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Introduction 
This chapter considers situated and embodied cognition in terms of the 
free-energy principle. The free-energy formulation starts with the premise 
that biological agents must actively resist a natural tendency to disorder. 
It appeals to the idea that agents are essentially inference machines that 
model their sensorium to make predictions, which action then fulfils. The 
notion of an inference machine was articulated most clearly by Helm-
holtz1 and developed in psychophysics by Gregory2,3. The basic premise is 
that agents, and in particular their brains, entail a model of how their 
sensory data are generated. Optimization of this model’s parameters cor-
responds to perceptual inference and learning on a moment to moment 
basis; while optimization of the model per se rests on changes in the form 
or configuration of the phenotype at neurodevelopmental or evolutionary 
timescales. The free-energy formulation generalises the concept of agents 
as inference machines and considers each agent as a statistical model of its 
environmental niche (econiche). In brief, the free-energy principle takes 
the existence of agents as its starting point and concludes that each pheno-
type or agent embodies an optimal model of its econiche. This optimality is 
achieved by minimizing free-energy, which bounds the evidence for each 
agent (model), afforded by sensory interactions with the world. In this 
sense, each agent distils and embodies causal structure in its local 
environment. However, the key role of embodiment also emerges in a 
slightly deeper and more subtle argument: Not only does the agent 
embody the environment but the environment embodies the agent. This is 
true in the sense that the physical states of the agent (its internal milieu) 
are part of the environment. In other words, the statistical model entailed 
by each agent includes a model of itself as part of that environment. This 
model rests upon prior expectations about how environmental states 
unfold over time. Crucially, for an agent to exist, its model must include 
the prior expectation that its form and internal (embodied) states are con-
tained within some invariant set. This is easy to see by considering the 
alternative: If the agent (model) entailed prior expectations that it will 
change irreversibly, then (as an optimal model of itself), it will cease to 
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exist in its present state. Therefore, if the agent (model) exists, it must a 
priori expect to occupy an invariant set of bounded states (cf., homeosta-
sis). Heuristically, if I am a model of my environment and my environ-

ment includes me, then I model myself as existing. But I will only exist iff 
(sic) I am a veridical model of my environment. Put even more simply; “I 
think therefore I am,4 iff I am what I think”. This tautology is at the heart 
of the free-energy principle and celebrates the circular causality that 
underpins much of embodied cognition. 

Under this view, each organism represents a hypothesis or model 
that contains a different set of prior expectations about the environment it 
inhabits. Interactions with the environment can be seen as hypothesis 
testing or model optimisation, using the free-energy as a measure of how 
good its model is. Phenotypes or species that attain a low free-energy (i.e., 
maximise the evidence for their model) represent optimal solutions in a 
free-energy or fitness landscape, where exchanges with the environment 
are consistent with their prior expectations. The characteristic of biological 
agents is that they a priori expect their physical states to possess key inva-
riance properties. These priors are mandated by the very existence of 
agents and lead naturally to phenomena like homeostasis, and preclude 
surprising exchanges with the world. It can be seen that the role of prior 
expectations is crucial in this formulation: If each agent is a hypothesis 
that includes prior expectations, then these expectations must include the 
prior that the agent occupies an invariant (attracting) set of physical 
states. However, this is only a hypothesis, which the agent must test using 
sensory samples from the environment. Iff its hypothesis is correct, the 
agent will retain its priors and maintain its states within physiological 
bounds. This highlights the key role of priors and their intimate relation-

ship to the structural form of phenotypes. It also suggests that simple 
prior expectations about homeostasis may be heritable and places the 
free-energy formulation (at least potentially) in an evolutionary setting. 
These arguments appeal to embodied cognition in that cognition and 
perception can be regarded as hypothesis testing about the environment 
in which the agent is situated, and which embodies the agent per se.  

In summary, embodiment plays a fundamental and bilateral role in 
the free-energy formulation. On the one hand, agents embody (model) 
causal structure in the environment. On the other hand, the physical 
instantiation of this model is embodied in the environment. Only when 
the two are mutually compatible can the agent exist. This necessarily 
implies a low free-energy, which bounds the evidence for a model or 
hypothesis about an agent’s milieu. As the long-term average of negative 
log-evidence is the entropy of an agent’s sensory states, these low free-
energy solutions implicitly resist a tendency to disorder and enable orga-
nisms to violate the second law of thermodynamics.  

In what follows, we will go through these arguments in more detail 
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and try to connect them to established theories about perception, cogni-
tion and behaviour. This chapter comprises three sections. The first 
provides a heuristic overview of the free-energy formulation and its 
conceptual underpinnings. This formulation is inherently mathematical 
(drawing from statistical physics, dynamical systems and information 
theory). However, the basic ideas are intuitive and will be presented as 
such. For more technical readers, formal details (e.g., mathematical equa-
tions) can be found in the figures and their legends. In the second section, 
we examine these ideas in the light of existing theories about how the 
brain works. In the final section, we will look more closely at the role of 
prior expectations as policies for negotiating with the environment and 
try to link policies to itinerancy and related concepts from synergetics. 

1. The Free-Energy Principle 

In recent years, there has been growing interest in applying free-energy 
principles to the brain5, not just in the neuroscience community, where it 
has caused some puzzlement6 but from fields as far apart as psycho-

therapy7 and social politics8. The free-energy principle has been described 
as a unified brain theory9 and yet may have broader implications that 
speak to the way that any biological system interacts with its environ-
ment. This section describes the origin of the free-energy formulation, its 
underlying premises and the implications for how we represent and 
interact with our world. 

The free-energy principle is a simple postulate that has complicated 
ramifications. It says that self-organising systems (like us) that are at equi-
librium with their environment must minimise their free-energy10. This 
postulate is as simple and fundamental as Hamilton’s law of Least Action 
and the celebrated H-theorems in statistical physics. The principle was 
originally formulated as a computational account of perception that 
borrows heavily from statistical physics and machine learning. However, 
it quickly became apparent that its explanatory scope included action and 
behaviour and was linked to our very existence: In brief, the free-energy 
principle takes well-known statistical ideas and applies them to deep 
problems in population (ensemble) dynamics and self-organisation. In 
applying these ideas, many aspects of our brains, how we perceive and 
the way we act become understandable as necessary and self-evident 
attributes of biological systems.  

The principle is essentially a mathematical formulation of how adap-
tive systems (i.e., biological agents, like animals or brains) resist a natural 
tendency to disorder11-14. What follows is a non-mathematical treatment of 
its motivation and implications. We will see that although the motivation 
is quite straightforward, the implications are complicated and diverse. 
This diversity allows the principle to account for many aspects of brain 
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structure and function and lends it the potential to unify different 
perspectives on how the brain works. In the next section, we will see how 
the principle can be applied to neuronal systems, as viewed from these 
perspectives. This section is rather abstract and technical but the next 
section tries to unpack the basic idea in more familiar terms. 

1.1 Resisting a tendency to disorder 

The defining characteristic of biological systems is that they maintain their 
states and form in the face of a constantly changing environment11-14. 
From the point of view of the brain, the environment includes both the 
external and internal milieu. This maintenance of order is seen at many 
levels and distinguishes biological from other self-organising systems. 
Indeed, the physiology of biological systems can be reduced almost 
entirely to their homeostasis (the maintenance of physiological states 
within certain bounds15). More precisely, the repertoire of physiological 
and sensory states an organism can be in is limited, where those states 
define the organism’s phenotype. Mathematically, this means that the 
probability distribution of the agent’s (interoceptive and exteroceptive) 
sensory states must have low entropy. Low entropy just means that there 
is a high probability that a system will be in one of a small number of 
states, and a low probability that it will be in the remaining states. 
Entropy is also the average self-information. Self-information is the 
‘surprise’ or improbability of something happening16 or, more formally, 
its negative log-probability. Here, ‘a fish out of water’ would be in a 
surprising state (both emotionally and mathematically). Note that both 
entropy and surprise depend on the agent; what is surprising for one 
agent (e.g., being out of water) may not be surprising for another. Bio-

logical agents must therefore minimise the long-term average of surprise 
to ensure that their sensory entropy remains low. In other words, bio-

logical systems somehow manage to violate the Fluctuation Theorem, 
which says the entropy of (non-adaptive) systems can fall but the 
probability of entropy falling vanishes exponentially as the observation 
time increases17.  

In short, the long-term (distal) imperative, of maintaining states 
within physiological bounds, translates into a short-term (proximal) sup-

pression of surprise. The sort of surprise we are talking about here is asso-

ciated with unpredicted or shocking events (e.g., tripping and falling in 
the street or the death of a loved one). Surprise is not just about the 
current state (which cannot be changed) but also about the movement or 
transition from one state to another (which can). This motion can be very 
complicated and itinerant (wandering) provided it revisits a small set of 
states (called a global random attractor18) that are compatible with sur-

vival (e.g., driving a car within a small margin of error). It is this motion 
or these state-transitions that the free-energy principle optimises. 
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So far, all we have said is that biological agents must avoid surprises 
to ensure that their exchanges with the environment remain within 
bounds. But how do they do this? A system cannot know whether its 
sensations are surprising or avoid them even if it did know. This is where 
free-energy comes in: Free-energy is an upper bound on surprise, which 
means that if agents minimise free-energy they implicitly minimise surpri-
se. Crucially, free-energy can be evaluated because it is a function of two 
things the agent has access to: its sensory states and a recognition density 
encoded by its internal states (e.g., neuronal activity and connection 
strengths). The recognition density is a probability distribution of putative 
environmental causes of sensory input; i.e., a probabilistic representation 
of what caused sensations. These causes can range from the presence of 
an object in the field of view that causes sensory impressions on the eye, 
to physiological states like blood pressure that cause interoceptive signals. 
The (variational) free-energy construct was introduced into statistical 
physics to convert difficult probability density integration problems into 
easier optimisation problems19. It is an information theoretic quantity (like 
surprise) as opposed to a thermodynamic energy. Variational free-energy 
has been exploited in machine learning and statistics to solve many 
inference and learning problems20-22. In this setting, surprise is called the 
(negative) model log-evidence (i.e., the log-probability of getting some 
sensory data, given it was generated by a particular model). In our case, 
the model is entailed by the agent. This means minimising surprise is the 
same as maximising the sensory evidence for a model or agent. In the 
present context, free-energy provides the answer to a fundamental 
question: How do self-organising adaptive systems avoid surprising 
states? They can do this by minimising their free-energy. So what does 
this involve? 

1.2 Action and perception 

In brief, agents can suppress free-energy by changing the two things free-
energy depends on. They can change sensory input by acting on the 
world or they can change their recognition density by changing their 
internal states. This distinction maps nicely onto action and perception. 
One can understand this in more detail by considering three mathemati-
cally equivalent formulations of free-energy (see Fig. 1 and ref [5]; Supple-

mentary material, for a more formal treatment). The free-energy bound on 
surprise is constructed by simply adding a non-negative term to surprise. 
This term is a function of the recognition density encoded by the agent’s 
internal states. We will refer to this term as a posterior divergence. 
Creating the free-energy bound in this way leads to the first formulation: 
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1.2.1 Free-energy as posterior divergence plus surprise 

The posterior divergence is a Kullback-Leibler divergence (cross entropy) 
and is just the difference between the recognition density and the poste-
rior or conditional density on the causes of sensory signals. This conditio-

nal density represents the best possible guess about the true causes. The 
difference between the two densities is always non-negative and free-
energy is therefore an upper bound on surprise. This is the clever part of 
the free-energy formulation; because minimising free-energy by changing 
the recognition density (without changing sensory data) reduces the diffe-

rence, making the recognition density a good approximation to the condi-
tional density and the free-energy a good approximation to surprise. The 
recognition density is specified by its sufficient statistics, which are the 
agent’s internal states. This means an agent can reduce posterior diver-

gence (i.e. free-energy) by changing its internal states. This is essentially 
perception and renders an agent’s internal states representations of the 
causes of its sensations. 

1.2.2 Free-energy as prior divergence minus accuracy 

The second formulation expresses free-energy as prior divergence minus 
accuracy. In the model comparison literature, prior divergence is called 
‘complexity’. Complexity is the difference between the recognition 
density and the prior density on causes encoding beliefs about the state of 
the world before observing sensory data (this is also known as Bayesian 
surprise23). Accuracy is simply the surprise about sensations expected 
under the recognition density. This formulation shows that minimising 
free-energy by changing sensory data (without changing the recognition 
density) must increase the accuracy of an agent’s predictions. In short, the 
agent will selectively sample the sensory inputs that it expects. This is 
known as active inference24. An intuitive example of this process (when it 
is raised into consciousness) would be feeling our way in darkness; antici-
pating what we might touch next and then trying to confirm those expect-
ations. In short, agents can act on the world to minimise free-energy by 
increasing the accuracy of their predictions through selective sampling of 
the environment. 

1.2.3 Free-energy as expected energy minus entropy 

The final formulation expresses free-energy as an expected energy minus 
entropy. This formulation is important for three reasons. First, it connects 
the concept of free-energy as used in information theory with homologous 
concepts used in statistical thermodynamics. Second, it shows that the 
free-energy can be evaluated by an agent because the expected energy is 
the surprise about the joint occurrence of sensations and their perceived 
causes, while the entropy is simply the entropy of its recognition density. 
Third, it shows that free-energy rests upon a generative model of the 
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world; which is expressed in terms of the joint probability of a sensation 
and its causes occurring together. This means that an agent must have an 
implicit generative model of how causes conspire to produce sensory 
data. It is this model that defines both the nature of the agent and the qua-

lity of the free-energy bound on surprise. 

1.3 Generative models in the brain 

We have just seen that one needs a generative model (denoted by 
p( ( ) [ , , , ]s t s s s%, ( | )q ϑ µ| m) in the figures) of how the sensorium is caused to evaluate free-
energy. These models combine the likelihood of getting some data, given 
their causes and prior beliefs about these causes. These models have to 
explain complicated dynamics on continuous states with hierarchical or 
deep causal structure. Many biological systems, including the brain, may 
use models with the form shown in Fig. 2. These are hierarchical dynamic 
models and provide a very general description of states in the world. 
They are general in the sense that they allow for cascades or hierarchies of 
nonlinear dynamics to influence each other. They comprise equations of 
motion and static nonlinear functions that mediate the influence of one 
hierarchical level on the next. Crucially, these equations include random 
fluctuations on the states and their motion, which play the role of observa-

tion noise at the sensory level and state-noise at higher levels. These 
random fluctuations induce uncertainty about states of the world and the 
parameters of the model. In these models, states are divided into causal 
states, which link states in different hierarchical levels and hidden states, 
which link states over time and lend the model memory. Gaussian 
assumptions about the random fluctuations furnish the likelihood and 
(empirical) priors on predicted motion that constitute a probabilistic 
generative model. These assumptions about random effects are encoded 
by their (unknown) precision, or inverse variance. See Fig. 2 for details. 
We will appeal to this sort of model below, when trying to understand 
how the brain complies with the free-energy principle, in terms of its 
architecture and dynamics. 

In summary, the free-energy induces a probabilistic model of how 
sensory data are generated and a recognition density on the model’s para-
meters (i.e., sensory causes). Free-energy can only be reduced by changing 
the recognition density to change conditional expectations about what is 
sampled or by changing sensory samples (i.e. sensory input) so that they 
conform to expectations. This corresponds to perception and action 
respectively. We will see later that minimising free-energy corresponds to 
minimising prediction errors. It then becomes almost self-evident that bio-
logical agents can suppress prediction errors by changing predictions 
(perception) or what is predicted (action): see Fig. 2. In the next section, 
we consider the implications of this formulation in light of some key 
theories about the brain. 
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Fig. 1: The free-energy principle. This schematic shows the dependencies among the quan-
tities that define the free-energy of an agent or brain, denoted by m. These include, its 
internal states µ(t), generalised sensory signals (i.e., position, velocity, acceleration etc.) 

( ) [ , , , ]s t s s s% (t) = [s, s’, s’’, ...]T and action α(t). The environment is described by equations, which specify 
the motion of its states {x(t), ν(t)}. Both internal brain states and action minimise free-energy 

F ( ( ) [ , , , ]s t s s s%, µ), which is a function of sensory input and the internal states. These states encode a 
recognition density q(( | )q ϑ µ| µ) on the causes ( | )q ϑ µ⊃ { x, ν, θ, γ} of sensory input. These comprise 
states of the world  u(t) : u ∈ x, ν  and parameters  φ ∈ θ, γ  controlling the equations of 
motion and the amplitude of the random fluctuations  ω(u) : u ∈ x, ν  on the hidden states and 
sensory input. The lower panel provides the key equations behind the free-energy 
formulation. The first pair says that the path integral of free-energy (free-action; S) is an up-
per bound on the entropy of sensory states, H. This entropy is average surprise, which 
(under ergodic assumptions) is the long-term average or path integral of surprise. The free-

energy per se F (t):= F ( ( ) [ , , , ]s t s s s%, µ) is then expressed in three ways to show what its minimisation 
means. The first equality shows that optimising brain states, with respect to the internal 
states, makes the recognition density an approximate conditional density on the causes of 
sensory input. Furthermore, it shows that free-energy is an upper bound on surprise. This 
enables action to avoid surprising sensory encounters. The second equality shows that action 
can only reduce free-energy by selectively sampling data that are predicted by under the 
recognition density. The final equality expresses free-energy in terms of an expected energy 
L (t) based on a generative model and the entropy Q(t) of the recognition density. In this fi-
gure, < · >q denotes expectation or average, under the recognition density and DKL (·  || ·) is 
a non-negative Kullback-Leibler divergence (i.e., difference between two probability densi-
ties). In summary, free-energy rests on two probability densities; one that generates sensory 

samples and their causes, p( ( ) [ , , , ]s t s s s%, ( | )q ϑ µ| m) and the recognition density, q(( | )q ϑ µ| µ). The first is a pro-
babilistic generative model, whose form is entailed by the agent or brain (denoted by m), 
while the second represents the best probabilistic estimate of the causes and is encoded by 
internal states. The free-energy principle states that all quantities that can change (sufficient 
statistics and action) minimise free-energy. 
 

Fig. 2 (next page): Action and perception. This schematic illustrates the bilateral role of free-
energy (i.e., prediction error) in driving action and perception: Action: Acting on the envi-
ronment by minimising free-energy enforces a sampling of sensory data that is consistent 
with the current representation (i.e., changing sensations to minimise prediction error). This 
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is because free-energy is a mixture of complexity and accuracy (the second expression for 
free-energy in Fig. 1). Crucially, action can only affect accuracy. This means the brain will 
reconfigure its sensory epithelia to sample inputs that are predicted by its representations; in 
other words, to minimise prediction errors. The equation above action simply states that ac-
tion performs a gradient decent on (i.e., minimises) free-energy (see ref [10] for details). Per-
ception: Optimizing free-energy by changing the internal states that encode the recognition 
density makes it an approximate posterior or conditional density on the causes of sensations. 
This follows because free-energy is surprise plus a Kullback-Leibler divergence between the 
recognition and conditional densities (the first expression for free-energy in Fig. 1). Because 
this difference is non-negative, minimising free-energy makes the recognition density an 
approximate posterior probability. This means the agent implicitly infers or represents the 
causes of its sensory samples in a Bayes-optimal fashion. At the same time, the free-energy 
becomes a tight bound on surprise that is minimised through action. The equation above 
perception simply states that internal states perform a gradient decent on (i.e., minimise) 
free-energy. This gradient decent is in a moving frame of reference for generalised states and 
accumulates gradients over time for the parameters (see ref [5] for details). Prediction error: 
Prediction error is simply the difference between predicted and observed sensory states. The 
equations show that the free-energy comprises the expected energy L (t), which is effectively 
the (precision weighted) sum of squared error. This error contains the sensory prediction 
error and other differences that mediate empirical priors on the motion of hidden states and 
the parameters. The predictions rest on a generative model of how sensations are caused. 
These models have to explain complicated dynamics on continuous states with hierarchical 
or deep causal structure. An example of one such generic model is shown on the right. 
Generative model: Here ƒ(i,u) : u ∈ x, ν are continuous nonlinear functions of (hidden and 
causal) states, parameterised by θ ⊂( | )q ϑ µ  at the i-th level of a hierarchical dynamic model. The 
random fluctuations ω(u) : u ∈ x, ν  play the role of observation noise at the sensory level and 
state-noise at higher levels. Causal states ν(i) ⊂( | )q ϑ µ link hierarchical levels, where the output of 
one level provides input to the next. Hidden states x(i) ⊂( | )q ϑ µ link dynamics over time and lend 
the model memory. Gaussian assumptions about the random fluctuations specify the 
likelihood and furnish empirical priors in terms of predicted motion. These assumptions are 
encoded by their or precision or inverse variance Π(i,u) : u ∈ x, ν, which depend on precision 
parameters γ ⊂( | )q ϑ µ. The associated message-passing scheme implementing perception is 
shown in the next figure. In this and subsequent figures, subscripts denote differentiation, D 
is a temporal derivative operator that acts on generalised states and κ is a large positive con-
stant (see ref [48] for details). 
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THE BAYESIAN BRAIN AND OTHER THEORIES 

This section attempts to place some key brain theories within the free-
energy framework, in the hope of identifying common themes. It reprises 
and extends the review in ref [5]. We will consider a range of theories that 
derive from both the biological and physical sciences (e.g., neural 
Darwinism, information theory and optimal control). Crucially, one key 
theme runs throughout these theories; namely, optimization. Further-
more, if we look closely at what is optimized, the same quantity keeps 
emerging, namely value, expected reward, expected utility; or its com-
plement: surprise, prediction-error or expected cost. We will see that this 
quantity is effectively free-energy.  

2.1 The Bayesian brain hypothesis 

The Bayesian brain hypothesis25 uses Bayesian probability theory to for-
mulate perception as a constructive process based on internal or genera-
tive models. The underlying idea is that the brain has a model of the 
world1-3 that it tries to optimise using sensory inputs28-33. This idea is 
related to analysis by synthesis27 and epistemological automata26. In other 
words, the brain is an inference machine that actively predicts and 
explains its sensations1,3,30. Central to this hypothesis is a probabilistic 
model that can generate predictions, against which sensory samples are 
tested to update beliefs about their causes. In Bayesian treatments, this 
generative model decomposes into the likelihood (the probability of sen-
sory data, given their causes) and a prior (the a priori probability of those 
causes). Perception then becomes the inversion of the likelihood model 
(mapping from causes to sensations) to access the posterior probability of 
the causes, given sensory data (mapping from sensations to causes). This 
inversion is exactly the same as minimising the difference between the 
recognition and posterior densities (posterior divergence) to suppress 
free-energy. Indeed, the free-energy formulation was developed to finesse 
the difficult problem of exact inference by converting it into an easier 
optimisation problem19-22. This has furnished some powerful approxima-
tion techniques for model identification and comparison (e.g., variational 
Bayes or ensemble learning34). There are many interesting issues that 
attend the Bayesian brain hypothesis; we will focus on two. 

The first is the form of the generative model and how it manifests in 
the brain. One criticism of Bayesian treatments is that they ignore the 
question of how prior beliefs, which are necessary for inference, are 
formed32. However, this criticism disappears under hierarchical genera-
tive models, in which the priors themselves are optimised31,33. In hierar-
chical models (cf, the right panel in Fig. 2), causes in one level of a model 
generate subordinate causes in a lower level, while the sensory data per se 
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are generated at the lowest level. Minimising the free-energy of represen-
tations effectively optimises empirical priors (i.e., the probability of causes 
at one level, given those in the level above). Crucially, because empirical 
priors are linked hierarchically, they are informed by sensory data, 
enabling the brain to optimise its prior expectations online. This optimi-
sation makes every level in the hierarchy accountable to others, furnishing 
an internally consistent representation of sensory causes, at multiple 
levels of description. Not only do hierarchical models have a key role in 
statistics (e.g., random effects models and parametric empirical Bayes35,36), 
they may also be an important metaphor for the brain, given the hierar-
chical arrangement of its cortical sensory areas37-39.  

The second issue is the form of the recognition density. This has to be 
encoded by physical attributes (i.e., internal states) of the brain, such as 
synaptic activity, efficacy and gain. In general, any density is encoded by 
its sufficient statistics (for example, the mean and variance of a Gaussian 
density). The way the brain encodes these statistics places important 
constraints on the sorts of schemes that underlie recognition. The dif-
ferences between these schemes can usually be reduced to differences in 
the form of the recognition density. They range from free-form schemes, 
which use a vast number of sufficient statistics (e.g., particle filtering31 and 
probabilistic population codes40-43) to simpler forms, which make stronger 
assumptions about the shape of the recognition density. These assump-
tions mean that the recognition density can be encoded with a small num-
ber of sufficient statistics. The simplest assumed form is Gaussian, which 
only requires the conditional mean or expectation. This is also known as 
the Laplace assumption 44, under which the free-energy reduces to the 
sum of squared prediction error at each level of the model (in fact, this 
assumption gives exact inference under some common models, such as 
factor analysis45). Minimising free-energy then corresponds to explaining 
away the prediction error (Fig. 2). This is known as predictive coding and 
has become a popular framework for understanding neuronal message-
passing among different levels of sensory cortical hierarchies46. In this 
scheme, prediction error units compare conditional expectations with top-
down predictions to elaborate a prediction error. This is passed forward 
to drive the units in the level above that encode conditional expectations 
and optimise top-down predictions to explain (i.e., reduce) prediction 
error in the level below. This just means countering excitatory bottom-up 
inputs to a prediction error neuron with inhibitory synaptic inputs that 
are driven by top-down predictions. See Fig. 3 and refs [47] and [48] for a 
detailed discussion. The reciprocal exchange of bottom-up prediction 
errors and top-down predictions proceeds until prediction error is 
minimised at all levels and conditional expectations are optimised. This 
scheme has been invoked to explain many features of early visual respon-
ses 46,49 and provides a plausible account of repetition suppression and 



K. Friston 

100 

mismatch responses in electrophysiology50. Fig. 4 provides an example of 
perceptual categorisation that uses this scheme. Message-passing of this 
sort is consistent with known functional asymmetries in real cortical 
hierarchies 51, where forward connections (which convey prediction 
errors) are driving and backwards connections (that model the nonlinear 
generation of sensory input) show both driving and modulatory characte-
ristics 52. This asymmetric message-passing is also a characteristic feature 
of adaptive resonance theory53,54, which shares formal similarities with 
predictive coding. 

In summary, the theme underlying the Bayesian brain and predictive 
coding is that the brain is an inference engine that is trying to optimise 
probabilistic representations of what caused its sensory input. This opti-
misation can be finessed using a (variational free-energy) bound on sur-
prise. In machine learning and statistics, surprise is known as the (nega-
tive) log-evidence or marginal likelihood of some data, given a model. In 
this sense, the free-energy principle subsumes the Bayesian brain 
hypothesis and can be implemented by the many schemes considered in 
this field. Almost invariably, these involve some form of message-passing 
or belief propagation among brain areas or units. We have focused on one 
of the simplest schemes, namely predictive coding, which lends itself to a 
neurobiologically plausible implementation. Furthermore, it allows us to 
connect to another principled approach to sensory processing, namely 
information theory: 

2.2 The principle of efficient coding 

This principle suggests that the brain optimises the mutual information 
(i.e., mutual predictability) between the sensorium and its internal repre-
sentation, under constraints on the efficiency of those representations. 
This line of thinking was articulated by Barlow55 in terms of a redundancy 
reduction principle (or principle of efficient coding) and formalised later 
in terms of the infomax principle56. It has been applied in machine 
learning57, leading to things like independent component analysis58, and 
in neurobiology, to understand the nature of neuronal responses59-62. This 
principle is extremely effective in predicting the empirical characteristics 
of classical receptive fields59 and provides a formal explanation for sparse 
coding61 and the segregation of processing streams in visual hierarchies63. 
It has been extended to cover dynamics and motion trajectories64,65 and 
even used to infer the metabolic constraints on neuronal processing66. At 
its simplest, it says that neuronal activity should encode sensory informa-
tion in an efficient and parsimonious fashion. It considers the mapping 
between one set of variables (sensory states) and another (variables repre-
senting those states). At first glance, this seems to preclude a probabilistic 
representation, because this would involve a mapping between sensory 
states and a probability density. However, the infomax principle can be 
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applied to the sufficient statistics of a recognition density. In this context, 
the infomax principle suggests that conditional expectations should afford 
an accurate but parsimonious prediction of sensory signals. 

Crucially, the infomax principle is a special case of the free-energy 
principle, which arises when we ignore uncertainty in probabilistic repre-
sentations (and when there is no action, see Fig. 5 and ref [5]; supplemen-
tary material for mathematical details). This is easy to see by noting that 
sensory signals are generated by causes. This means it is sufficient to 
represent the causes to predict these signals. More formally, the infomax 
principle can be understood in terms of the decomposition of free-energy 
into complexity and accuracy: Mutual information is optimised when con-
ditional expectations maximise accuracy (or minimise prediction error), 
while efficiency is assured by minimising complexity (the prior diver-
gence). This ensures that the generative model is not over-parameterised 
and leads to a parsimonious representation of sensory data that conforms 
to prior constraints on their causes. It is interesting that advanced model 
optimisation techniques use free-energy optimisation to eliminate redun-
dant model parameters67. This might provide a nice explanation for 
synaptic pruning and homeostasis in the brain during neurodevelop-
ment68 and sleep69. 

The infomax principle pertains to a forward mapping from sensory 
input to representations. How does this relate to optimising generative 
models, which map from causes to sensory inputs? These perspectives can 
be reconciled by noting that all recognition schemes based on infomax can 
be cast as optimising the parameters of a generative model70. For example, 
in sparse coding models61, the implicit priors posit independent causes 
that are sampled from a heavy tailed or sparse distribution48. The fact that 
these models predict empirically observed receptive fields so well, 
suggests that we are endowed with (or acquire) prior expectations that the 
causes of our sensations are largely independent and sparse. 

Bayesian surprise was invoked recently to explain sampling in 
models of visual search and salience23. Bayesian surprise is the difference 
between the posterior and prior densities on the causes of sensory input 
and is formally identical to complexity. It is interesting because it appears 
to contradict the principle of efficient coding; in that maximising Bayesian 
surprise increases complexity. However, this apparent paradox is 
resolved easily by noting that any change to the posterior (or recognition) 
density that increases accuracy will incur a complexity cost and increase 
Bayesian surprise. However, under the free-energy formulation, Bayesian 
surprise per se is not optimised; it should be minimised in the absence of a 
recognisable stimulus. It might be interesting to test this prediction 
empirically. 
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Fig. 3: Hierarchical message-passing in the brain. The schematic details a neuronal 
architecture that optimises the conditional expectations of causes in hierarchical models of 
sensory input of the sort illustrated in the previous figure. It shows the putative cells of 
origin of forward driving connections that convey prediction-error from a lower area to a 
higher area (grey arrows) and nonlinear backward connections (black arrows) that construct 
predictions 47. These predictions try to explain away prediction-error in lower levels. In this 
scheme, the sources of forward and backward connections are superficial and deep 
pyramidal cells (triangles) respectively, where state-units are black and error-units are grey. 
The equations represent a gradient descent on free-energy using the generative model of the 
previous figure. Predictions and prediction-error: If we assume that neuronal activity 
encodes the conditional expectation of states, then recognition can be formulated as a 
gradient descent on free-energy. Under Gaussian assumptions, these recognition dynamics 
can be expressed compactly in terms of precision weighted prediction-errors ξ(i,u) : u ∈ x, ν on 
the causal states and motion of hidden states. The ensuing equations suggest two neuronal 
populations that exchange messages; causal or hidden state-units encoding expected states 
and error-units encoding prediction-error. Under hierarchical models, error-units receive 
messages from the state-units in the same level and the level above; whereas state-units are 
driven by error-units in the same level and the level below. These provide bottom-up 
messages that drive conditional expectations µ(i,u) : u ∈ x, ν towards better predictions to 
explain away prediction-error. These top-down predictions correspond to ƒ(i,u) : u ∈ x, ν. This 
scheme suggests the only connections that link levels are forward connections conveying 
prediction-error to state-units and reciprocal backward connections that mediate predictions. 
Note that the prediction errors that are passed forward are weighted by their precision. This 
tells us that precision may be encoded by the postsynaptic gain or sensitivity of error units, 
which also has to be optimised: Synaptic plasticity and gain: The corresponding equations 
for changes in the conditional expectation of the parameters of the model and the precisions 
of random fluctuations are related to formal models of associative plasticity and 
reinforcement learning: see refs [48] and [146] for further details. 
 

Fig. 4 (next page): Birdsongs and perceptual categorisation. Left: The generative model of 
birdsong used in this simulation comprises a Lorenz attractor, whose shape is determined by 
two causal states (ν1 ,ν2). Two of the attractor’s hidden states are used to modulate the am-

plitude and frequency of stimuli generated by a synthetic syrinx (an example is shown as a 
sonogram). The ensuing stimuli were then presented to a synthetic bird to see if it could 
recover the causal states (ν1 ,ν2) that categorise the chirp in a two-dimensional perceptual 
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space. This involves minimising free-energy by changing the internal representation 
(µ1

(ν) ,µ2
(ν)) of the causes. Examples of this perceptual inference or categorisation are shown 

on the right. Right: Three simulated songs are shown (upper panels) in sonogram format. 
Each comprises a series of chirps whose frequency and number fall progressively (from a to 
c), as a causal state (known as the Raleigh number; ν1 on the left) is decreased. Lower left: 

This graph depicts the conditional expectations of the causal states, shown as a function of 
peristimulus time for the three songs. It shows that the causes are identified after about 600 
milliseconds with high conditional precision (90% confidence intervals are shown in grey). 
Lower right: This shows the conditional density on the causes shortly before the end of 
peristimulus time (i.e., the dotted line in the left panel). The small dots correspond to condi-
tional expectations and the grey areas correspond to the 90% conditional confidence regions. 
Note that these encompass the true values (large dots) used to generate the songs. These 
results illustrate the nature of perceptual categorisation under the inference scheme in Fig. 3: 
Here, recognition corresponds to mapping from a continuously changing and chaotic 
sensory input to a fixed point in perceptual space. 
 

 
 

 

Fig. 5: Free-energy and info-
max. This schematic provi-
des the key equalities that 
show the infomax principle 
is a special case of the free-
energy principle that ob-
tains when we discount un-
certainty and represent sen-
sory data with point estima-
tes of their causes. Alterna-
tively, the free-energy is a 
generalization of the info-
max principle that covers 
probability densities on the 
unknown causes of data. 
Horace Barlow and Ralph 
Linsker are two of the key 
people behind the principle 
of efficient coding and info-
max. 
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In summary, the principle of efficient coding says the brain should 
optimise the mutual information between its sensory signals and some 
parsimonious neuronal representations. This is the same as optimising the 
parameters of a generative model to maximise the accuracy of predictions 
(i.e., to minimise prediction error), under complexity constraints. Both are 
mandated by the free-energy principle, which can be regarded as a pro-
babilistic generalisation of the Infomax principle (see Fig. 5). We now turn 
to more biologically inspired ideas about brain function that focus on 
neuronal dynamics and plasticity. This takes us deeper into neurobio-
logical mechanisms and implementation of theoretical principles above. 

2.3 The cell assembly and correlation theory 

The cell assembly theory was proposed by Hebb71 and entails Hebbian ― 
or associative ― plasticity, which is a cornerstone of neural network 
theory and of the empirical study of use-dependent or experience-depen-
dent plasticity72. There have been several elaborations of this theory; for 
example, the correlation theory of von der Malsburg73,74 and formal refi-
nements to Hebbian plasticity per se75. The cell assembly theory posits the 
formation of groups of interconnected neurons through a strengthening of 
their synaptic connections that depends on correlated pre- and post-
synaptic activity; i.e., ‘cells that fire together wire together’. This enables 
the brain to distil statistical regularities from the sensorium. The correla-
tion theory considers the selective enabling of synaptic efficacy and their 
plasticity (cf. meta-plasticity76) by fast synchronous activity induced by 
different perceptual attributes of the same object (e.g., a red bus in 
motion). This resolves a putative deficiency of classical plasticity, which 
cannot ascribe a pre-synaptic input to a particular cause (i.e., redness of 
the bus)73. The correlation theory underpins theoretical treatments of syn-
chronised brain activity and its role in associating or binding attributes to 
specific objects or causes74,77. Another important field that rests upon 
associative plasticity is the use of attractor networks as models of memory 
formation and retrieval78-80. So how do correlations and associative pla-
sticity figure in the free-energy formulation? 

Hitherto, we have considered only inference on states of the world 
that cause sensory signals, where conditional expectations about states are 
encoded by synaptic activity. However, the causes covered by the recog-
nition density are not restricted to time-varying states (e.g., the motion of 
an object in the visual field); they also include time-invariant regularities 
that endow the world with causal structure (e.g., objects fall with constant 
acceleration). These regularities are parameters of the generative model 
and have to be inferred by the brain. The conditional expectations of these 
parameters may be encoded by synaptic efficacy (these expectations are 
µ(θ) in Fig. 3). Inference on parameters corresponds to optimising connec-
tion strengths in the brain; i.e., plasticity that underlines learning. So what 
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form would this learning take? It transpires that a gradient descent on 
free-energy (i.e., changing connections to reduce free-energy) is formally 
identical to Hebbian plasticity33,48 (see Fig. 3). This is because the para-
meters of the generative model determine how expected states (synaptic 
activity) are mixed to form predictions. Put simply, when the pre-synaptic 
predictions and post-synaptic prediction-errors are highly correlated, the 
connection strength increases, so that predictions can suppress prediction 
errors more efficiently. Fig. 6 shows a simple example of this sort of sen-
sory learning, using an oddball paradigm to elicit repetition suppression. 

In summary, the formation of cell assemblies reflects the encoding of 
causal regularities. This is just a restatement of cell assembly theory in the 
context of a specific implementation (predictive coding) of the free-energy 
principle. It should be acknowledged that the learning rule in predictive 
coding is really a delta rule, which rests on Hebbian mechanisms; 
however, Hebb's wider notions of cell assemblies were formulated from a 
non-statistical perspective. Modern reformulations suggest that both infe-
rence on states (i.e., perception) and inference on parameters (i.e., learn-
ing) minimise free-energy (i.e., minimise prediction error) and serve to 
bound surprising exchanges with the world. So what about synchronisa-
tion and the selective enabling of synapses? 

2.4 Biased competition and attention 

To understand what is represented by the modulation of synaptic efficacy 
― or synaptic gain ― we have to consider a third sort of cause in the envi-
ronment; namely, the amplitude of random fluctuations. Causal regulari-
ties encoded by synaptic efficacy control the deterministic evolution of 
states in the world. However, stochastic or random fluctuations in these 
states play an important part in generating sensory data. Their amplitude 
is usually parameterized as precision (i.e., inverse variance) that encodes 
the reliability of prediction errors. Precision is important, especially in 
hierarchical schemes, where it controls the relative influence of bottom-up 
prediction errors and top-down predictions. So how is precision encoded 
in the brain? In predictive coding, expected precision modulates the 
amplitude of prediction errors (these expectations are µ(γ) in Fig. 3), so that 
prediction errors with high precision have a greater impact on units enco-
ding conditional expectations. This means that precision corresponds to 
the synaptic gain of prediction error units. The most obvious candidates 
for controlling gain (and implicitly encoding precision) are classical 
neuromodulators like dopamine and acetylcholine, which provides a nice 
link to theories of attention and uncertainty81-83. Another candidate is fast 
synchronised pre-synaptic input that lowers effective post-synaptic mem-
brane time constants and increases synchronous gain84. This fits com-
fortably with the correlation theory and speaks to recent ideas about the 
role of synchronous activity in mediating attentional gain85,86. 
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In summary, the optimisation of expected precision in terms of 
synaptic gain links attention and uncertainty in perception (through 
balancing top-down and bottom-up effects on inference) to synaptic gain 
and synchronisation. This link is central to theories of attentional gain and 
biased competition86-91, particularly in the context of neuromodulation92,93. 
Clearly, these arguments are heuristic but show how different perspec-
tives can be linked by examining mechanistic theories of neuronal 
dynamics and plasticity under a unifying framework. Fig. 7 provides a 
summary of the various neuronal processes that may correspond to opti-
mising conditional expectations about states, parameters and precisions; 
namely, optimising synaptic activity, efficacy and gain respectively. In 
cognitive terms, these processes map nicely onto perceptual inference, 
learning and attention. The theories considered so far have dealt only 
with perception. However, from the point of view of the free-energy 
principle, perception just makes free-energy a good proxy for surprise. To 
actually reduce surprise we need to act. In the next section, we retain a 
focus on cell assemblies but move to the selection and reinforcement of 
stimulus-response links. 

2.5 Neural Darwinism and value-learning 

In the theory of neuronal group selection94, the emergence of neuronal 
assemblies or groups is considered in the light of selective pressure. The 
theory has four elements: Epigenetic mechanisms create a primary reper-
toire of neuronal connections, which are refined by experience-dependent 
plasticity to produce a secondary repertoire of neuronal groups. These are 
selected and maintained through reentrant signalling (the recursive 
exchange of signals among neuronal groups). As in cell assembly theory, 
plasticity rests on correlated pre and post-synaptic activity but here it is 
modulated by value. Value is signalled by ascending neuromodulatory 
transmitter systems and controls which neuronal groups are selected and 
which are not. The beauty of neural Darwinism is that it nests selective 
processes within each other. In other words, it eschews a single unit of 
selection and exploits the notion of meta-selection (the selection of selec-
tive mechanisms; e.g. ref [95]). In this context, value confers adaptive 
fitness by selecting neuronal groups that meditate adaptive stimulus-
stimulus associations and stimulus-response links. The capacity of value 
to do this is assured by natural selection; in the sense that neuronal 
systems reporting value are themselves subject to selective pressure. 

This theory, particularly value-dependent learning96, has deep 
connections with reinforcement learning and related approaches in 
engineering such as dynamic programming and temporal difference 
models97,98 (see below). This is because neuronal systems detecting 
valuable states reinforce connections to themselves, thereby enabling the 
brain to label a sensory state as valuable iff it leads to another valuable 
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state. This ensures that agents move through a succession of states that 
have acquired value to access states (rewards) with genetically specified 
(innate) value. In short, the brain maximises value, which may be 
reflected in the discharge of dedicated neuronal systems (e.g., dopami-
nergic systems98-102). So how does this relate to the optimisation of free-
energy? 

The answer is simple: value is inversely proportional to surprise, in 
the sense that the probability that a phenotype is in a particular state 
increases with the value of that state. More formally V = -Г ln p( ( ) [ , , , ]s t s s s%| m), 
where Г encodes the amplitude of random fluctuations (see ref [5]; sup-
plementary material). This means the adaptive fitness of a phenotype is 
the negative surprise averaged over all the states it experiences, which is 
simply its negative entropy. Indeed, the whole point of minimising free-
energy (and implicitly entropy) is to ensure agents spend most of their 
time in a small number of valuable states. In short, that free-energy is (a 
bound on) the complement of value and its long-term average is (a 
bound) on the complement of adaptive fitness. But how do agents know 
what is valuable? In other words, how does one generation tell the next 
which states have value (i.e., are unsurprising). Value or surprise is 
determined by the agent’s generative model and its implicit expectations 
― these specify the value of sensory states and, crucially, are heritable. 
This means prior expectations that are specified epigenetically can 
prescribe an attractive state. In turn, this enables natural selection to 
optimise prior expectations and ensure they are consistent with the 
agent’s phenotype. Put simply, valuable states are just states the agent 
expects to frequent. These expectations are constrained by the form of its 
generative model, which is specified genetically and fulfilled beha-
viourally, under active inference. It is important to appreciate that prior 
expectations include not just what will be sampled from the world but 
how the world sampled. This means natural selection may equip agents 
with the prior expectation they will explore their environment, until 
attractive states are encountered. We will look at this more closely in the 
next section, where priors on motion through state-space are cast in terms 
of policies in reinforcement learning. 

In summary, neuronal group selection rests on value, which depends 
on prior expectations about what agents expect to encounter. These expec-
tations are sensitive to selective pressure at an evolutionary timescale and 
are fulfilled as action minimises free-energy. Both Neural Darwinism and 
the free-energy principle try to understand somatic changes in an indivi-
dual in the context of evolution: Neuronal Darwinism appeals to selective 
processes, while the free-energy formulation considers the optimisation of 
ensemble or population dynamics in terms of entropy and surprise. The 
key theme that emerges here is that (heritable) prior expectations can label 
things as innately valuable (unsurprising); but how does labelling states 
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lead to adaptive behaviour? In the final section, we return to reinfor-
cement learning and related formulations of action that try to explain 
adaptive behaviour in terms of policies and cost-functions. 

 

 
 

Fig. 6: A demonstration of perceptual learning. This figure shows the results of a simulated 
roving oddball paradigm, in which a stimulus is changed sporadically to elicit an oddball 
(i.e., deviant) response. The stimuli used here are chirps of the same sort as those used in 
Fig. 4. Left panels: The left column shows the percepts elicited in sonogram format. These 
are simply the predictions of sensory input, based on their inferred causes (i.e., the expecta-
tions about hidden states). The right column shows the evolution of prediction error at the 
first (dotted lines) and second (solid line) levels of a simple linear convolution model (in 
which a causal state produces time-dependent amplitude and frequency modulations). The 
results are shown for one learned chirp (top graph) and the first four responses to a new 
chirp (lower graphs). The new chirp was generated by changing the parameters of the 
underlying equations of motion. It can be seen that following the first oddball stimulus, the 
prediction errors show repetition suppression (i.e., the amplitudes of the traces get smaller). 
This is due to learning the model parameters over trials (see synaptic plasticity and gain in 
Fig. 3). Of particular interest is the difference in responses to the first and last presentations 
of the new stimulus: these correspond to the deviant and standard responses, respectively. 
Right panel: This shows the difference between standard and oddball responses, with an 
enhanced negativity at the first level early in peristimulus time (dotted lines for inferred 
amplitude and frequency), and a later negativity at the higher or second level (solid line for 
the causal state). These differences could correspond to phenomena like enhanced N1 effects 
and the mismatch negativity (MMN) found in empirical difference waveforms. Note that 
superficial pyramidal cells (see Fig. 3) dominate event related potentials and that these cells 
may encode prediction error47,146. 
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Fig. 7: The recognition density and its sufficient statistics. This schematic maps free-energy 
optimisation of the recognition density to putative processes in the brain: Under the Laplace 
assumption, the sufficient statistics of the recognition density (encoded by internal states) 
reduce to the conditional expectations (i.e., means). This is because the conditional precision 
is the curvature of the energy evaluated at the mean. Optimizing the conditional means of 
states of the world may correspond to optimising synaptic activity that mediates hierarchical 
message passing. Optimising the conditional means of parameters encoding causal structure 
may be implemented by associative mechanisms implementing synaptic plasticity and, 
finally, optimizing the conditional precisions may correspond to optimising synaptic gain 
(see Fig. 3). 

 

POLICIES AND PRIORS 

So far, we have established a fundamental role for generative models in 
furnishing a free-energy bound on surprise (or the value of attracting 
states an agent occupies). We have considered general (hierarchical and 
dynamic) forms for this model that prescribe predictions about how an 
agent will move through its state-space: in other words the state-transi-
tions it expects. This expected motion corresponds to a policy that action is 
enslaved to pursue. However, we have not considered the form of this 
policy; i.e., the form of the equations of motion. In this section, we will 
look at universal forms for policies that define an agent’s generative 
model. Because policies are framed in terms of equations of motion they 
manifest as (empirical) priors on the state-transitions an agent expects to 
make. This means that policies and priors are the same thing (under active 
inference) and both rest on the form of generative models embodied by 
agents. We first consider universal forms based on optimal control theory 
and reinforcement learning. These policies use an explicit representation 
of value to guide motion, under simplifying assumptions about state-
transitions. Although useful heuristics these policies do not generalise to 
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dynamical settings. This is because they only lead to fixed (low-cost) 
states (i.e., fixed-point attractors). Although this is fine for plant control in 
engineering or psychology experiments with paradigmatic end-points, 
fixed-point policies are not viable solutions for real agents (unless they 
aspire to be petrified or dead). We will then move on to wandering or 
itinerant policies that lead to invariant sets of attracting states. Itinerant 
policies may offer universal policies and implicitly, universal forms for 
generative models. 

From the previous section, policies (equations of motion in Fig. 2) 
have to satisfy constraints that are hereditable. In other words, they have 
to be elaborated given only sparsely encoded information about what 
states are innately attractive or costly, given the nature of the agent’s phe-
notype. We will accommodate this with the notion of cost-functions. Cost-
functions can be thought of as standing in for the genetic specification of 
attractive states but they also allow us to connect to another important 
perspective on policies from engineering and behavioural economics: 

3.1 Optimal control and Game Theory 

Value is central to theories of brain function that are based on reinforce-
ment learning and optimum control. The basic notion that underpins 
these treatments is that the brain optimises value, which is expected 
reward or utility (or its complement, expected loss or cost). This is seen in 
behavioural psychology as reinforcement learning103, in computational 
neuroscience and machine-learning, as variants of dynamic programming 
such as temporal difference learning104-106, and in economics, as expected 
utility theory107. The notion of an expected reward or cost is crucial here; it 
is the cost expected over future states, given a particular policy that 
prescribes action or choices. A policy specifies the states an agent will 
move to from any given state (or motion through state-space in conti-
nuous time). This policy has to access sparse rewarding states given only 
a cost-function, which labels states as costly or not. The problem of opti-
mising the policy is formalised in optimal control theory as the Bellman 
equation and its variants 104, which expresses value as a function of the 
optimal policy and a cost-function. If one can solve the Bellman equation, 
one can associate each sensory state with a value and optimise the policy 
by ensuring the next state is the most valuable of the available states. In 
general, it is impossible to solve the Bellman equation exactly but a 
number of approximations exist, ranging from simple Rescorla-Wagner 
models103 to more comprehensive formulations like Q-learning105. Cost 
also has a key role in Bayesian decision theory, where optimal decisions 
minimise expected cost, not over time but in the context of uncertainty 
about outcomes; this is central to optimal decision (game) theory and 
behavioural economics107-109. 
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So what does free-energy bring to the table? If value is inversely pro-
portional to surprise (see above), then free-energy is (an upper bound on) 
expected future cost. This makes sense, because optimal control theory 
assumes that action minimises expected cost, whereas the free-energy 
principle states that it minimises free-energy. Furthermore, the dynamical 
perspective provides a mechanistic insight into how policies are specified 
in the brain: Under the Principle of Optimality104 cost is the rate of change 
of value, which depends on changes in sensory states. This suggests that 
optimal policies can be prescribed by prior expectations about the motion 
of sensory states. Put simply, if priors induce a fixed-point attractor, when 
the states arrive at the fixed point, value will stop changing and cost will 
be minimised. A simple example is shown in Fig. 8, in which a cued arm 
movement is simulated using only prior expectations that the arm will be 
drawn to a fixed point (the target). This figure illustrates how computa-
tional motor control110-114 can be formulated in terms of priors and the 
suppression of sensory prediction errors115. More generally, it shows how 
rewards and goals can be considered as prior expectations that action is 
obliged to fulfil24 (see also ref [116]). 

However, fixed-point policies based on maximising value (mini-
mising surprise) explicitly are flawed in two respects. First, they lead to 
fixed-point attractors, which are not viable solutions for agents immersed 
in environments with autonomous and dissipative dynamics. The second 
and slightly more subtle problem with optimal control and its ethological 
variants is that they assume the existence of a policy (flow though state-
space) that always increases value. Mathematically, this assumes value is 
‘Lyapunov function’ of the policy. Unfortunately, these policies do not 
necessarily exist. Technically, value is proportional to (log) eigensolution 
to the Fokker-Planck equation describing the density dynamics of an infi-
nite number of agents pursuing the same policy under random fluctua-
tions. This eigensolution is the equilibrium density and is a function of the 
policy. However, this does not imply that the policy or flow always 
increases value: According to the Helmholtz decomposition (also known 
as the fundamental lemma of vector calculus) flow can always be decom-
posed into two components: an irrotational (curl-free) flow and a solenoi-
dal (divergence-free) flow. When these components are orthogonal it is 
relatively easy to show that value is a Lyapunov function of the flow. 
However, there is no lemma or requirement for this orthogonality to exist 
and the Principle of Optimality104 is not guaranteed. In summary, 
although value can (in principle) be derived from the policy, the policy 
cannot (in general) be derived from the flow. So where does that leave us 
in a search for universal policies? We turn for an answer to itinerant poli-
cies that are emerging as a new perspective on behaviour and purposeful 
self-organisation. 
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Fig. 8: A demonstration of cued-reaching movements. Lower right: motor plant, comprising 
a two-jointed arm with two hidden states, each of which corresponds to the angular position 
of joints. The position of the finger (black circle) is the sum of the vectors describing the loca-

tion of each joint. Here, causal states in the world are the position and brightness of the tar-

get (grey sphere). The arm obeys Newtonian mechanics, specified in terms of angular inertia 
and friction. Left: The brain senses hidden states directly in terms of proprioceptive input 
(s prop) that signals the angular positions ( x1, x2) of the joints and indirectly, through seeing the 

location of the finger in space ( j1, j2). In addition, the agent senses the target location ( ν1, ν2) 

and brightness ( ν3) through visual input (s visual). Sensory prediction errors are passed to 

higher brain levels to optimise the conditional expectations of hidden states (i.e., the angular 
position of the joints) and causal (i.e., target) states. The ensuing predictions are sent back to 
suppress sensory prediction errors. At the same time, sensory prediction errors are also 
trying to suppress themselves by changing sensory input through action. The grey and black 
lines denote reciprocal message-passing among neuronal populations that encode prediction 
error and conditional expectations; this architecture is the same as that depicted in Fig. 3. 
The descending black line represents motor control signals (predictions) from sensory state-
units. The agent’s generative model includes priors on the motion of hidden states that 
effectively engage an invisible spring between the finger and target (when the target is 
illuminated). This induces a prior expectation that the finger will be drawn to the target, 
when cued appropriately. Insert (upper right): The ensuing movement trajectory caused by 
action. The black circles indicate the initial and final positions of the finger, which reaches 
the target (grey ball) quickly and smoothly. 
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3.2 Itinerant policies 

This subsection considers attractive states that are not fixed-points but 
bounded sets that arise from itinerant (wandering or searching) dynamics. 
This speaks to optimising space-filling attractors that ensure low-cost 
equilibria. The importance of itinerancy has been articulated many times 
in the past (see ref [117]), particularly from the perspective of computation 
and autonomy (with a focus on Milnor attractors118). It has also been con-
sidered formally in relation to cognition (with a focus on attractor relics, 
ghosts or ruins119) and implicitly in ethology120. The ethological perspec-
tive is useful here because it suggests that some species are equipped with 
prior expectations that they will engage in exploratory or social play. For 
example, ‘rough and tumble play’ may be a fundamental form of play 
comprising a unique set of behaviours that can be distinguished from 
aggression and other childhood activities. Tani et al. [121] consider itine-
rant dynamics in terms of bifurcation parameters that generate multiple 
goal-directed actions on the behavioural side, and optimization of the 
same parameters when recognizing actions. They provide a series of ele-
gant robotic simulations to show generalization by learning with this 
scheme. See also ref [122] for interesting simulations of itinerant explora-
tion, using just prediction errors on sensory samples over time. 

Although there may not be a universal form for itinerant policies, the 
principles upon which they are based may be universal. One principle 
(which we focus on here) is the vitiation or destruction of costly attractors. 
This idea appears in several guises and has found important applications 
in a number of domains. For example, it is closely related to the notion of 
autopoiesis and self-organisation in situated (embodied) cognition123. It is 
formally related to the destruction of gradients in synergetic treatments of 
intentionality124. Mathematically, it is finding a powerful application to 
universal optimisation schemes125 and in models of perceptual categori-
zation126. The dynamical phenomena, upon which these schemes rest, 
involve an itinerant wandering through state-space along heteroclinic 
channels (orbits connecting different fixed-points). Crucially, these 
attracting sets are weak (Milnor) attractors or attractor ruins that expel the 
state until it finds the next weak attractor or ruin. The result is a sequence 
of transitions through state-space that, in some instances, can be stable 
and repeating. The resulting stable heteroclinic channels have already 
been proposed as a metaphor for neuronal dynamics and underlying 
cognitive processing127. Furthermore, the notion of Milnor or ruined 
attractors underlies much of the technical and cognitive literature on itine-
rant dynamics. For example, Tyukin et al. [126] can explain “a range of 
phenomena in biological vision, such as mental rotation, visual search, 
and the presence of multiple time scales in adaptation” using the concept 
of weakly attracting sets. 
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To illustrate itinerant policies we will focus on the simplest of exam-
ples: An examination of the density dynamics, upon which the free-
energy principle is based, suggests it is sufficient to keep moving until an 
a priori attractor is encountered (see ref [5]; supplementary material). This 
entails destroying unexpected (costly) fixed-points in the environment by 
making them unstable (like shifting to a new position when sitting 
uncomfortably). Mathematically, this reduces to adopting a policy that 
ensures a positive divergence in costly states (intuitively, this is like mo-
ving through a liquid with negative viscosity). Fig. 9 illustrates a solution 
to the classical mountain car problem using a simple prior that induces 
this sort of policy. This prior is on the motion of (i.e., changes in) states 
and enforces exploration until an attractive state is found. Priors of this 
sort may provide a principled way to understand the exploration-exploi-
tation trade-off128-130 and related issues in evolutionary biology 131. The 
implicit use of priors to induce dynamical instability (i.e., autovitiation) 
also provides a key connection to dynamical systems theory approaches 
to the brain that emphasise the importance of itinerant dynamics, meta-
stability, self-organised criticality and winner-less competition127,132-139, 
which play a key role in synergetic and autopoietic accounts of adaptive 
behaviour13,122,124. 

The mountain car example (Fig. 9) provides a fairly abstract example 
of a very simple (if effective) itinerant policy. It may help to consider for-
mally related policies in simple organisms whose genetic and cellular me-
chanisms are well understood: The bacterium Escherichia coli (E. coli) is 
an organism of choice for unravelling biochemical pathways, deciphering 
the genetic code and studying the molecular biology of behaviour140,141. E. 
coli is propelled in aqueous media by long thin helical filaments, each 
driven by a reversible rotary engine at its base. As peritrichous bacteria 
they alternately swim and tumble (thrash about with little forward 
progress), elaborating a random walk; with relatively straight swims 
interrupted by tumbles that reorient the bacterium. Bacteria such as E. coli 
cannot choose the direction in which they swim and are unable to swim in 
a straight line for more than a few seconds due to rotational diffusion. 
Given these limitations, it is remarkable that they can direct their motion 
to high concentrations of attractants (i.e., chemotaxis). If the bacterium 
senses that it is moving in the right direction (towards an attractant), it 
will keep swimming in a straight line for a longer time before tumbling. If 
it is moving in the wrong direction, it will tumble sooner and try a new 
direction. In short, by selective modulation of tumbling frequency, these 
bacteria show chemotaxis140. This is a nice example of an itinerant policy 
based on the prior expectation (endowed by natural selection) that the 
organism will only change its motion through state-space when it encoun-
ters unexpected (costly) generalised states (here, a decease in the concen-
tration of attractants). 
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Fig. 9: Active inference and behavior. Solving the mountain car problem with prior expec-

tations. This example shows how paradoxical but adaptive behaviour (e.g. moving away 
from a target to secure it later) emerges from simple priors on the motion of hidden states in 
the world. Panel A shows the landscape or potential energy function (with a minimum at 
x = -0.5) that exerts forces on the car. The car is shown at the target position on the hill at 
x = 1, indicated by the grey ball. The equations of motion of the car are shown below the 
figure. Crucially, at x = 0 the force on the car cannot be overcome by the agent, because a 
squashing function -1 ≤ σ(α) ≤ 1 is applied to action to prevent it being greater than one. This 
means that the agent can only access the target by starting halfway up the left hill to gain 
enough momentum to carry it up the other side. Panel B: The results of active inference 
under priors that destabilise fixed points outside the target domain. The priors are encoded 
in a cost-function c (x) (lower left), which drives a hidden state corresponding to friction. 
When friction is negative the car expects to go faster (see ref [5], Supplementary material for 
details). The inferred hidden states (upper right: position, velocity and negative dissipation) 
show that the car explores its landscape until it encounters the target. At this point friction 
increases dramatically to prevent the car from escaping (i.e., falling down the hill). The 
ensuing trajectory is shown on the upper left. The paler lines provide exemplar trajectories 
from other trials, with different starting positions. In the real world friction is constant. 
However, the car expects friction to change with position, thus enforcing exploration or 
exploitation. These expectations are fulfilled by action (lower right). 

 

In summary, the predictions afforded by generative models of the 
world oblige action to pursue policies specified in terms of equations of 
motion through state-space. Fixed-point policies, of the sort found in 
optimal control and decision (game) theory, start with the notion of cost 
or utility and try to construct value-functions of states, whose gradients 
guide the flow. Conversely, the free-energy formulation starts with (a 
bound on) the value of states, which is specified (via flow) by priors on 
the motion of hidden environmental states. These priors can incorporate 
cost-functions to vitiate costly states, leading to itinerant policies. In this 
view, the problem of finding sparse rewards in the environment is na-
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ture’s solution to the problem of how to minimise the entropy (average 
surprise or free-energy) of an agent’s states; by ensuring they occupy a 
limited invariant set of attracting (i.e., rewarding) states. These dynamics 
rest on the complementary self-construction (autopoiesis) and destruction 
(autovitiation) of attracting sets, which are mandated by the existence of 
agents that are at equilibrium with their environment. 

DISCUSSION 

Although contrived to highlight commonalities, the material reviewed in 
this chapter suggests that many global theories of brain function can be 
united under a Helmholtzian perspective on the brain as generative 
model of the world it inhabits1,27,2,30. Notable examples include the inte-
gration of the Bayesian brain and computational motor control, the objec-
tive functions shared by predictive coding and the infomax principle, 
hierarchical inference and theories of attention (e.g., biased competition), 
the embedding of perception in natural selection and the link between 
optimum control (i.e., reinforcement learning and dynamic programming) 
and more exotic phenomena in dynamical systems theory (i.e., attractors, 
winner-less competition and itinerancy). The constant theme in all these 
theories is that the brain optimises a (free-energy) bound on surprise or its 
complement, value. This manifests as perception (so as to change predic-
tions), or action (so as to change the sensations that are predicted). 
Crucially, these predictions depend on prior expectations (that furnish 
policies), which are optimised at different (somatic and evolutionary) time 
scales and define what is valuable. See Fig. 10 for a schematic summary of 
free-energy optimisation at different scales. 

What does the free-energy principle portend for the future? If its 
main contribution is to integrate established theories, then the answer is 
probably “not a lot”. On the other hand, it may provide a framework in 
which current debates could be resolved; e.g., does dopamine encode 
reward prediction error or surprise142,143. This is particularly important for 
understanding things like addiction, Parkinson’s disease and schizophre-
nia. Indeed the free-energy formulation has already been used to explain 
the positive symptoms of schizophrenia (i.e., hallucinations and delu-
sions), in terms of false inference144. The free-energy formulation may also 
provide some new approaches to old problems that might call for a reap-
praisal of conventional notions (particularly in reinforcement learning and 
motor control; see the previous section). If the arguments underlying the 
free-energy principle hold, then the real challenge is to understand how it 
manifests in the brain. This speaks to a greater appreciation of hierarchical 
message-passing47 and the functional role of specific neurons and micro-
circuits; and the dynamics they support (e.g., what is the relationship 
between predictive coding, attention and dynamic coordination in the 
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brain?145). Beyond neuroscience, many exciting applications in engineer-
ing, robotics, embodied cognition and evolutionary biology suggest 
themselves; although fanciful, it is not difficult to imagine building little 
free-energy machines that garner and model sensory information (like our 
children) to maximise the evidence for their own existence. 

CONCLUSION 

The free-energy principle rests on a fundamental imperative for biological 
systems; namely, to select exchanges with the environment that ensure 
their physical states constitute an invariant bounded set. This precludes 
phase-transitions and underwrites the system’s (agent’s) longevity. In the 
introduction, we summarised this as “I think therefore I am, iff I am what 
I think”. In other words, I model myself as embodied in my environment 
and harvest sensory evidence for that model. If I am what I model, then 
confirmatory evidence will be available. If I am not, then I will experience 
things that are incompatible with my (hypothetical) existence. And, after a 
short period, will cease to exist in my present form.  

The implicit duality between ‘being’ and ‘thinking’ is not the Carte-
sian duality that preoccupies philosophers. It is a pragmatic duality 
between physical states and a probabilistic representation they entail. 
These entailed constructs are the generative and recognition densities in 
Figure 1. The free-energy is a functional (function of a function) of these 
densities and is therefore a function of their sufficient statistics (internal 
states). In principle, it should be possible to infer the functional form of 
the free-energy given the action and internal states of any organism. In 
short, the densities are well-defined (if not necessarily unique) mathe-
matical constructs that are paired with (entailed by) the physical states of 
an agent. These constructs can be quantified and studied empirically. A 
simple example here is the duality between neuronal activity as a phy-
siological process and as a conditional expectation about a hidden state of 
the world. This exemplifies one functional form for the free-energy. To 
establish that this is the right form, one would need to show that it is 
minimised by action and perception. 

The free-energy perspective does not mean that we get up in the 
morning and set about minimising our free-energy; any more than E. coli 
are purposefully trying to minimise prediction error when tumbling 
through their milieu. We are saying that if biological systems attain equi-
librium with their environment, their internal states must entail a genera-
tive model of their world, whose free-energy is minimised by action and 
perception. This is true whether you are an E. coli or an evangelist. 
Because free-energy is a function of sensations and internal states it is, in 
essence, an attribute of an embodied inference. 
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Fig. 10: Optimising free-energy over different time-scales. This schematic summarises the 
various time-scales over which minimisation of free-energy can be considered as optimising 
the state (perception), configuration (action), connectivity (learning and attention), anatomy 

(neuro-development) and the phenotype (evolution) of an agent. Here, F ( ( ) [ , , , ]s t s s s%, µ(i) | m(i)) is the 

free-energy of the sensory data (and its temporal derivatives) ( ) [ , , , ]s t s s s%(α) and states µ of an agent 
m(i) ∈ m that belongs to class m, while action α determines the sampling of sensory data. The 
physical states of the phenotype µ encode an implicit recognition density. In the brain, these 
representations could correspond to synaptic activity, gain and strength. 
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