible to solve the inverse problem for any imaging mo-
dality to estimate the underlying neuronal processes z and
then use Eq. (2) as the basis of ageneric DCM that could be
identified post hoc. However, augmenting the neuronal
DCM with a modality-specific forward model is a mathe-
matically equivalent but more graceful approach that sub-
sumes all the identification issues into a single estimation
procedure.

2.1.2. Hemodynamic state equations

The remaining state variables of each region are biophys-
ical states engendering the BOLD signa and mediate the
trandation of neuronal activity into hemodynamic re-
sponses. Hemodynamic states are a function of, and only of,
the neurona state of each region. These equations have been
described elsewhere (Friston et al., 2000) and constitute a
hemodynamic model that embeds the Balloon—Windkessel
model (Buxton et a., 1998; Mandeville et al., 1999). In
brief, for the ith region, neuronal activity z causes an
increase in a vasodilatory signal s that is subject to auto-
regulatory feedback. Inflow f; responds in proportion to this
signal with concomitant changes in blood volume v; and
deoxyhemoglobin content g;.

§=z— ks~ y(fi—1

fi = Si
v = fi — v
0 = FE(T, p)lpi — viailv,. 3

Outflow isrelated to volumef,, (v) = vV through Grubb’s
exponent o (Grubb et al., 1974). The oxygen extraction isa
function of flow E(f, p) = 1 — (1 — p)*" where p isresting
oxygen extraction fraction. The BOLD signal is taken to be
a static nonlinear function of volume and deoxyhemoglobin
that comprises a volume-weighted sum of extra- and intra-
vascular signals

yi = 9(ai, vi)
= Vo(ky(1 = q) + ko(1 = qi/Vi) + k(1 — V)
ki = 7p;
k, = 2
ks = 2p, — 0.2, (4)

where V, = 0.02 is resting blood volume fraction. Again it
should be noted that the particular forms of Egs. (3) and (4)
are specific to BOLD-fMRI and should, obviously, be re-
placed by appropriate state and output equations for other
modalities. A list of the biophysical parameters 0" = {«, v,
T, o, p} is provided in Table 1 and a schematic of the
hemodynamic model is shown in Fig. 3.

2.2. Estimation

In this subsection we describe the expectation maximi-
zation (EM) procedure for estimating the DCM above. More
details are provided in Appendix A.2. Combining the neu-
ronal and hemodynamic statesx = {z s, f, v, g} givesus a
full forward model specified by the neuronal state Eq. (2)
and the hemodynamic Egs. (3) and (4):

x =f(x,u, 0)
y = A(X), ©)

with parameters 6 = { 6%, 8"} For any set of parameters and
inputs, the state equation can be integrated and passed
though the output nonlinearity [Eq. (4)] to give a predicted
response h(u, 6). This integration can be made quite expe-
dient by capitalising on the sparsity of stimulus functions
commonly employed in fMRI designs (see Friston, 2002,
Section 3.4). Integrating Eg. (5) is equivalent to a gener-
alised convolution of the inputs with the systems Volterra
kernels. These kernels are easily derived from the Volterra
expansion of Eq. (5) (Bendat, 1990),

hi(u, ) = ZJ . j kNoq, ..., ou(t — o),

K
..., ut — odoy, ..., doy

IN®
out —oy),...,oult — oy’

Koy, ..., 00 = (6)
either by numerical differentiation or analytically through
bilinear approximations (see Friston, 2000, Appendix). < is
the kth order kernel for region i. For simplicity, Eq. (6) has
been written for a single input. The kernels are simply a
reparameterisation of the model. We will use these kernels
to characterise regional impulse responses at neuronal and
hemodynamic levels later.

The forward model can be made into an observation
model by adding error and confounding or nuisance effects
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Fig. 2. This schematic (upper panel) recapitulates the architecture in Fig. 1 in terms of the differential equations implied by a bilinear approximation. The
equations in each of the white areas describe the change neuronal activity z in terms of linearly separable components that reflect the influence of other
regiona state variables. Note particularly how the second contextual inputs enter these equations. They effectively increase the intrinsic coupling parameters
(&;) in proportion to the bilinear coupling parameters (b!j). In this diagram the hemodynamic component of the DCM illustrates how the neuronal states enter
a region-specific hemodynamic model to produce the outputs y; that are a function of the region’s biophysical states reflecting deoxyhemoglobin content and
venous volume (g; and v;). The lower panel reformulates the differential equationsin the upper panel into amatrix format. These equations can be summarised
more compactly in terms of coupling parameter matrices A, B/, and C. This form of expression is used in the main text and shows how it relates to the
underlying differential equations that describe the state dynamics.
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Table 1
Priors on biophysical parameters

Parameter Description Prior Mean m, Prior
Variance
Co
K Rate of signal decay 0.65 per s 0.015
Rate of flow-dependent 0.41 per s 0.002
elimination
T Hemodynamic transit time  0.98 s 0.0568
Grubb's exponent 0.32 0.0015
o Resting oxygen extraction 0.34 0.0024
fraction

X (t) togivey = h(u, 6) + XB + . Here 8 are the unknown
coefficients of the confounds. In the examples used below,
X(t) comprised a low-order discrete cosine set, modelling
low-frequency drifts and a constant term. Following the
approach described in Friston (2002), we note

y — h(u, ng) =JAO + XB + ¢

Cpox 4] e

B
A6=06— T]O‘y
_ ﬁh(u, 779|y)

Thislocal linear approximation then enters an iterative EM
scheme, described previoudly (Friston, 2002) and in Appen-
dix A.2, to give the conditional expectation n,, and covari-
ance Cg, of the parameters and restricted maximum likeli-
hood (ReML) estimates of hyperparameters A for the error
covariance.

Until convergence {

E-step
3=
R R
c-[*° ¢ ]

v | - cyTC)
Noly <~ Moy + A7)6|y

M -step
P=C,'- C,1C,,J'C,*

oF

1 1
= X PTO.Pv

<82F> 1
8)\5 = 2tr{PQiPQj}
< 82F> 9F
M AT\a) o ®
These expressions are formally the same as Eq. (15) in Friston
(2002) but for the addition of confounding effectsin X. These
confounds are treated as fixed effects with infinite prior vari-
ance, which does not need to appear explicitly in Eq. (8).

Note that the prediction and observations encompass the
entire experiment. They are therefore large In x 1 vectors
whose elements run over regions and time. Although the
response variable could be viewed as a multivariate time
series, it is treated as a single observation vector, whose
error covariance embodies both temporal and interregional
correlations C, = V ® 3(A) = 2\Q;. This covariance is
parameterised by some covariance hyperparameters A; that
scale the contribution of covariance components Q;. The
form of the covariance matrix conforms to a Kronecker
tensor product of the n X n matrix V encoding temporal
correlations among the errors and an unknown | X | regional
error covariance Y. In the examples below Q, correspondsto
region-specific error variances assuming the same temporal
correlations Q; = V® 3, inwhich X isal X | sparse matrix
with the ith leading diagona element equal to one.

Eg. (8) enables usto estimate the conditional moments of
the coupling parameters (and the hemodynamics parame-
ters) plus the hyperparameters controlling observation error.
However, to proceed we need to specify the prior expecta-
tion m, and covariance C,,.

2.3. The priors

To form the posterior density one needs to combine the
likelihood with a prior density on the parameters (see Ap-
pendix A.2). In this paper we use a fully Bayesian approach
because (1) there are clear and necessary constraints on
neuronal dynamics that can be used to motivate priors on
the coupling parameters and (2) empirically determined
priors on the biophysica hemodynamic parameters are rel-
atively easy to specify. We will deal first with priors on the
coupling parameters.

2.3.1. Priors on the coupling parameters

It is self-evident that neuronal activity cannot diverge
exponentially to infinite values. Therefore, we know that, in
the absence of input, the neuronal state must return to a
stable mode. Mathematically, this means the largest rea
eigenvalue of the intrinsic coupling matrix, also known as
the principal Lyapunov exponent, must be negative. We will
use this constraint to establish a prior density on the cou-
pling parameters g; that ensures the system is dissipative.

The specification of priors on the connections can be
finessed by a reparameterisation of the coupling matrices
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-1 ap ... that strengths of connections among regions are relative to
A— ocA=0¢o| ay -1 the self-connections. From this point on, we will deal with
: normalised parameters. This particular factorisation en-

forces the same self-connection or temporal scaling o in all
regions. Although there is evidence that hemodynamics can
© vary from region to region, there is less reason to suppose
that the neuronal dynamics, intrinsic to each region, will
This factorisation into a scalar and normalised coupling differ markedly. Having said this, it is perfectly possible to
matrix renders the normalised couplings adimensional, such employ different factorisations (for example, factorisations
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Fig. 3. This schematic shows the architecture of the hemodynamic model for a single region (regional subscripts have been dropped for clarity). Neuronal
activity induces a vasodilatory and activity-dependent sighal sthat increases the flow f. Flow causes changes in volume and deoxyhemoglobin (v and q). These
two hemodynamic states enter the output nonlinearity Eq. (4) to give the observed BOLD response y. This transformation from neuronal states z to
hemodynamic response y; is encoded graphically by the dark grey boxes in the previous figure and in the insert above.
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that alow for region-specific self-connections, using diag-
onal matrices). We will use the factorisation in Eq. (9)
because it simplifies the derivation and specification of
priors.

If the principal Lyapunov exponent of A islessthan zero,
the system will convergeto apoint attractor. If it is zero, the
system will exhibit oscillatory dynamics. It is therefore
sufficient to constrain the connection strengths, with Gauss-
ian priors on g;, to ensure that the principal exponent is
negative. The problem here is that different, but equally
probable, configurations of a; can have different principal
exponents. One solution is to use the probability that the
biggest possible exponent exceeds zero and choose priors
that render this probability suitably small. For normalised
connections, the biggest principal exponent is easily derived
and the appropriate variance of a; can be computed (see
Appendix A.3). This represents a simple way to place an
upper bound on the principal exponent. The derivation of
the prior variance v, = Var(a;) and moments of the scaling
parameter (. and v,) are provided in Appendix A.3.

In brief, priors on the connectivity parameters ensure that
the system remains stable. Coupling matrices can be de-
composed into a scaling parameter o that corresponds to the
intrinsic decay or self-inhibition of each region and a nor-
malised coupling matrix. The spectrum of eigenvalues of
the intrinsic coupling matrix determines the time constants
of modes or patterns of neuronal activity expressed in re-
sponse to perturbation. These are scaled by o, whose prior
expectation controls the characteristic neuronal time con-
stants (i.e., those observed in the absence of coupling). In
this work we have assumed a value of 1 s (n, = 1),
motivated by the time constants of evoked neuronal tran-
sients observed using single-unit electrode recordings and
EEG. The prior variance v, is chosen to make the proba-

Self connections and temporal scaling
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Fig. 4. Prior probability density functions for the temporal scaling param-
eter or self-connection o. This has a Gaussian form (left panel) that
trandates into a skewed distribution, when expressed in terms of the
characteristic half-life of neural transients 7, in any particular region (right
panel). This prior distribution implies that neuronal activity will decay with
a half-life of roughly 500 ms, falling in the range of 300 msto 2 s.

a,

reciprocal connection

Intrinsic connection
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21 )

Fig. 5. Prior probability density on the intrinsic coupling parameters for a
specific intrinsic coupling matrix A. The left panel shows the real value of
the largest eigenvalue of A (the principal Lyapunov exponent) as afunction
of the connection from the first to the second region and the reciprocal
connection from the second to the first. The remaining connections were
held constant at 0.5. This density can be thought of as a slice through a
multidimensional spherical distribution over all connections. The right
panel shows the prior probability density function and the boundaries at
which the largest real eigenvalue exceeds zero (dotted lines). The variance
or dispersion of this probability distribution is chosen to ensure that the
probability of excursion into unstable domains of parameter space is
suitably small. These domains are the upper right and lower left bounded
regions.

bility that it is negative suitably small (in this paper 10~ 3).
The resulting prior can be expressed as a function of the
implicit haf-life (o) = In 2/o by noting p(r,) = p(a)da/
d7,. This transformation (Fig. 4) shows that we expect
regional transients with time constants in the range of afew
hundred milliseconds to several seconds.

The prior distribution of individual connection strengths
g is assumed to be identically and independently distrib-
uted with a prior expectation n, = 0 and a variance v, that
ensures the principal exponent has a small probability of
being positive (here 10 3). This variance decreases with the
number of regions. To provide an intuition about how these
priors keep the system stable, a quantitative example is
shown in Fig. 5. Fig. 5 shows the prior density of two
connections that renders the probability of a positive expo-
nent less than 10~ 2. It can be seen that this density liesin a
domain of parameter space encircled by regions in which
the principal exponent exceeds zero (bounded by dotted
lines). See the figure legend for more details.

Priors on the bilinear coupling parameters bi‘} are the
same as those for the intrinsic coupling parameters. Because
these represent the input-dependent component of a; they
are also normalised by o and are consequently adimensional
[See EqQ. (9)]. Conversely, priors on the influences of ex-
trinsic input ¢;, are relatively uninformative with zero ex-
pectation and unit variance.

It is important to interpret the bilinear estimators and
their priors in relation to the scaling of the inputs. This is
because the bilinear parameters are not invariant to trans-
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formations of the inputs. For example, if we doubled the
size of the inputs we would have to halve the values of b!j
to conserve their modulatory effects on interactions among
neuronal states. Conseguently, we always scale inputs such
that their timeintegral equalsthe number of eventsthat have
occurred or the number of seconds a particular experimental
context prevails (see next section). Furthermore, the inputs
should be specified in a way that conforms to the prior
assumption that the inputs modulate connections indepen-
dently of each other. This means that reparameterising the
inputs, by taking linear combinations of the original inputs,
will lead to dlightly different results because of the change
in implicit priors. As noted in the introduction, additional
constraints can be implemented by precluding certain con-
nections. This is achieved by setting their variance to zero.

The simple but useful prior based on the principal expo-
nent can be applied to any DCM. In contradistinction, the
priors on hemodynamic parameters are specific to the fMRI
application considered here.

2.3.2. Hemodynamic priors

The hemodynamic priors are based on those used in
Friston (2002). In brief, the mean and variance of posterior
estimates of the five biophysical parameters were computed
over 128 voxels using the single word presentation data
presented in the next section. These means and variances
(see Table 1) were used to specify Gaussian priors on the
hemodynamic parameters.

This would be quite sufficient for general purposes.
However, reducing the rank of the prior covariance of the
biophysical parameters can finesse the computational 1oad
on estimation. Thisis effectively the same as allowing only
two linear mixtures of the hemodynamic parameters to
change from region to region. In the examples below these
mixtures were those controlling the expression of the first
two eigenvectors or principal components e and &5 of the
prior covariance of the response k* in measurement space.
For any region

ookt okt
COV{K } = a—ehcga—eh
= gh\hghT
okt oKt
h_ hy h, hT
Cs aehs)\s YL (10)

where + denotes pseudoinverse. Thisresponseissimply the
first order kernel from Eq. (6) and depends on the prior
covariance of the biophysical parameters C. The motiva-
tion for this is based on the fact that although the biophys-
ical parameters may vary independently, their influence on
the observed hemodynamic response may be indistinguish-
able. The eigenvalue spectrum in the leading diagonal of A"
suggests that there are only two modes of substantial he-
modynamic variation (see Fig. 6, left panel). After setting
the remaining eigenvalues to zero, the last line of Eq. (10)

ox! o'

1 h hqh AT
covix (0,)} = C =¢g'ANe
o0 0 06"
eigenvalue hemodynamic modes
2 0.4
3 »
1.5 %
Coh
&l
Ah ] Y
i v e
-0.1 h N : .
0.5 P : /
-0.2 /
" N
0 1 2 3 4 0'30 10 20
eigen mode PST {secs}
i o,

Fig. 6. An analysis of the prior probability distributions of the impulse or
hemodynamic responses induced by neurona activity in a single region.
This prior distribution in measurement space has been characterised in
terms of the covariance of the first-order Volterra kernel «* and its eigen
decomposition. The decomposition is used to show that there are only two
substantial modes of hemodynamic variation caused by the prior variation
in biophysical parameters. The eigenvalues A reflect the variance ex-
pressed by each of these modes. The two modes depicted on the right side
correspond to the eigenvectors &', which are a function of peri-stimulus
time (o,). See the main text for a full description of the variables used in
this figure.

specifies the adjusted prior covariances in parameter space.
Restricting the prior density of the biophysical parameters
to a two-dimensional subspace is not a terribly important
component of constraining the parameters because we are
not interested in making inferences about them. However,
restricting the search space in this fashion makes the esti-
mation procedure more efficient and reduces computation
time. It is interesting to note that the first eigenvector is
amost exactly the first temporal derivative of the second,
which itself looks very much like a canonical hemodynamic
response (see Fig. 6, right panel). This will be important
later.

Combining the prior densities on the coupling and he-
modynamic parameters allows us to express the prior prob-
ability of the parameters in terms of their prior expectation
m, and covariance C,

o 1
a; 0
0= b:j y Mo 0 ’
Cix 0
o" ny
VO’
Ca
Co= Cs , (11)
1

Ch

where the prior covariances C, and Cg contain leading
diagonal elements v, for al connections that are allowed to
vary. Having specified the priors, we are now in a position



1284 K.J. Friston et al. / Neurolmage 19 (2003) 1273-1302

to form the posterior and proceed with estimation using
Eqg. (8).

2.4. Estimation

As noted above, the estimation scheme is a posterior
density analysis under Gaussian assumptions. This is de-
scribed in detail in Friston (2002). In short, the estimation
scheme provides the approximating Gaussian posterior den-
sity of the parameters g(6) in terms of its expectation ny,
and covariance Cg,. The expectation is also known as the
posterior mode or maximum a posteriori (MAP) estimator.
The margina posterior probabilities are then used for the
inference that any particular parameter or contrast of parame-
ters cTn9|y (e.g., average) exceeds a specified threshold .

CTTIOly - 7)

= — ], 12
where ¢y, is the cumulative norma distribution. In this
paper, we are primarily concerned with the coupling param-
eters 0° and, among these, the bilinear terms. The units of
these parameters are Hz or per second (or adimensional if
normalised) and the thresholds are specified as such. In
dynamical modelling strength correspondsto afast response
with a small time constant.

2.5. Relationship to conventional analyses

It is interesting to note that conventional analyses of
fMRI data, using linear convolution models, are a special
case of dynamic causal models using a bilinear approxima-
tion. This is important because it provides a direct connec-
tion between DCM and classical models. If we alow inputs
to be connected to al regions and discount interactions
among regions by setting the prior variances on a; and bi‘j to
zero, we produce a set of disconnected brain regions or
voxels that respond to, and only to, extrinsic input. The free
parameters of interest reduce to the elements of C, which
reflect the ability of input to excite neural activity in each
voxel. By further setting the prior variances on the self
connections (i.e., scaling parameter) and those on the he-
modynamic parameters to zero we end up with a single-
input single-output model at each and every brain region
that can be reformulated as a convolution model as de-
scribed in Friston (2002). For voxel i and input j, ¢; can be
estimated by simply convolving the input with axillaci,—
where ki isthe first order kernel meditating the influence of
input j on output i. The convolved inputs are then used to
form ageneral linear model that can be estimated using least
sgquares in the usual way. This is precisely the approach
adopted in classical analyses, in which d«i/dc; is usually
referred to as the hemodynamic response function. The key
point here is that the general linear models used in typical
data analyses are special cases of bilinear models that em-
body more assumptions. These assumptions enter through

the use of highly precise priors that discount interactions
among regions and prevent any variation in biophysical
responses.

Having described the theoretical aspects of DCM, we
now turn to applications and assessing its validity.

3. Face validity—simulations
3.1. Introduction

In this section we use simulated data to establish the
utility of the bilinear approximation and the robustness of
the estimation scheme described in the previous section. We
used the same functional architecture to generate simulated
data, under a variety of different conditions, to ensure that
the Bayesian estimates are reasonable, even when the un-
derlying assumptions are deliberately violated. Further-
more, we chose a simulated architecture that would be
impossible to characterise using existing methods based on
regression models (e.g., structural equation modelling). This
architecture embodies loops and reciprocal connections and
poses the problem of vicariousinput: the ambiguity between
the direct influences of one area and influences that are
mediated through others.

3.1.1. The simulated system

The architecture is depicted in Fig. 7 and has been
labelled so that it is consistent with the DCM characterised
empirically in the next section. The model comprises three
regions; a primary (A1) and secondary (A2) auditory area
and a higher-level region (A3). There are two inputs. The
first is a sensory input u, encoding the presentation of
epochs of words at different frequencies. The second input
u, is contextual in nature and is simply an exponential
function of the time elapsed since the start of each epoch
(with atime constant of 8 s). These inputs were based on a
real experiment and are the same as those used in the
empirical analyses of the next section. The scaling of the
inputs is important for the quantitative evaluation of the
bilinear and extrinsic coupling parameters. The convention
adopted here is that inputs encoding events approximate
delta functions such that their integral over time corre-
sponds to the number of events that have occurred. For
event-free inputs, like the maintenance of a particular in-
structional set, the input is scaled to a maximum of unity, so
that the integral reflects the number of seconds over which
the input was prevalent. The inputs were specified in time
bins that were a sixteenth of the interval between scans
(repetition time: TR = 1.7 9).

The auditory input is connected to the primary area; the
second input has no direct effect on activity but modulates
the forward connections from A1 to A2 so that its influence
shows adaptation during the epoch. The second auditory
area receives input from the first and sends signals to the
higher area (A3). In addition to reciprocal backward con-
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Fig. 7. This is a schematic of the architecture used to generate simulated
data. Nonzero intrinsic connections are shown as directed black arrows
with the strength or true parameter alongside. Here, the perturbing input is
the presentation of words (sensory inputs) and acts as an intrinsic influence
on Al. In addition, this input modulates the self-connection of A3 to
emulate saturation like-effects (see text and Fig. 8). The contextual input is
a decaying exponential of within-epoch time and positively modulates the
forward connection from Al to A2. The lower panel shows how responses
were simulated by mixing the output of the system described above with
drifts and noise as described in the text.

nection, in this simple auditory hierarchy, a connection from
the lowest to the highest area has been included. Finally, the
first input (word presentation) modulates the self-connec-
tions of the third region. Thisinfluence has been included to
show how bilinear effects can emulate nonlinear responses.
A bilinear modulation of the self-connection can augment or
attenuate decay of synaptic activity, rendering the average
response to streams of stimuli rate-dependent. This is be-

cause the bilinear effect will only be expressed if sufficient
synaptic activity persists after the previous stimulus. This,
in turn, depends on a sufficiently fast presentation rate. The
resulting response emulates a saturation at high presentation
rates or small stimulus onset asynchronies that have been
observed empirically. Critically, we are in a position to
disambiguate between neuronal saturation, modelled by this
bilinear term, and hemodynamic saturation, modelled by
nonlinearities in the hemodynamic component of thisDCM.
A significant bilinear self-connection implies neuronal sat-
uration above and beyond that attributable to hemodynam-
ics. Fig. 8 illustrates this neuronal saturation by plotting the
simulated response of A3 in the absence of saturation B! =
0 against the simulated response with b3z = —0.4. It is
evident that there is a nonlinear subadditive effect at high
response levels. It should be noted that true neuronal satu-
ration of this sort is mediated by second order interactions
among the states (i.e., neuronal activity). However, as
shown in Fig. 8, we can emulate these effects by using the
first extrinsic input as a surrogate for neuronal inputs from
other areas in the bilinear component of the model.

Using this model we simulated responses using the val-
ues for A, B!, B% and C given in Fig. 7 and the prior
expectations for the biophysical parameters given in Table
1. The values of the coupling parameters were chosen to
emulate those seen typically in practice. This ensured the
simulated responses were redlistic in relation to simulated
noise. After downsampling these deterministic responses
every 1.7 s (the TR of the empirical data used in the next
section), we added known noise to produce simulated data.
These data composed time series of 256 observations with
independent or serially correlated Gaussian noise based on

Bilinear effects

response with saturation
Y

0 2 4 6 3 10
response with no saturation

Fig. 8. Thisisaplot of the simulated response with saturation against the
equivalent response with no saturation. These simulated responses were
obtained by setting the bilinear coupling parameter b, labelled “neuronal
saturation” in the previous figure to —0.4 and zero, respectively. The key
thing to observe is a saturation of responses at high levels. The broken line
depicts the response expected in the absence of saturation. This illustrates
how bilinear effects can introduce nonlinearities into the response.
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an AR(1) process. Unless otherwise stated, the noise had 0.5
standard deviation and was i.i.d. (independently and iden-
tically distributed). The drift terms were formed from the
first six components of a discrete cosine set mixed linearly
with norma random coefficients, scaled by one over the
order. This emulates a 1/f2 plus white noise spectrum for the
noise and drifts. See the lower panel of Fig. 7 for an
exemplar data simulation with i.i.d. noise of unit variance.

3.1.2. Exemplar analysis

The analysis described in the previous section was ap-
plied to the data shown in Fig. 7. The priors on coupling
parameters were augmented by setting the variance of the
off-diagonal elements of B' (saturation) and all but two
connections in B? (adaptation) to zero. These two connec-
tions were the first and second forward connections of this
cortical hierarchy. The first had simulated adaptation,
whereas the second did not. Extrinsic input was restricted to
the primary area A1 by setting the variances of al but ¢, to
zero. We placed no further constraints on the intrinsic cou-
pling parameters. This is equivalent to allowing full con-
nectivity. Thiswould be impossible with structural equation
modelling. The results are presented in Fig. 9 in terms of the
MAP or conditional expectations of the coupling parameters
(upper panels) and the associated posterior probabilities
(lower panels) using Eq. (12). It can be seen that the intrin-
sic coupling parameters are estimated reasonably accurately
with a dlight overestimation of the backward connection
from A3to A2. The bilinear coupling parameters modelling
adaptation are shown in the lower panels and the estimators
have correctly identified the first forward connection as the
locus of greatest adaptation. The posterior probabilities sug-
gest that inferences about the coupling parameters would
lead us to the veridical architecture if we considered only
connections whose half-life exceeded 4 s with 90% confi-
dence or more.

The MAP estimates allow us to compute the MAP ker-
nels associated with each region in terms of both neuronal
output and hemodynamics response using Eq. (6). The neu-
ronal and hemodynamic kernels for the three regions are
shown in Fig. 10 (upper panels). It is interesting to note that
the regional variation in the form of the neurona kernelsis
sufficient to induce differential onset and peak latencies, in
the order of a second or so, in the hemodynamic kernels
despite the fact that neuronal onset latencies are the same.
This difference in form is due to the network dynamics as
activity is promulgated up the system and is recursively
reentered into lower levels.

The neuronal kernels are simply a way of summarising
the input—output behaviour of the model in terms of neu-
ronal states. They can be regarded as a reparameterisation of
the coupling parameters. They should not be taken as esti-
mates of neuronal responses per se because the DCM is not
really specified to that level of neurobiological finesse.
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Fig. 9. Results summarising the conditional estimation based upon the
simulated data of Fig. 7. The upper panels show the conditional estimates
and posterior probabilities pertaining to the intrinsic coupling parameters.
The lower panels show the equivalent results for bilinear coupling param-
eters mediating the effect of within-epoch time. Conditional or MAP
estimates of the parameters are shown in image format with arbitrary
scaling. The posterior probabilities that these parameters exceeded a
threshold of In(2)/4 per second are shown as three-dimensional bar charts.
True values and probabilities are shown on the left whereas the estimated
values and posterior probabilities are shown on the right. This illustrates
that the conditional estimates are a reasonable approximation to the true
values and, in particular, the posterior probabilities conform to the true
probabilities, if we consider values of 90% or more.

Notice aso that the neuronal kernels are very protracted in
relation to what one might expect to see using electrical
recordings. This enduring activity, particularly in the higher
two aress, is a product of the recurrent network dynamics
and the rather slow time constant used in thesimulations 1 s.
The MAP estimates a so enable us to compute the predicted
response (Fig. 10, lower left panel) in each region and
compare it to the true response without observation noise
(Fig. 10, lower right panel). This comparison shows that the
actual and predicted responses are very similar.

This estimation procedure was repeated for several series
of simulated data sequences, described below, to obtain the
conditional densities of the coupling parameters. By com-
paring the known values to these densities we were able to
explore the face validity of the estimation scheme over a
range of hyperparameters.
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Fig. 10. These results are based upon the conditional or MAP estimates of
the previous figure. The upper panels show the implied first-order kernels
for neuronal responses (upper left) and equivalent hemodynamic responses
(upper right) as a function of peristimulus time for each of the three
regions. The lower panels show the predicted response based upon the
MAP estimators and a comparison of this response to the true response.
The agreement is self-evident.

3.2. Smulations

The aim of the work presented in this section was to
explore the range of various hyperparameters, such as error
variance, over which the estimation procedure gave useful
results. The idea was to present the analysis with difficult
situations to see when, and if, the procedure failed. We
considered four important areas that, although not exhaus-
tive, cover the most likely ways in which the validity of the
connectivity estimates could be compromised. These four
areas were, first, the level of noise or observation error and
serial correlations among the errors. The second critical area
was imprecise specification of the inputs in terms of their
timing. This is particularly important in fMRI where mul-
tislice acquisition meansthat the timing of inputs, in relation
to acquisition, will vary with brain region. This induces a
necessary, region-specific, misspecification of input times
(if they are assumed to be the same for al brain regions).
The third area addressed deviations from our prior assump-
tions. The key parameters here are the biophysical param-
eters and the temporal scaling parameter or self-inhibition.
These are the only parameters that have a non-zero prior
expectation and real values that deviate substantially from
prior expectations may affect veridical estimation of the
normalised coupling parameters. Finaly, we address the
assumption, implicit in Eq. (4), that BOLD signals are
detected with equal sensitivity throughout the brain. Thisis

clearly not the case and calls for a simulation of region-
specific dropout.

Each of these areas was investigated by simulating data
over a range of hyperparameters. A vaid estimation re-
quiresthat the true value falls within appropriate (e.g., 90%)
confidence intervals of the posterior density. Consequently,
posterior expectations and confidence intervals were plotted
as a function of each hyperparameter, with the true value
superposed for comparison.

3.2.1. The effects of noise

In this subsection we investigate the sensitivity and spec-
ificity of posterior density estimates to the level and nature
of observation noise. Data were simulated as described
above and mixed with various levels of white noise. For
each noise level the posterior densities of the coupling
parameters were estimated and plotted against the noise
hyperparameter (expressed as its standard deviation) in
terms of the posterior mean and 90% confidence intervals.
Fig. 11 shows some key coupling parameters that include
both zero and nonzero connection strengths. The solid lines
represent the posterior expectation or MAP estimator and
the dashed lines indicate the true value. The grey areas
encompass the 90% confidence regions. Characteristic be-
haviours of the estimation are apparent from these results.
As one might intuit, increasing the level of noise increases
the uncertainty in the posterior estimates as reflected by an
increase in the conditional variance and a widening of the
confidence intervals. This widening is, however, bounded
by the prior variances to which the conditional variances
asymptote, at very high levels of noise. Concomitant with
this effect is “shrinkage”’ of some posterior means to their
prior expectation of zero. Put simply, when the data become
very noisy the estimation relies more heavily upon priors
and the prior expectation is given more weight. Thisis why
priors of the sort used here are referred to as “shrinkage
priors.” These simulations suggest that for this level of
evoked response, noise levels between 0 and 2 permit the
connection strengths to be identified with a fair degree of
precision and accuracy. Noise levelsin typical fMRI exper-
iments are about 0.5-1.5 (see next section). The units of
signal and noise are adimensional and correspond to per-
centage whole brain mean. Pleasingly, noise did not lead to
false inferences in the sense that the posterior densities
always encompassed the true values even at high levels of
noise (Fig. 11).

The same results are shown in a more compact form in
Fig. 12a. Instead of showing the posterior densities of the
coupling parameters, this figure shows the posterior densi-
ties of linear compounds or contrasts of coupling parame-
ters. We have taken the average of coupling parameters that
were zero and similarly the average of parameters that were
nonzero. These two contrasts alow one to ascertain the
specificity and sensitivity of the Bayesian inference, respec-
tively (Fig. 12a, right and | eft panels). Thiswas done for the
intrinsic and bilinear parameters separately (Fig. 12a, upper
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Fig. 11. Posterior densities as a function of noise levels: the analysis,
summarised in the previous two figures, was repeated for simulated data
sequences at different levels of noise ranging from O to 2 units of standard
deviation. Each graph shows the conditional expectation or MAP estimate
of a coupling parameter (solid line) and the 90% confidence region (grey
region). The true value for each parameter is also shown (broken line). The
top row shows the temporal scaling parameter and the extrinsic connection
between the first input and the first area. The middle row shows some
intrinsic coupling parameters and the bottom row bilinear parameters. As
anticipated the conditional variance of these estimators increases with
noise, as reflected by a divergence of the confidence region with increasing
standard deviation of the error.

and lower panels), including only allowed connections. For
zero connection strengths one would hope that the confi-
dence intervals always contain the zero level. For connec-
tions that are present, one hopes to see the confidence
interval either above or below the zero line and preferably
encompassing the true value. Fig. 12a shows this to be the
general case, athough the 90% confidence region fals be-
low the true values of the contrast for intrinsic connections
a high levels of noise (Fig. 12a, upper left panel). To
illustrate the role of priorsin placing an upper bound on the
conditional variance, the dark grey areas represent the con-
fidence region in the absence of empirical evidence (i.e.,
prior variance) and the light grey areas represent the confi-
dence region based upon the conditional variance, given the
data. It can be seen that, at low levels of noise, the data are

sufficiently precise to render our confidence about the esti-
mates greater than that due to our prior assumptions. Con-
versaly, at high levels of noise, observing the data does ittle
to increase the precision of the estimates and the conditional
variance approaches the prior variance. We will use this
display format in subsegquent sections because it is a parsi-
monious way of summarising the results.

The ReML hyperparameter estimates of the noise levels
themselves are shown in Fig. 12b, over the 32 simulations
comprising these results. The estimates are shown sepa-
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Fig. 12. Parameter and hyperparameter estimates: (a) The same results
shown in Fig. 11 are shown here in amore compact form. In thisformat the
conditional means and 90% confidence regions of parameter contrasts are
displayed for the intrinsic parameters (upper panels) and the bilinear
parameters (lower panels). The left panels show contrasts testing for the
average of all nonzero connections and can be construed as an evaluation
of sensitivity to detecting connections that are present. Conversely, the
right panels show results for contrasts testing for zero connections (where
they are allowed) and can be considered as an evaluation of specificity. The
light grey regions correspond to confidence regions based upon the con-
ditional variance for each contrast. This should be compared with the
darker grey regions that are based upon the prior variance. The prior
confidence bounds the conditional confidence as would be expected. (b)
This shows the accuracy of ReML variance hyperparameter estimates by
plotting them against their true values. The three broken lines correspond
to the error variances in the three regions.
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The effects of serial correlations

sensitivity {A}

-t
wvi

specificity {A}

o
w

©
w

—_

A
wn
o

true & conditional mean {90% C.1.}
o
true & conditional mean {90% C.1.}
o
f
1
i
1l
1
1
1
1
1
1
1
1
1

0 0.2 0.4
AR(1) coefficlent
specificity {B}

0.2 0.4
AR(1) coefflclent

sensitivity {B}

true & conditional mean {90% C.I.}
=}

true & conditional mean {90% C.1.}
o

0.4

%0 0.2 0.4 0.2
AR(1) coefficlent

AR(1) coefficlent

Fig. 13. The format of this figure is identical to Fig. 12a. The hyperpa-
rameter in this instance was the AR coefficient inducing seria correlations
in the noise or observation error. It can be seen that the serial correlations
have a minimal impact on the posterior density and ensuing conditional
expectations.

rately for each of the three regions and correspond to the
true values. Note that the hyperparameterisation of the error
covariance accommodates different error variances in each
region.

We next investigated the impact of serial correlations on
the posterior density estimates. Although it is perfectly
possible to estimate error variance hyperparameters control-
ling serial correlations of a specified form (see Friston et al.,
2002), we deliberately assumed that there were no seria
correlations to see how violation of this assumption cor-
rupted the posterior estimates. Serial correlations were in-
troduced according to an autoregressive process of first
order AR(1) over arange of AR coefficients [0 to 0.5]. The
results of these simulations and analyses are presented in
Fig. 13 using the same format as Fig. 12. Perhaps surpris-
ingly, serial correlations have atrivial effect on the posterior
density estimates, suggesting that hyperparameters control-
ling the off-diagonal elements in the error variance covari-
ance matrix do not need to be estimated. Theoretically, this
is not important because the EM algorithm described in
Section 2.2 can easily accommodate any number of hyper-
parameters. However, computationally, the presence of off-
diagonal termsin the error covariance structure destroys the
sparsity of the matrices rendering the computational times
substantially greater (approximately by a factor of 2). The
remaining simulations and empirical analyses therefore as-
sumed the observation error was uncorrelated. For empirical

data we generally use whitened data to ensure this assump-
tion is not violated.

3.2.2. Misspecification of timing

In this subsection we explore robustness to misspecifi-
cation of the inputs in terms of their timing. It might be
thought that dynamic modelling of this sort would make the
estimation very sensitive to timing errors; however, thisis
not necessarily the case. The information in the response
variable is contained largely in the relative amplitudes and
shapes of the hemodynamic responses and not their timings
(compare the neuronal and hemodynamic kernels in Fig.
10). The utility of dynamic causal modelling is that this
information can be used to estimate parameters of the model
that implicitly specify timing relationships not otherwise
observable in the data. The reason dynamic causal models
can do this is because they have constraints on their archi-
tecture. In short, building knowledge into our estimation
model allows the characterisation of data to be finessed in
ways that may seem counterintuitive.

In these simulations we varied the time the response was
downsampled to produce different sets of simulated data.
This is equivalent to advancing or delaying the inputs in
relation to the response. The results of this anaysis are
displayed in Fig. 14. The results show that the estimation
procedure is robust in the range of + a second. An intuition
into this behaviour obtains by examining the MAP estimates
of the temporal scaling parameter o (Fig. 14, lower left). As
the delay increases the responses appear to be premature, in
relation to the specified input. This effect can be “absorbed”
by the model by increasing the temporal scaling parameter
and accel erating the network dynamics. Consequently asthe
delay hyperparameter increases so does the scaling param-
eter. However, the compensatory changes in temporal scal-
ing are constrained by the priors so that the estimates of o
adopt a sigmoid shape to avoid extreme values. In concert
with accelerated neuronal dynamics, the transit time de-
creasesfor all three areas. This hemodynamic compensation
for mistiming the inputs should be compared with that in
Fig. 15 in which the timing error were restricted to one
region, as described next.

In the simulations above the delay was the same for al
regions and was framed as a misspecification of input times.
Even if the inputs are specified correctly, relative delays in
sampling the response can till arise in multislice acquisi-
tion. To mimic the effect of sequential slice acquisition, we
repeated the simulations using region-specific delays. We
applied adelay of —1.5t0 1.5 sto, and only to, the response
of the second region to produce the resultsin Fig. 15. Again
the estimation seems relatively insensitive to delays of this
sort. Here, the reason that timing errors do not produce
inaccurate results is because the effects can be emulated by
region-specific variations in delay of the hemodynamic re-
sponse. Slight delays or advances in the sampling of the
response are easily accommodated by changes in the bio-
physical parameters, to render the hemodynamic response
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more delayed or acute. This can be seen in the lower right
panel of Fig. 15. Here the temporal scaling parameter isless
sensitive to delay, whereas the transit time for A2 decreases
to accommodate the apparently accelerated responses. In
contradistinction the transit times for A1 and A3 increase to
balance increases in tempora scaling (Fig. 15, lower I€ft).

In summary, timing errors induced by sequential slice
acquisition, or improper model specification, can be toler-
ated to within a second or so. This is acceptable for most
fMRI studies with a short TR. In studies with a longer TR
it might be necessary to “temporally realign” the data or
restrict the system to proximate regions.

3.2.3. Violations of priors
In this subsection, we look at the impact of deviations
from prior expectations in the hemodynamic or biophysical
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Fig. 14. As for Fig. 13. In this figure the hyperparameter varied was the
timing error in input specification. In addition to the conditiona estimates
and confidence regions the lower two panels show the MAP estimates of
the scaling parameter (lower left) and transit time for each region (lower
right). These results are shown to illustrate that the estimation procedure
accommodates timing errors by “speeding up” the dynamics through the
temporal scaling parameter. This parameter shows an enormous variation
over the delay hyperparameter from 0.5 to 1.5 per second. In contradis-
tinction to the next figure, the transit times for each region behaved in a
roughly similar fashion.
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Fig. 15. Asfor Fig. 14, but in these simulations the timing error or delay
was introduced at the level of the response in, and only in, the second
region. Thekey differenceis seen in the lower panelsin which the temporal
scaling parameter is relatively less affected whereas the transit time for A2
fallsfrom about 1 sto 0.6 s. These results, and those of the previous figure,
illustrate how errors and delaysin timing of the responses, in relation to the
inputs, are accommodated by changesin the temporal scaling and biophys-
ical parameters. This renders the estimates of the coupling parameters
relatively unchanged (upper panels).

parameters and scaling parameter. The DCM parameters
can be divided into those we are interested in, namely the
normalised coupling parameters and those of less interest
(the tempora scaling and biophysical parameters). It is
important to establish that unexpected values of the latter do
not compromise estimates of the former. We addressed this
issue using two sets of simulations. First, we introduced a
systematic region-specific variation in the hemodynamic
parameters, to examine the impact of different hemodynam-
ics over the brain. Second, we increase the temporal scaling
well beyond its prior bounds.

In the first set of simulations biophysical deviates A6" =
V/ChZ were added to the prior expectation, where Z was a
random normal variate. These deviates were scaled by a
hyperparameter corresponding to the number of prior stan-
dard deviations. The regiona variations in hemodynamics
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Fig. 16. Robustness to region-specific variation in the biophysical param-
eters. (a) Region-specific hemodynamic response functions (first-order
kernels) when the deviations of the biophysical parameters are two stan-
dard deviations away from their prior expectation. (b) Conditional means
and confidence regions adopting the same format as in the previous figure.
The hyperparameter in thisinstance is the standard deviation from the prior
expectation, experienced by region-specific hemodynamic or biophysical
parameters. It is evident that the estimation procedure is robust, even with
large degrees of regional variation in hemodynamic responses.

are characterised in Fig. 16a. These responses are the first-
order hemodynamic kernels of the three regions, at the
maximum of two prior standard deviations. The results of
estimation are shown in Fig. 16b and demonstrate that
regional variation in hemodynamics has avery small impact
on estimates of the normalised coupling parameters. Thisis
reassuring but expected, given that we allow for region-
specific variability in the biophysical parameters.

In the second set of simulations we examined the effect
of manipulating the scaling parameter o that controls the

characteristic time constants of neuronal transients. The
prior expectation of this value was held constant at 1 per
second and simulated data were generated using values
between 1 and 3. A value of 3 per second corresponds to a
half-life of evoked synaptic ensemble activity of In 2/3 ~
230 ms. This is short, even for single-unit responses (Ger-
stein and Perkel, 1969).

The results of these analyses are shown in Fig. 17 and
speak to an interesting phenomenon. Although the scaling
parameter is estimated very poorly, the normalised cou-
plings are estimated reasonably well, even with quite pro-
found deviations from the prior expectation. Thisis a prod-
uct of the way that we have parameterised the DCM and
have specified the priors. Briefly, if thereis adeparture from
the prior assumptions about the absolute coupling strengths,
this deviation is expressed in the conditional estimates of
the scaling parameter and not the normalised intrinsic cou-
pling parameters. This is deliberate because we are inter-
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Fig. 17. The effects of variation in the temporal scaling parameter. The
format of this figure follows that of Fig. 11. The hyperparameter in these
simulations was the temporal scaling parameter o that was varied between
1 and 3 per second. The key thing to take from these resultsis that unlikely
excursions of the temporal scaling parameter from its prior expectation
render its estimate unreliable (first panel). In contradistinction, the condi-
tional estimates of the normalised coupling parameters are relatively un-
affected and remain robust to this particular violation of prior assumptions.
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Fig. 18. These results are presented in the same format as Fig. 17. The
hyperparameter in this instance was the relative sensitivity to BOLD
changes in the second region. As anticipated, an increase in sensitivity to
signal in A2 causes an increase in the normalised connections to this area
and a decrease in connections from it.

ested primarily in the relative strengths of effective connec-
tivity among regions and not in their values per se. A
conclusion from these analyses is that inferences about the
scaling parameter are precluded unless we can be very sure
the underlying neuronal dynamics conform closely to our
prior beliefs. Estimates and inferences about the scaling
parameter will be avoided in the rest of this paper.

3.2.4. Smulations of signal dropout

To simulate regionally specific variationsin sensitivity to
BOLD changes we simply scaled the response from the
second area by a hyperparameter that ranged from 50 to
150%. Although this affects the data in exactly the same
way as changing the amplitude of the hemodynamic re-
sponse function (see Fig. 16), the results suggest a degree of
caution should be exercised when assessing the conditional
estimates quantitatively, in the context of substantial drop-
out. This is because the afferent coupling parameter (to the
affected areq) increases, roughly in proportion to the sensi-
tivity with which its response is measured. Conversely,
efferents (from the area) decrease. This effect is mitigated

somewhat by compensatory changes in the hemodynamic
parameters but these are constrained by priors and will not
accommodate dropouts of 50%. The solution to this prob-
lem isto make the fixed parameters V, = 0.02 in the output
Eq. (4) region-specific free parameters, with relatively un-
informative priors. Because our analyses do not involve any
regions subject to profound dropout we have treated V, as
a fixed parameter in this paper.

In this section we hoped to establish the domains in
which the estimates described in Section 2 can be usefully
interpreted. We now turn to real data and address issues of
reproducibility and predictive validity.

4. Predictive validity—an analysis of single word
processing

4.1. Introduction

In this section we try to establish the predictive validity
of DCM by showing that reproducible results can be ob-
tained from independent data. The dataset we used was
especialy designed for these sorts of analyses, comprising
over 1200 scans with a relatively short TR of 1.7 s. This
necessitated a limited field of coverage but provided rela-
tively high tempora acuity. The paradigm was a passive
listening task, using epochs of single words presented at
different rates. These data have been used previously to
characterise nonlinear aspects of hemodynamics (e.g., Fris-
ton et al., 1998, 2000, 2002). Details of the experimental
paradigm and acquisition parameters are provided in the
legend to Fig. 19. These data were acquired in consecutive
sessions of 120 scans enabling us to analyse the entire time
series or each session independently. We first present the
results obtained by concatenating al the sessions into a
single data sequence. We then revisit the data, analysing
each session independently to provide 10 independent con-
ditional estimates of the coupling parameters to assess re-
producibility and mutual predictability.

4.2. Analysis of the complete time series

Three regions were selected using maxima of the
SPM{F} following a conventional SPM analysis (see Fig.
19). The three maxima were those that were closest to the
primary and secondary auditory areas and Wernicke's area
in accord with the anatomic designations provided in the
atlas of Talairach and Tournoux (1988). Region-specific
time series comprised the first eigenvariate of all voxels
within a 4 mm radius sphere centred on each location. The
anatomical locations are shown in Fig. 19. Asin the simu-
lations there were two inputs corresponding to a delta func-
tion for the occurrence of an aurally presented word and a
parametric input modelling within-epoch adaptation. The
outputs of the system were the three eigenvariate time series
from each region. Asin the previous section we allowed for
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Fig. 19. Region selection for the empirical word processing example.
Statistical parametric maps of the F ratio, based upon a conventional SPM
andysis, are shown in the left panels and the spatial locations of the
selected regions are shown on the right. These are superimposed on a
T1-weighted reference image. The regional activities shown in Fig. 21
correspond to thefirst eigenvariates of a4-mm-radius sphere centred on the
following coordinates in the standard anatomical space of Talairach and
Tournoux. Primary auditory area A1, —50, —26, 8 mm; secondary auditory
area A2, —64, —18, 2 mm; and Wernicke's area WA, —56, —48, 6 mm.
In brief, we obtained fMRI time series from a single subject at 2 Tesa
using a Magnetom VISION (Siemens, Erlangen) whole-body MRI system,
equipped with a head volume coil. Contiguous multislice T2*-weighted
fMRI images were obtained with a gradient echo-planar sequence using an
axial dlice orientation (TE = 40 ms, TR = 1.7 s, 64 X 64 X 16 voxels).
After discarding initial scans (to allow for magnetic saturation effects) each
time series comprised 1200 volume images with 3 mm isotropic voxels.
The subject listened to monosyllabic or bisyllabic concrete nouns (i.e.,
“dog,” “radio,” “mountain,” “gate”) presented at five different rates (10,
15, 30, 60, and 90 words per minute) for epochs of 34 s, intercalated with
periods of rest. The five presentation rates were successively repeated
according to aL atin Square design. The data were processed within SPM99
(Wellcome Department of Cognitive Neurology, http://www fil.ion.u-
cl.ac.uk/spm). The time series were realigned, corrected for movement-
related effects, and spatially normalised. The data were smoothed with a5
mm isotropic Gaussian kernel. The SPM(F) above was based on a standard
regression model using word presentation rate as the stimulus function and
convolving it with a canonical hemodynamic response and its temporal
derivative to form regressors.

a fully connected system. In other words, each region was
potentially connected to every other region. Generally, one
would impose constraints on highly unlikely or implausible
connections by setting their prior variance to zero. How-
ever, we wanted to demonstrate that dynamic causal mod-
elling can be applied to connectivity graphs that would be
impossible to analyse with structural eguation modelling.
The auditory input was connected to A1. In addition, audi-
tory input entered bilinearly to emulate saturation, asin the
simulations. The contexual input, modelling putative adap-
tation, was allowed to exert influences over al intrinsic
connections. From a neurobiological perspective an inter-
esting question is whether plasticity can be demonstrated in
forward connections or backward connections. Plagticity, in

this instance, entails a time- dependent increase or decrease
in effective connectivity and would be inferred by signifi-
cant bilinear coupling parameters associated with the sec-
ond input.

The inputs, outputs, and priors on the DCM parameters
were entered into the Bayesian estimation procedure as
described in Section 2.2. Drifts were modelled with the first
40 components of a discrete cosine set, corresponding to X
in Eq. (8). The results of this analysis, in terms of the
posterior densities and ensuing Bayesian inference, are pre-
sented in Fig. 20 and 21. Bayesian inferences were based
upon the probability that the coupling parameters had a
half-life of 8 s or less. Intuitively, this means that we only
consider the influence of one region on another to be mean-
ingfully large if this influence is expressed within a time
frame of 8 s. The results show that the most probable
architecture, given the inputs and data, conformsto asimple
hierarchy of forward connections where A1 influences A2
and WA, whereas A2 sends connections just to WA (Fig.
20). Although backward connections between WA and A2
were estimated to be greater than our threshold with 82%
confidence, they are not shown in Fig. 20 (which is re-
stricted to posterior probabilities of 90% or more). Satura-
tion could be inferred in A1 and WA with a high degree of
confidence with b1, and b3; being greater than 0.5. Signif-
icant plasticity or time-dependent changes were expressed
predominantly in the forward connections, particularly that
between Al and A3, i.e, b3, = 0.37. The conditional
estimates are shown in more detail in Fig. 21 along with the
conditional fitted responses and hemodynamic kernels. A
full posterior density analysis for a particular contrast of
effects is shown in Fig. 21a (lower panel). This contrast
tested for the average plasticity over all forward connections
and demonstrates that we can be virtually certain plasticity
was greater than zero. The notion of a contrast of coupling
parameter estimates is important because it allows one to
make inferences about any linear combination of parame-
ters. This includes differences in connection strengths,
which might be important in demonstrating that one path-
way is used more than another, or that backward influences
are greater than forward connections. These inferences are
based on the conditional density provided by Eq. (12) for
any set of contrast weights ¢. This density affords the
probability or confidence that the contrast (e.g., difference)
is greater or less than zero.

This analysis illustrates three things. First, the DCM has
defined a hierarchical architecture that is a sufficient expla-
nation for the data and is indeed the most likely given the
data. This hierarchical structure was not part of the prior
constraints because we alowed for a fully connected sys-
tem. Second, the significant bilinear effects of auditory
stimulation suggest there is measurable neuronal saturation
above and beyond that attributable to hemodynamic nonlin-
earities. This is quite important because such disambigua-
tion is usualy impossible given just hemodynamic re-
sponses. Finaly, we were able to show time-dependent
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Fig. 20. Results of a DCM analysis applied to the data described in the previous figure. The display format follows that of Fig. 7. The coupling parameters
are shown alongside the corresponding connections. The values in brackets are the percentage confidence that these values exceed a threshold of 1n(2)/8 per

second.

decreases in effective connectivity in forward connections
from A1. Although this experiment was not designed to test
for plasticity, the usefulness of DCM, in studies of learning
and priming, should be self-evident.

4.3. Reproducibility

The analysis above was repeated identically for each and
every 120-scan session to provide 10 sets of Bayesian es-
timators. Drifts were modelled with the first four compo-
nents of a discrete cosine set. The estimators are presented
graphicaly in Fig. 22 and demonstrate extremely consistent
results. In the upper panels the intrinsic connections are
shown to be very similar in their profile, again reflecting a
hierarchical connectivity architecture. The conditional
means and 90% confidence regions for two connections are
shown in Fig. 22a. These connections included the forward
connection from A1 and A2 that is consistently estimated to
be very strong. The backward connection from WA to A2
was weaker but was certainly greater than zero in every
analysis. Equivaent results were obtained for the modula-

tory effects or bilinear terms, athough the profile was less
consistent (Fig. 22b). However, the posterior density of the
contrast testing for average time-dependent adaptation or
plasticity is relatively consistent and again almost certainly
greater than zero, in each anaysis.

To illustrate the stability of hyperparameter estimates,
over the 10 sessions, the standard deviations of observation
error are presented for each session over the three areas in
Fig. 23. Typical for studies at this field strength, the stan-
dard deviation of noiseis about 0.8—1% whole-brain mean.
Itis pleasing to note that the session-to-session variability in
hyperparameter estimates was relatively small, in relation to
region-to-region differences.

In summary, independent analyses of data acquired un-
der identical stimulus conditions, on the same subject, in the
same scanning session, yield remarkably similar results.
These results are biologically plausible and speak to the
interesting notion that time-dependent changes, following
the onset of a stream of words, are prominent in forward
connections among auditory areas.
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Fig. 21. This figure provides a more detailed characterisation of the con-
ditiona estimates. The imagesin the top row are the MAP estimates for the
intrinsic and bilinear coupling parameters, pertaining to saturation and
adaptation. The middle panel shows the posterior density of a contrast of
all bilinear terms mediating adaptation, namely the modulation of intrinsic
connections by the second time-dependent experimental effect. The pre-
dicted responses based upon the conditional estimators are shown for each
of the three regions on the lower left (solid lines) with the origina data
(dots) after removal of confounds. A reparameterisation of the conditional
estimates, in terms of the first-order hemodynamic kernels, is shown on the
lower right.

5. Construct validity—an analysis of attentional effects
on connections

5.1. Introduction

In this final section we take a first step towards estab-
lishing the construct validity of DCM. In a series of reports
we have previously established that attention positively
modul ates the backward connectionsin a distributed system
of cortical regions mediating attention to radial motion. In
brief, subjects viewed optic flow stimuli comprising radially
moving dots at a fixed velocity. In some epochs, subjects
were asked to detect changes in velocity (that did not actu-

ally occur). This attentional manipulation was validated
post hoc using psychophysics and the motion after-effect.
Our previous analyses using structural equation modelling
(Buchel and Friston, 1997) and a Volterra formulation of
effective connectivity (Friston and Buchel, 2000) have es-
tablished a hierarchical backwards modulation of effective
connectivity where a higher area increases the effective
connectivity among subordinate areas. These analyses have
been extended using variable parameter regression and Kal-
man filtering (Blichel and Friston, 1998) to look at the effect
of attention on interactions between V5 and the posterior
parietal complex. In this context, the Volterra formulation
can be regarded as a highly finessed regression model that
embodies nonlinear terms and some dynamic aspects of
fMRI time series. However, even simple analyses, such as
those employing psychophysiological interactions, point to
the same conclusion that attention generally increases the
effective connectivity among extrastriate and parietal areas.
In short, we aready have established that the superior pos-
terior parieta cortex (SPC) exerts a modulatory role on V5
responses using Volterra-based regression models (Friston
and Buchel, 2000) and that the inferior frontal gyrus (IFG)
exerts a similar influence on SPC using structural equation
modelling (Biichel and Friston, 1997). The aim of this
section was to show that DCM leads one to the same
conclusions but starting from a completely different con-
struct.

The experimental paradigm and data acquisition param-
eters are described in the legend to Fig. 24. This figure also
shows the location of the regions that entered into the DCM
(Fig. 24b, insert). Again, these regions were based on max-
ima from conventional SPMs testing for the effects of pho-
tic stimulation, motion, and attention. As in the previous
section, regional time courses were taken as the first eigen-
variate of spherical volumes of interest centred on the max-
ima shown in the figure. The inputs, in this example, com-
prise one sensory perturbation and two contextual inputs.
The sensory input was simply the presence of photic stim-
ulation and the first contextual one was presence of motion
in the visual field. The second contextual input, encoding
attentional set, was unity during attention to speed changes
and zero otherwise. The outputs corresponded to the four
regional eigenvariatesin Fig. 24b. Theintrinsic connections
were constrained to conform to a hierarchical pattern in
which each area was reciprocally connected to its supraor-
dinate area. Photic stimulation entered at, and only at, V1.
The effect of motion in the visual field was modelled as a
bilinear modulation of the V1 to V5 connectivity and atten-
tion was alowed to modulate the backward connections
from IFG and SPC.

The results of the DCM are shown in Fig. 24a. Of
primary interest here is the modulatory effect of attention
that is expressed in terms of the bilinear coupling parame-
ters for this third input. As hoped, we can be highly confi-
dent that attention modulates the backward connections
from IFG to SPC and from SPC to V5. Indeed, the influ-
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ences of IFG on SPC are negligible in the absence of
attention (dotted connection in Fig. 24a). It is important to
note that the only way that attentional manipulation can
affect brain responses was through this bilinear effect. At-
tention-related responses are seen throughout the system
(attention epochs are marked with arrows in the plot of IFG
responses in Fig. 24b). This attentional modulation is ac-
counted for, sufficiently, by changing just two connections.
This change is, presumably, instantiated by an instructional
set at the beginning of each epoch. The second thing this
analysisillustratesis how the functional segregation is mod-
elled in DCM. Here one can regard V1 as a “segregating”
motion from other visual information and distributing it to
the motion-sensitive area V5. This segregation is modelled
asabilinear “enabling” of V1 to V5 connections when, and
only when, motion is present. Note that in the absence of
motion theintrinsic V1 to V5 connection was trivially small
(in fact the MAP estimate was —0.04). The key advantage
of entering motion through a bilinear effect, as opposed to
adirect effect on V5, isthat we can finesse the inference that
V5 shows motion-sel ective responses with the assertion that
these responses are mediated by afferents from V1.

The two bilinear effects above represent two important
aspects of functional integration that DCM was designed to
characterise.

6. Conclusion

In this paper we have presented dynamic causal model-
ling. DCM is a causal modelling procedure for dynamic
systems in which causality is inherent in the differential
equations that specify the model. The basic idea is to treat
the system of interest, in this case the brain, as an input—
state—output system. By perturbing the system with known
inputs, measured responses are used to estimate various
parameters that govern the evolution of brain states. Al-
though there are no restrictions on the parameterisation of
the model, a bilinear approximation affords a simple repa-
rameterisation in terms of effective connectivity. This ef-
fective connectivity can be latent or intrinsic or, through
bilinear terms, model input-dependent changes in effective
connectivity. Parameter estimation proceeds using fairly
standard approaches to system identification that rest upon
Bayesian inference.

Dynamic causal modelling represents a fundamental de-
parture from conventional approaches to modelling effec-
tive connectivity in neuroscience. The critical distinction
between DCM and other approaches, such as structural
equation modelling or multivariate autoregressive tech-
niques, is that the input is treated as known, as opposed to
stochastic. In this sense DCM is much closer to conven-
tional analyses of neuroimaging time series because the
causal or explanatory variables enter as known fixed quan-
tities. The use of designed and known inputs in characteris-
ing neuroimaging data with the general linear model or
DCM is a more natural way to analyse data from designed
experiments. Given that the vast majority of imaging neu-
roscience relies upon designed experiments, we consider
DCM a potentially useful complement to existing tech-
niques. In the remainder of this section we consider two
potential limitations of DCM and comment upon exten-
sions.

6.1. Priors

One potential weakness of any Bayesian information
procedure is its dependence upon priors. In other words, the
inferences provided by DCM are only as valid as the priors
used in the estimation procedure. This is not a severe lim-
itation because the parameters about which inferences are
made can be constrained by relatively uninformative priors.
Although more stringent priors are applied to the hemody-
namic biophysical parameterstheir posterior density is of no
interest. In relation to the coupling parameters only the
intrinsic and bilinear parameters have informative shrinkage

the forward connection from A1 to A2. The equivalent densities are shown for the backward connection from WA to A2. Although the posterior probability
that the latter connections exceeded the specified threshold was less than 90%, it can be seen that this connection is amost certainly greater than zero. (b)
Equivalent results for the bilinear coupling matrices mediating adaptation. The lower panels here refer to the posterior densities of a contrast testing for the

mean of al bilinear parameters (left) and the extrinsic connection to A1 (right).
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Fig. 24. Results of the empirical analysis of the attention study. (a) Functional architecture based upon the conditional estimates displayed using the same
format as Fig. 20. The most interesting aspects of this architecture involved the role of motion and attention in exerting bilinear effects. Criticaly, the
influence of motion is to enable connections from V1 to the motion-sensitive area V5. The influence of attention is to enable backward connections from the
inferior frontal gyrus (IFG) to the superior parietal cortex (SPC). Furthermore, attention increases the latent influence of SPC on the V5. Dotted arrows
connecting regions represent significant bilinear affects in the absence of a significant intrinsic coupling. (b) Fitted responses based upon the conditional
estimates and the adjusted data are shown using the same format asin Fig. 21. The insert shows the location of the regions, again adopting the same format
in previousfigures. The location of these regions centred on the primary visual cortex V1, 6, —84, —6 mm; motion-sensitive area V5, 45, —81, 5 mm; superior
parietal cortex, SPC, 18, —57, 66 mm; inferior frontal gyrus, IFG, 54, 18, 30 mm. The volumes from which the first eigenvariates were calculated
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priors that are easily motivated by the tenable assumption
that neural activity will not diverge exponentially.

6.2. Deterministic noise

The dynamic causal models considered in this paper are
based upon differential equations that do not admit deter-
ministic noise in the state equation. This means that we do
not alow for noisy dynamics (or deterministic dynamics
with a very high correlation dimension) to be expressed
endogenoudly in each region. The only stochastic compo-
nent of the model enters linearly as observation noise at the
point the response is measured. From aneuronal perspective
this is clearly a limitation because regional dynamics will
not be dictated solely by designed inputs. Perhaps the best
way of accommodating this, and other departures from
complete biological plausibility, is to acknowledge that
DCMs are only models. They do not propose to capture
actual biological processes but model them in a rather ab-
stract way that finesses the neurophysiological interpreta-
tion of the model parameters. In other words, if real neuro-
nal dynamics could be summarised as a dynamic causal
model then the parameters of that model are the best ones
given the data. This does not imply that the brain actually
works in the same way as the model does. For example, it
is physiologically unlikely that the neural activity in every
neuronal assembly within a cortical area conforms to the
dynamics of a single-state variable. However, the “effec-
tive” stateimplied by the model may be a useful abstraction.
In summary, it should be remembered that DCMs have the
same status as general linear models in trying to summarise
and characterise the impact of experimental perturbations
on measured responses. DCMs are much closer to the un-
derlying system in the sense that they embody dynamic
aspects of neurophysiology, interactions among different
brain areas, and nonlinearities, but they are still simply
observation models.

6.3. Future extensions

The obvious extension of dynamic causal models is in
terms of their neurophysiological plausibility. We are cur-
rently working on mean-field approximations for coupled
ensembles of neurons as a more refined model of intrar-

egional dynamics. This would enable a ssimple extension
from asingle-state variable for each region to multiple-state
variables. For example, the states might include the mean
activity of inhibitory and excitatory subpopulations within
an area, or indeed a series of excitatory-inhibitory couples.
This work is motivated by the fact that effective connectiv-
ity expressed in terms of univariate metrics, e.g., regiona
activity, cannot be meaningfully linked to specific neuro-
transmitter systems. By introducing the distinction between
inhibitory and excitatory subpopulations it would be possi-
ble to model separately inhibitory (within areas) and exci-
tatory connections (within and between areas). This would
alow one to harness the empirical knowledge that most
corticocortical connections are excitatory and mediated by
glutamate.

A further extension would be to go beyond bilinear
approximations to allow for interactions among the states.
This is important when trying to model modulatory or
nonlinear connections such as those mediated by backward
afferents that terminate predominantly in the supragranular
layers and possibly on NMDA receptors. It is evident that,
as dynamic causal models become more sophisticated, they
will become indistinguishable from synthetic neuronal mod-
els used in computational neurobiology. However, it is
likely that the increase in the number of parameters required
to define a particular DCM will necessitate the use of other
imaging modalities such as EEG and MEG. The use of
DCMs as forward models for the fusion or integration of
multimodality data is another exciting possibility.
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Softwar e implementation note

The theory and estimation procedures described in this
paper have been implemented in the SPM2 version of the
statistical parametric mapping software (http://www fil.
ion.ucl.ac.uk/spm). Following a conventional analysis, a
library of volumes of interest (VOI) structures can be as-

corresponded to 8-mm-radius spheres centred on these locations. Subjects were studied with fMRI under identical stimulus conditions (visual motion
subtended by radially moving dots) whilst manipulating the attentional component of the task (detection of velocity changes). The data were acquired from
normal subjects at 2 Tesla using a Magnetom VISION (Siemens, Erlangen) whole-body MRI system, equipped with a head volume coil. Here we analyse
data from thefirst subject. Contiguous multi-slice T2*-weighted fMRI images were obtained with a gradient echo-planar sequence (TE = 40 ms, TR = 3.22 s,
matrix size = 64 X 64 X 32, voxel size 3 X 3 X 3 mm). Each subject had four consecutive 100-scan sessions comprising a series of 10-scan blocks under
five different conditionsD F A F N F A F N S. The first condition (D) was a dummy condition to allow for magnetic saturation effects. F (Fixation)
corresponds to alow-level baseline where the subjects viewed a fixation point at the centre of a screen. In condition A (Attention) subjects viewed 250 dots
moving radially from the centre at 4.7° per second and were asked to detect changesin radial velocity. In condition N (No attention) the subjects were asked
simply to view the moving dots. In condition S (Stationary) subjects viewed stationary dots. The order of A and N was swapped for the last two sessions.
In all conditions subjects fixated on the centre of the screen. In a prescanning session the subjects were given five trials with five speed changes (reducing
to 1%). During scanning there were no speed changes. No overt response was required in any condition.
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sembled, usually based on maxima in the SPM{T} or
SPM{F}. These VOI structures contain information about
the origina data, analysis and, critically, the region’s first
eigenvariate. Selecting from this list specifies regional out-
puts or responses. The user interface then requests con-
straints on the connections (in terms of which connections
are dlowed). Inputs are selected from the stimulus func-
tions, originally specified (in terms of onsets and durations)
to form the conventional design matrix. Estimation then
proceeds automatically and the results are stored for inspec-
tion. In this implementation DCM uses exactly the same
stimulus functions (inputs), confounds, and anatomical
frame of reference as the conventional analysis that pre-
cedesit. This enforces a perspective on experimental design
and analysis that reflects DCM as a generalisation of con-
ventiona analyses.

Appendix A.1l: the relationship between dynamic and
static causal models

Consider a linear DCM where we observe the states
directly and there is only one state variable per region. From
Eq. (2):

z=F(z u, 0)
=Az+u
=(0—1)z+ u. (A2

Here we have discounted observation error but make the
inputs u ~ N(0, Q) stochastic. To make the connection to
structural equation models more explicit, we have expanded
the intrinsic connectionsinto off-diagonal connectionsand a
leading diagonal matrix, modelling unit decay A = 6 — 1.
For simplicity, we have absorbed C into the covariance
structure of the inputs Q. If inputs change slowly, relative to
the dynamics, the change in states will be zero at the point
of observation and we obtain the regression model.

z=0>
(1-0)z=u
z=0z+ u. (A.2)

This specia case of Eq. (2) is important because it is the
basis of commonly employed methods for estimating effec-
tive connectivity in neuroimaging (e.g., SEM). Dynamic
casual models do not assume the states have reach equilib-
rium at the point of observation. That is why they are
dynamic.

Appendix A.2: parameter and hyperparameter
estimation with EM

In this appendix we provide a heuristic motivation for the
E- and M-steps of the estimation scheme summarised in Eq.

(8). These steps can be regarded on as Fisher Scoring ascent
on an objective function F that embodies the log posterior.

The E-step

The conditional expectations and covariances of the pa-
rameters are estimated in the E-step that performs a gradient
ascent on the log posterior comprising the likelihood and
prior potentias

I =Inp(6ly, A; u)

Inp(y|6, A; u) + Inp(6; u)

In p(y|6, A; u)

1
= 5(y = h(u, 6))" C.*(y — h(u, 6)

1
Inp(6; u) = —5(ny — 6)" Cy'(my — 0). (A.3)

On taking gradients with respect to the parameters the
following Fisher scoring scheme ensues.

92\ 1ol
Moy < May = \ 752 %(ne\y)

al
ﬁ = JTC;lr + CJl(ne - ne\y)
04 T~-1 -1 -1
“\7¢2 =JC,JU+C, = C9|y, (A.9)

where J = dh(ng)/06, r =y — h(u, ngy), and C, = ZA,Q;
is the hyperparameterised error covariance. Eq. A.4 is for-
mally the same as the E-step in Eq. (8), after the nuisance
variables X have been included.

The M-step

The hyperparameters are estimated in the M-step in
exactly the same way as the parameters but accounting for
the fact that the log likelihood depends on the unknown
parameters by integrating them out using the approximate
conditional distribution g(6). Note there are no priors on the
hyperparameters. This integration motivates a lower bound
on the log likelihood called the [negative] free energy in
statistical physics (Neal and Hinton, 1998). By Jensen’'s
inequality

L p(o, ylxu)
In p(y|A;u) = In Jq(e)—q(e) de =
B p(6, yIA;u)
F—Jq(e)ln—q(e) de. (A.5)

On taking gradients with respect to the hyperparameters, the
following Fisher scoring scheme can be derived.
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where P = C;* — C;1JC,yJ" C. . The parameter ascent
on the log posterior | in the E-step is closely related to an
ascent on the negative free energy F used for the hyperpa-
rameters in the M -step, with exact equivalence when q(6) is
deterministic. This can be seen if we write

) L ac0)
F—Jq(e)ln P(yl6, A; u)do qu)'n p(9) "

= (Inp(yl6, A; u))q— KL(q(6), p(6)). (A7)

F comprises the expected log likelihood under g(6) and a
prior term embodying the Kullback—Leibler (KL) diver-
gence between the conditional and prior densities. F = |
when q(6) shrinks to a point density over ng,. For com-
pleteness, it is noted that, in a linear setting, F is also the
ReML (restricted maximum likelihood) objective function
used in classical variance component estimation (Harville,
1977). This EM algorithm is simple and robust and has
found multiple applications in our data analysis, ranging
from ReML estimates of serial correlations in fMRI to
hyperparameter estimation in hierarchical observation mod-
els using empirical Bayes; see Friston et a. (2002) for
details. In our implementation we iterate the E- and M -steps
until convergence before recomputing J = ah(ng,)/a6.

Appendix A.3: priors on the coupling parameters

Consider any set of (I — 1) interregional connections ay;
i # ] with sum of squared values { = Eaﬁ. For any given
value of ¢ the biggest principal Lyapunov exponent A,
obtains when the strengths are equal a; = a, in which case

A=(-Da-1
=10 - 1)a2 (A.8)

This means that as the sum of squared connection strengths
reaches|/(I — 1), the largest exponent attainable approaches
zero. Consequently, if ¢ is constrained to be less than this
threshold, we can set an upper bound on the probability that
the principa exponent exceeds zero. { is constrained
through the priors on ;. If each connection has a prior
Gaussian density with zero expectation and variance v,,
then the sum of squares has a scaled x? distribution Z/v,

~ xZ(I — 1) with degrees of freedom I(I — 1). v, is chosen
to make p(¢ > /(I — 1)) suitably small, i.e.

- o
P TERrSY A9

where ¢, isthe cumulative X,Z(l _ 1y distribution and p isthe
required probability. As the number of regions increases,
the prior variance decreases.

In addition to constraints on the normalised connections,
the factorisation in Eq. (9) requiresthe temporal scaling o to
be greater than zero. This is achieved through a noncentral
prior density specified in terms of its moments such that o
~ N(n,, V,,) where the expectation 7, controls the charac-
teristic time constant of the system and the variance v, is
chosen to ensure p(o > 0) issmall, i.e,

3 Ny 2
Ve = (dml 1- p)) ’ (A.10)

where ¢y is the cumulative normal distribution and p the
required probability.
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