
Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 937860, 27 pages
doi:10.1155/2012/937860

Research Article

Free Energy, Value, and Attractors

Karl Friston1 and Ping Ao2, 3

1 The Wellcome Trust Centre for Neuroimaging, UCL, Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK
2 Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine of Ministry of Education,
Shanghai Jiao Tong University, Shanghai 200240, China

3 Departments of Mechanical Engineering and Physics, University of Washington, Seattle, WA 98195, USA

Correspondence should be addressed to Karl Friston, k.friston@fil.ion.ucl.ac.uk

Received 23 August 2011; Accepted 7 September 2011

Academic Editor: Vikas Rai

Copyright © 2012 K. Friston and P. Ao. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

It has been suggested recently that action and perception can be understood as minimising the free energy of sensory samples. This
ensures that agents sample the environment to maximise the evidence for their model of the world, such that exchanges with the
environment are predictable and adaptive. However, the free energy account does not invoke reward or cost-functions from
reinforcement-learning and optimal control theory. We therefore ask whether reward is necessary to explain adaptive behaviour.
The free energy formulation uses ideas from statistical physics to explain action in terms of minimising sensory surprise. Conver-
sely, reinforcement-learning has its roots in behaviourism and engineering and assumes that agents optimise a policy to maximise
future reward. This paper tries to connect the two formulations and concludes that optimal policies correspond to empirical priors
on the trajectories of hidden environmental states, which compel agents to seek out the (valuable) states they expect to encounter.

1. Introduction

This paper is about the emergence of adaptive behaviour in
agents or phenotypes immersed in an inconstant environ-
ment. We will compare and contrast two perspectives; one
based upon a free energy principle [1] and the other on opti-
mal control and reinforcement-learning [2–5]. The key dif-
ference between these perspectives rests on what an agent
optimises. The free energy principle assumes that both the
action and internal states of an agent minimise the surprise
(the negative log-likelihood) of sensory states. This surprise
does not have to be learned because it defines the agent. In
brief, being a particular agent induces a probability density
on the states it can occupy (e.g., a fish in water) and, implic-
itly, surprising states (e.g., a fish out of water). Conversely,
in reinforcement-learning, agents try to optimise a policy
that maximises expected reward. We ask how free energy and
policies are related and how they specify adaptive behaviour.
Our main conclusion is that policies can be cast as beliefs
about the state-transitions that determine free energy. This
has some important implications for understanding the
quantities that the brain has to represent when responding
adaptively to changes in the sensorium.

We have shown recently that adaptive behaviour can be
prescribed by prior expectations about sensory inputs, which
action tries to fulfill [6]. This is called active inference and
can be implemented, in the context of supervised learning,
by exposing agents to an environment that enforces desired
motion through state-space [7]. These trajectories are lear-
ned and recapitulated in the absence of supervision. The
resulting behaviour is robust to unexpected or random per-
turbations and can be used to solve benchmark problems
in reinforcement-learning and optimal control: see [7] for
a treatment of the mountain-car problem. Essentially, active
inference replaces value-learning with perceptual learning
that optimises empirical (acquired) priors in the agent’s
internal model of its world. These priors specify the free
energy associated with sensory signals and guide action to
ensure sensations conform to prior beliefs. In this paper, we
consider the harder problem addressed by reinforcement-
learning and other semisupervised schemes. These schemes
try to account for adaptive behaviour, given only a function
that labels states as attractive or costly. This means agents
have to access distal attractors, under proximal constraints
furnished by the environment and their repertoire of allow-
able actions. We will take a dynamical perspective on this
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problem, which highlights the relationship between active
inference and reinforcement-learning and the connection
between empirical priors and policies.

This paper comprises five sections. The first considers
adaptive behaviour in terms of equilibria and random at-
tractors, which we attempt to link later to concepts in beha-
vioural economics and optimal decision or game theory [8,
9]. This section considers autopoietic (self-creating) attrac-
tors to result from minimising the conditional entropy (aver-
age surprise) of an agent’s states through action. However,
agents can only infer hidden states of the environment given
their sensory states, which means agents must minimise
the surprise associated with sensations. The second section
shows how agents can do this using an upper (free energy)
bound on sensory surprise. This leads to a free energy formu-
lation of well-known inference and learning schemes based
on generative models of the world [10–13]. In brief, the
imperatives established in the first section are satisfied when
action and inference minimise free energy. However, the
principle of minimising free energy also applies to the form
of the generative model entailed by an agent (its formal
priors). These encode prior beliefs about the transitions or
motion of hidden states and ensuing attractors, which action
tries to fulfil. These priors or policies are considered from
a dynamical perspective in the remaining sections. Section
three considers some universal policies, starting with the
Helmholtz decomposition and introducing the notion of
value, detailed balance, and divergence-free flow. The final
two sections look at fixed-point and itinerant polices, res-
pectively. Fixed-point policies attract trajectories to (low-
cost) points in state-space. These policies are considered in
reinforcement-learning and optimal control theory [2, 4, 14].
They are based on Lyapunov (value) functions that specify
the policy. However, under the Helmholtz decomposition,
value functions are an incomplete specification of policies.
This speaks to more general forms of (itinerant) policies that
rest on the autovitiation (self-destruction) of costly attractors
and itinerant (wandering or searching) motion through
state-space. We illustrate the basic ideas using the same
mountain-car problem that we have used previously in the
context of supervised learning [7].

The main conclusion of this paper is that it is sufficient
to minimise the average surprise (conditional entropy) of
an agent’s states to explain adaptive behaviour. This can
be achieved by policies or empirical priors (equations of
motion) that guide action and induce random attractors in
its state-space. These attract agents to (low-cost) invariant
sets of states and lead to autopoietic and ergodic behaviour.

2. Ensemble Dynamics and Random Attractors

What do adaptive agents optimise? We address this question
using an ensemble density formulation, which has close con-
nections to models of evolutionary processes [15–17] and
equilibria in game theory [18]. We also introduce a com-
plementary perspective based on random dynamical systems
[19]. The equilibrium approach rests on an ensemble density
over the states of an agent. This can be regarded as the density
of innumerable copies of the agent, each represented by

a point in phase or state-space. This density is essentially a
probabilistic definition of the agent, in terms of the states it
occupies. For a well-defined agent to exist its ensemble den-
sity must be ergodic; that is, an invariant probability measure
[20]. In other words, the density cannot change over time;
otherwise, the definition of an agent (in terms of the states
it occupies) would change. A simple example here would be
the temperature of an organism, whose ensemble density
is confined to certain phase-boundaries. Transgressing these
boundaries would change the agent into something else (usu-
ally a dead agent). The simple fact that an agent’s ensemble
density exists and is confined within phase-boundaries (i.e.,
is ergodic or invariant) has some fundamental implications,
which we now consider more formally.

2.1. Set Up: States and Dependencies. If an agent and its envi-
ronment have states, what does it mean for the states of an
agent to be distinct from those of its environment? We will
take this to mean that an agent has internal and external
states that are conditionally independent and are therefore
separated by a Markov blanket. The minimal (nontrivial)
requirement for this blanket to exist is a partition of the states
into two pairs of subsets, where one pair constitutes a Markov
blanket for the other.

This straightforward consideration suggests a four-way
partition of state-space X × S × A ×M ⊂ R associated with
an agent m ∈M. Here, external states x̃ ∈ X represent states
of the agent’s immediate environment, such as forces, tem-
perature, and physiological states. The tilde notion denotes
a generalised state, which includes temporal derivatives to
arbitrarily high order, such that x̃ = [x, x′, x′′, . . .]T comp-
rises position, velocity, acceleration, jerk, and so on. The
internal states μ̃ ∈ M correspond to things like intracellular
concentrations, neuronal activity, and so forth. We will see
later that these are internal representations of external states.
These states are separated from each other by a Markov blan-
ket S×A, comprising sensory states that mediate the influence
of external states on internal states and action, which medi-
ates the influence of internal states on external states. Sensory
states s̃ ∈ S, like photoreceptor activity, depend on external
states, while action a ∈ A, like alpha motor neuron activity,
depends on internal states. Figure 1 illustrates these con-
ditional dependencies in terms of a graphical model, in
which action and sensation form a Markov blanket separa-
ting external and internal states. In other words, external
states are ”hidden” from the agent’s internal states. We will
therefore refer to external states as hidden states.

The notion of a Markov blanket refers to a (statistical)
boundary between the internal and hidden states of an agent.
For simple (cellular) organisms, this could be associated with
the cell surface, where sensory states correspond to the states
of receptors and ion channels and action to various trans-
porter and cell adhesion processes. For more complicated
multicellular organisms (like us) the boundary of an agent
is probably best thought of in terms of systems. For example,
neuronal systems have clearly defined sensory states at their
receptors and action is mediated by a discrete number of
effectors. Here, the notion of a surface is probably less useful,
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Figure 1: The free energy principle. The schematic shows the probabilistic dependencies (arrows) among the quantities that define free
energy. These include the internal states of the brain μ̃(t) and quantities describing its exchange with the environment. These are the genera-
lized sensory states s̃(t) = [s, s′, s′′, . . .]T and action a(t). The environment is described by equations of motion, which specify the trajectory of
its hidden states and a mapping to sensory states. The quantities ϑ ⊃ (x̃, θ) causing sensory states comprise hidden states and parameters. The
hidden parameters control the equations (f , g) and precision (inverse variance) of random fluctuations (ωx(t),ωs(t)) on hidden and sensory
states. Internal brain states and action minimize free energy F (s̃, μ̃), which is a function of sensory states and a probabilistic representation
q(ϑ | μ̃) of their causes. This representation is called the recognition density and is encoded by internal states that play the role of sufficient
statistics. The free energy depends on two probability densities; the recognition density, q(ϑ | μ̃), and one that generates sensory samples
and their causes, p(s̃, ϑ | m). The latter represents a probabilistic generative model (denoted by m), whose form is entailed by the agent. The
lower panels provide alternative expressions for the free energy to show what its minimization entails. Action can only reduce free energy by
increasing accuracy (i.e., selectively sampling sensory states that are predicted). Conversely, optimizing internal states makes the representa-
tion an approximate conditional density on the causes of sensory states. This enables action to avoid surprising sensory encounters. See main
text for further details.

in the sense that the spatial deployment of sensory epithelia
becomes a hidden state (and depends on action).

The external state-space we have in mind is high dimen-
sional, covering the myriad of macroscopic states that con-
stitute an embodied agent and its proximal environment. We
assume that this system is open and that its states are con-
fined to a low-dimensional manifold O ⊂ X that endow the
agent with attributes. More precisely, the agent has observ-
ables (i.e., phenotypic traits or characteristics) that are given
by real-valued functions, whose domain is the bounded set
O ⊂ X . This implies that there are states x̃ /∈ O an agent
cannot occupy (e.g., very low temperatures). An observable
is a property of the state that can be determined by some
operator. A simple example of a bounded operator would be
length, which must be greater than zero.

The existence of macroscopic states appeals to the fact
that interactions among microscopic states generally lead to
macroscopic order. There are many examples of this in the
literature on complex systems and self-organisation. Key
examples of macroscopic states are the order parameters used
to describe phase-transitions [21]. The order parameter con-
cept has been generalized to the slaving principle [22], under
which the fast (stable) dynamics of rapidly dissipating pat-
terns (modes or phase-functions) of microscopic states are
determined by the slow (unstable) dynamics of a few macro-

scopic states (order parameters). These states can be regarded
as the amplitudes of patterns that determine macroscopic
behaviour. The enslaving of stable patterns by macroscopic
states greatly reduces the degrees of freedom of the system
and leads to the emergence of macroscopic order (e.g., pat-
tern formation). A similar separation of temporal scales is
seen in centre manifold theory [23]. See [24–26] for in-
teresting examples and applications. We will assume that
macroscopic states x̃ ∈ X are (unique phase) functions of
the microscopic states that they enslave.

The emergence of macroscopic order (and its associated
states) is easy to simulate. Figure 2 provides a simple example
where sixteen (Lorenz) oscillators have been coupled to each
other, so that each oscillator (with three microscopic states)
sees all the other oscillators. In this example, the macroscopic
states (c.f. order parameters) are just the average of each state
over oscillators; this particular phase-function is known as a
mean field: see [27] for a discussion of mean field treatments
of neuronal dynamics. Here, the mean field enslaves the states
of each oscillator so that the difference between each micro-
scopic state and its average decays quickly; these differences
are the stable patterns and decay to zero. This draws the
microscopic states to a low- (three-) dimensional manifold,
known as a synchronisation manifold [28]. Although the
emergence of order is easy to simulate, it is also easy to
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Figure 2: Self-organisation and the emergence of macroscopic behaviour. This figure shows a simple example of self-organisation using
sixteen (Lorenz) oscillators that have been coupled to each other, so that each oscillator (with three microscopic states) sees the other oscilla-
tors. This is an example of a globally coupled map, where the dynamics of each oscillator conform to a classical Lorenz system. The equations
of motion are provided in the left panel for each microstate, x(i)

j : i ∈ 1, . . . , 16 : j ∈ 1, 2, 3, whose average constitutes a macrostate
xj : j ∈ 1, 2, 3. Each oscillator has its own random fluctuations ω(i)(t) ∈ R and speed exp(ωi) ∈ R+. The upper right panel shows the
evolution of the microstates (dotted lines) and the macrostates (solid lines) over 512 time steps of one 1/32 second. The lower right panel,
shows the first two macrostates plotted against each other to show the implicit attractor that emerges from self-organisation. The lower left
panel shows the implicit synchronisation manifold by plotting the first states from successive pairs of oscillators (pink) and their averages
(black) against each other. This simulation used low levels of noise on the motion of the microstatesω(i) ∼ N (0, 22) and the log-rate constants
ωi ∼ N (0, 2−6) that disperse the speeds of each oscillator. The initial states were randomised by sampling from a Gaussian distribution with
a standard deviation of eight.

destroy. Figure 3 shows how macroscopic order collapses
when the random fluctuations on the motion of states are
increased. Here, there is no slaving because the system has
moved from a coherent regime to an incoherent regime,
where each oscillator pursues its own path. Order can also be
destroyed by making the coherence trivial; this is known as
oscillator death and occurs when each oscillator approaches
a fixed-point in state-space (interestingly these fixed-points
are unstable when the oscillators are uncoupled, see [24]).
Oscillator death is illustrated in Figure 3 by increasing the
random dispersion of speeds along each oscillators orbit

(trajectory). In these examples, macroscopic order collapses
into incoherent or trivially coherent dynamics. We have deli-
berately chosen to illustrate these phenomena with a collec-
tion of similar oscillators (known technically as a globally
coupled map; see also [29]), because the macroscopic
dynamics recapitulate the dynamics of each oscillator in
isolation. This means one could imagine that the microscopic
states are themselves phase-functions of micromicroscopic
states and so on ad infinitum. Heuristically, this speaks to
the hierarchical and self-similar dynamics of complex self-
organising systems [30, 31].
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Figure 3: The loss of macroscopic order and oscillator death. This figure uses the same format and setup as in the previous figure but here
shows the loss of macroscopic order through incoherence (left) and oscillator death (right). Incoherence was induced by increasing the ran-
dom fluctuations on the motion of states to ω(i) ∼ N (0, 210). Oscillator death was induced by increasing the random dispersion of speeds
along each oscillators orbit to ωi ∼ N (0, 2−4), see [24]. The ensuing macroscopic states (lower panels) now no longer belong to the attracting
set of the previous figure: A(ω) ⊂ O.

In summary, the emergence of macroscopic order is not
mysterious and arises from a natural separation of temporal
scales that is disclosed by some transformation of variables.
However, the ensuing order is delicate and easily destroyed.
In what follows, we shall try to understand how self-orga-
nisation keeps the macroscopic states of an agent within a
bounded set O ⊂ X for extended periods of time. To do this
we will look more closely at their dynamics.

2.2. Dynamics and Ergodicity. Let the conditional dependen-
cies among the (macroscopic) states X × S × A ×M ⊂ R in
Figure 1 be described by the following coupled differential
equations:

˙̃x = f(x̃, a, θ) + ω̃a,

s̃ = g(x̃, a, θ) + ω̃s,
(1)

where (as we will see later)

ȧ = −∂aF
(

s̃, μ̃
)

,

˙̃μ = −∂μ̃F
(

s̃, μ̃
)

+ D μ̃.
(2)

Here, D is a derivative matrix operator with identity matri-
ces along its first diagonal such that D μ̃ = [μ′,μ′′,μ′′′, . . .]T .
The first (stochastic differential) equation above describes
the flow of hidden states in terms of a mapping f : X×A → X
and some random fluctuations, ω̃a ∈ Ωa, while the second
expresses sensory states in terms of a sensory mapping g :
X → S and noise, ω̃s ∈ Ωs. In this formulation, sensations
are a noisy map of hidden states that evolve as a function
of themselves and action, where exogenous influences from
outside the proximal environment are absorbed into the ran-
dom fluctuations. The quantities θ represent time-invariant
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parameters of the equations of motion and sensory mapping.
For simplicity, we will omit θ for the remainder of this section
and return to them later. The second pair of equations des-
cribes action a : M × S → A and internal states μ̃ : M ×
S → M as a gradient descent on a functional (function
of a function) of sensory and internal states: F (s̃, μ̃) ∈ R.
The purpose of this paper is to motivate the nature of this
(free energy) functional and relate it to classical treatments
of optimal behaviour.

As it stands, (1) is difficult to analyse because flow is
a nonautonomous function of action. We can finesse this
(without loss of generality) by expressing action as a function
of the current state u(x̃(t)) plus a fluctuating part ωu(t) using
a Taylor expansion around the action expected in state x̃ ∈ X

˙̃x = f(x̃, a) + ω̃a

= f(x̃,u) + ω̃x

ω̃x = ω̃a + ∂uf · ωu + · · ·
a(t) = u(x̃) + ωu.

(3)

Equation (3) reformulates the dynamics in terms of con-
trolled flow f(x̃,u) := f : X → X and controlled fluctuations
ω̃x ∈ Ωx. This formulation is autonomous in the sense that
controlled flow depends only on the current state. Further-
more, it allows us to connect to the optimal control literature
that usually assumes control u(x̃) is a function of, and only
of, the current state. In our setup, control is the expected
(average) action in a hidden state. In contrast, action a : M×
S → A depends on internal and sensory states and therefore
depends upon hidden states and random fluctuations in the
past. In what follows, we will refer to controlled flow as a
policy in the sense that it describes motion through state-
space or transitions among states, in the absence of random
effects. The policy is also the expected flow because it is the
flow under expected action.

With these variables in place we can now ask what can
be deduced about the nature of action and control, given
the existence of agents. Our starting point is that agents are
ergodic [20, 32], in the sense that their ensemble density is
invariant (conserved) over a suitably long time scale. This
is just another way of saying that agents occupy a subset of
states O ⊂ X for long periods of time. The implicit ergodic
(invariant) density p(x̃ | m) := p(x̃,∞ | m) is the stationary
solution to the Fokker-Planck equation (also known as the
Kolmogorov forward equation; [33]) describing the dyna-
mics of the ensemble density over hidden states

ṗ(x̃, t | m) = Λp := ∇ · Γ∇p −∇ · (f p
)

ṗ(x̃ | m) = 0 =⇒
p(x̃ | m) = E(Λ).

(4)

Here, Λ(f ,Γ) is the Fokker-Planck operator and Γ is half the
covariance (amplitude) of the controlled fluctuations (a.k.a.
the diffusion tensor). Equation (4) assumes the fluctuations
are temporally uncorrelated (Wiener) processes; however,
because the fluctuations ω̃x(t) are in generalised coordinates

of motion, the fluctuations on states per se can be smooth
and analytic [34]. The Fokker-Planck equation exploits the
fact that the ensemble (probability mass) is conserved. The
first (diffusion) term of the Fokker-Planck operator reflects
dispersion due to the fluctuations that smooth the density.
The second term describes the effects of flow that translates
probability mass. The ergodic density p := p(x̃ | m) = E(Λ)
is the principal eigensolution of the Fokker-Planck operator
(with an eigenvalue of zero: ΛE = 0). Crucially, this density
depends only on flow and the amplitude of the controlled
fluctuations.

The ergodic density at any point in state-space is also
the sojourn time that an individual spends there. Similarly,
its conditional entropy or ensemble average of surprise (also
known as self-information or surprisal) is the long-term
average of surprise an individual experiences. The entropy
and surprise associated with the hidden states are (in the long
term: T → ∞):

H(X | m) = −
∫

X
p(x̃ | m) ln p(x̃ | m)dx = 1

T

∫ T

0
dtL(x̃(t))

L(x̃(t)) = − ln p(x̃(t) | m).
(5)

The conditional entropy is an equivocation because it is con-
ditioned on the agent. It is important not to confuse the
conditional entropy H(X | m) with the entropy H(X): A
system with low entropy may have a very high conditional
entropy unless it occupies states that are characteristic of the
agent (because p(x̃(t) | m) will be persistently small). We will
use these characterisations of the ergodic density extensively
below and assume that they are all conditional. Readers with
a physics background will note that surprise can be regarded
as a Lagrangian, with a path-integral

∫

dtL(x̃(t)) = TH(X |
m) that is proportional to entropy. We will call on this
equivalence later. In this paper, Lagrangians are negative log-
probabilities or surprise.

The terms entropy and surprise are used here in an infor-
mation theoretic (Shannon) sense. From a thermodynamic
perceptive, the ergodic density corresponds to a steady state,
in which (biological) agents are generally far from thermo-
dynamic equilibrium; even though the ensemble density on
their macroscopic states (e.g., intracellular concentrations)
is stationary. In computational biology, the notion of non-
equilibrium steady state is central to the study of the home-
ostatic cellular biochemistry of microscopic states. In this
context, the chemical master equation plays the same role
as the Fokker-Planck equation above: see [35, 36] for useful
introductions and discussion. However, the densities we are
concerned with are densities on macroscopic states O ⊂ X
that ensure the microscopic states they enslave are far from
thermodynamic equilibrium. It is these macroscopic states
that are characteristic of biological agents. See [37, 38] for
useful treatments in the setting of Darwinian dynamics.
Having introduced the notion of entropy under ergodic
assumptions, we next consider the implications of ergodicity
for the flow or motion of agents through their state-space.
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2.3. Global Random Attractors. A useful perspective on er-
godic agents is provided by the theory of random dynamical
systems. A random dynamical system is a measure-theoretic
formulation of the solutions to stochastic differential equa-
tions like (3). It consists of a base flow (caused by random
fluctuations) and a cocycle dynamical system (caused by
flow). Ergodicity means the external states constitute a ran-
dom invariant set A(ω̃) ⊂ X known as a pullback or global
random attractor [19]. A random attractor can be regarded
as the set to which a system evolves after a long period of
time (or more precisely the pullback limit, after evolving
the system from the distant past to the present: the pullback
limit is required because random fluctuations make the sys-
tem nonautonomous). In the limit of no random fluctua-
tions, random attractors coincide with the definition of a
deterministic attractor; as the minimal compact invariant set
that attracts all deterministic bounded sets. Crucially, ran-
dom attractors are compact subsets of state-space that are
bounded by deterministic sets. Technically speaking, if the
base flow is ergodic and p(A(ω̃) ⊂ O) > 0 then A(ω̃) =
ΩO(ω̃), almost surely [39]. Put simply, this means that if the
random attractor falls within a bounded deterministic set
O ⊂ X , then it constitutes an omega limit set ΩO(ω̃). These
are the states visited after a sufficiently long period, starting
anywhere in O ⊂ X . In short, if agents are random dynamical
systems that spend their time within O ⊂ X, then they have
(are) random attractors.

This existence of random attractors is remarkable be-
cause, in the absence of self-organising flow, the fluctuation
theorem says they should not exist [40]. The fluctuation
theorem generalises the second law of thermodynamics and
states that the probability of a system’s entropy decreasing
vanishes exponentially with time. Put simply, random fluc-
tuations disperse states, so that they leave any bounded set
with probability one. See [41] and Appendix A, which show
that in the absence of flow

Ḣ(X | m) =
∫

X

∇p · Γ · ∇p

p(x̃ | m)
dx̃ ≥ 0. (6)

This says that random fluctuations increase entropy produc-
tion in proportion to their amplitude and the roughness
∇p · ∇p of the ensemble density. In the absence of flow,
the entropy increases until the density has dispersed and
its gradients have been smoothed away. One can think of
entropy as the volume or Lebesgue measure λ(A(ω̃)) of the
attracting set: attractors with a small volume concentrate
probability mass and reduce average surprise. One can see
this heuristically by pretending that all the states within the
attractor are visited with equal probability, so that p(x̃ |
m) = 1/λ : x̃ ∈ A(ω̃). Under this assumption, one can see
from (5) that H(X | m) = ln λ and that entropy increases
with volume (and does so more acutely for small volumes).
A low entropy means that a small number of states have a
high probability of being occupied while the remainder have
a low probability. This means that agents with well-defined
characteristics have attractors with small measure and an
ergodic density with low entropy. The implication here is
that agents must counter the dispersive effects of random
fluctuations to maintain a high ergodic density over the states

O ⊂ X they can occupy. It is important not to confuse the
measure of an attracting set λ(A(ω̃)) with its topological
complexity (although, strictly speaking, random attractors
are a metric concept not topological). An attractor can have
a small measure and yet have a complicated and space-filling
shape. Indeed, one might suppose that complex agents (like
us) have very complicated random attractors that support
diverse and itinerant trajectories; like driving a car within a
small margin of error.

2.4. Autopoiesis and Attracting Sets. The formulation of
agents as ergodic random dynamical systems has a simple
implication: it requires their flow to induce attractors and
counter the dispersion of states by random fluctuations. In
the absence of this flow, agents would encounter phase-
transitions where macroscopic states collapse, exposing their
microscopic states to thermodynamic equilibrium. But how
do these flows arise? The basic premise, upon which the rest
of this paper builds, is that these attractors are autopoietic
[42] or self-creating (from the Greek: auto (αυτó) for self-
and poiesis (πoίησισ) for creation). More formally, they arise
from the minimisation of entropy with respect to action,

a∗ = arg min
a

H(X | m). (7)

Action is the key to creating low entropy densities (resp., low
measure attractors), because action determines flow and flow
determines the ergodic density (resp., random attractor).
This density is the eigensolution E(Λ(f ,Γ)) of the Fokker-
Planck operator, which depends on the policy through the
deterministic part of action and the amplitude of random
fluctuations through the fluctuating part. This means action
plays a dual role in controlling flow to attractive states and
suppressing random fluctuations. Equation (6) shows that
increasing the amplitude of controlled fluctuations increases
the rate of entropy production, because ∂ΓḢ(X | m) > 0.
This means the fluctuating part of action ωu can minimise
entropy production by suppressing the difference ω̃x = ˙̃x −
f(x̃,u) = ω̃a + ∂u f · ωu + · · · between the flow experienced
and that expected under the policy. This entails countering
unexpected or random deviations from the policy to ensure
an autopoietic flow (cf. a ship that maintains its bear-
ing in the face of fluctuating currents and tides). In the
absence of fluctuations, flow becomes deterministic and the
random attractor becomes a deterministic attractor in the
conventional sense (however, it is unlikely that action will
have sufficient degrees of freedom to suppress controlled
fluctuations completely). Note that for action to suppress
random fluctuations about the expected flow (the policy) the
agent must have a policy. We will address the emergence
and optimisation of policies in the next section. At present,
all we are saying is that action must minimise entropy and,
implicitly, the measure of an agent’s random attractor.

2.5. Summary. In summary, the ergodic or ensemble per-
spective reduces questions about adaptive behaviour to un-
derstanding how motion through state-space minimises sur-
prise and its long-term average (conditional entropy). Action
ensures motion conforms to an autopoietic flow or policy,
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given the agent and its current state. This policy induces a
random invariant set A(ω̃) ⊂ O for each class of agent or
species, which can be regarded as a probabilistic definition of
the agent. This perspective highlights the central role played
by the policy: it provides a reference that allows action to
counter random fluctuations and violate the fluctuation the-
orem. In conclusion, the ergodic densities (resp. global ran-
dom attractors) implied by the existence of biological agents
are the stationary solutions to an autopoietic minimisation
of their conditional entropy (resp. measure). In the next
section, we consider what this implies for the functional ana-
tomy of agents.

3. The Free Energy Formulation

In this section, we introduce the free energy principle as a
means of minimising the conditional entropy of an agent’s
states through action. As noted above, these states and their
entropy are hidden from the agent and can only be accessed
through sensory states. This means that action cannot mini-
mise the entropy of hidden states directly. However, it can do
so indirectly by minimising the entropy of sensory states,

a∗ = arg min
a

H(X | m) = arg min
a

H(S | m). (8)

This equivalence follows from two assumptions: there is a
diffeomorphic mapping between hidden and sensory states
and that Jacobian of this mapping (i.e., the sensitivity of sen-
sory signals to their causes) is constant over the range of hid-
den states encountered (see Appendix B). Crucially, because
sensory entropy is the long-term average of sensory surprise,
the extremal condition above requires action to minimise
the path integral of sensory surprise. This means (by the
fundamental lemma of variational calculus) for t ∈ [0,T]

δaH(S | m) = 0⇐⇒ ∂a(t)L(s̃(t)) = 0⇐⇒ a(t)∗

= arg min
a(t)

L(s̃(t))

H(S | m) = 1
T

∫ T

0
dtL(s̃(t))

L(s̃(t)) = − ln p(s̃(t) | m).

(9)

Equation (9) says that it is sufficient for action to minimise
sensory surprise to minimise the entropy of sensations (or at
least find a local minimum). This is sensible because action
should counter surprising deviations from the expected flow
of states. However, there is a problem; agents cannot eva-
luate sensory surprise L(s̃(t)) explicitly, because this would
involve integrating p(s̃, x̃, θ | m) over hidden states and para-
meters or causes: ϑ = (x̃, θ). This is where the free energy
comes in.

Free energy is a functional of sensory and internal states
that upper bounds sensory surprise and can be minimised
through action (cf. (2)). Effectively, free energy allows
agents to finesse a generally intractable integration problem
(evaluating surprise) by reformulating it as an optimisation
problem. This well-known device was introduced by Feyn-
man [43] and has been exploited extensively in machine

learning and statistics [44–46]. The requisite free energy
bound is created by adding a nonnegative Kullback-Leibler
divergence or cross-entropy term [47] to surprise:

F (t) = L(s̃(t)) + DKL
(

q(ϑ)
∥

∥ p(ϑ | s̃,m)
)

= 〈ln q(ϑ)
〉

q −
〈

ln p(s̃, ϑ | m)
〉

q.
(10)

This divergence is induced by a recognition density q(ϑ) :=
q(ϑ | μ̃) on the hidden causes of sensory states. This density
is associated with the agent’s internal states μ̃(t) that play
the role of sufficient statistics; for example, the mean or ex-
pectation of hidden causes. Free energy F (s̃, μ̃) ∈ R can be
evaluated because it is a functional of internal states and a
generative model p(s̃, ϑ | m) entailed by the agent. This can
be seen from second equality, which expresses free energy in
terms of the negentropy of q(ϑ) and the expected value of
ln p(s̃, ϑ | m).

To ensure action minimises surprise, the free energy must
be minimised with respect the internal variables that encode
the recognition density (to ensure the free energy is a tight
bound on surprise). This is effectively perception because
the cross-entropy term in (10) is non-negative, with equality
when q(ϑ | μ̃) = p(ϑ | s̃,m) is the true conditional density.
In short, optimising the recognition density makes it an
approximate conditional density on the causes of sensory
states. This is the basis of perceptual inference and learning
as articulated by the Bayesian brain hypothesis [10, 13, 48–
52]. We can now formulate action (9) in terms of a dual
minimisation of free energy (see (2) and Figure 1).

a∗ = arg min
a

F
(

s̃, μ̃
)

,

μ̃∗ = arg min
μ̃

F
(

s̃, μ̃
)

.
(11)

Action minimises free energy through changing the genera-
lised motion of hidden states. In essence, it ensures that the
trajectory of sensory states conform to the agents conditional
beliefs encoded by internal states. Note that action is fun-
damentally different from a policy in optimal control and
reinforcement-learning. Action is not a deterministic func-
tion of hidden states and is sensitive to random fluctuation
causing sensory states. This means, unlike an optimal policy,
it can suppress surprises by countering unexpected fluctua-
tions in sensory states: although optimal control schemes can
recover from perturbations, they cannot cancel them actively.
However, as we will see below, optimal policies play a key role
providing in prior constraints on the flow of hidden states
that action tries to disclose.

3.1. Active Inference and Generalised Filtering. In what fol-
lows, we will assume that the minimisation of free energy
with respect to action and internal states (11) conforms to
a generalised gradient descent,

ȧ = −∂aF
(

s̃, μ̃
)

,

˙̃μ =D μ̃− ∂μ̃F
(

s̃, μ̃
)

.
(12)
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These coupled differential equations describe action and per-
ception respectively. The first just says that action suppresses
free energy. The second is known as generalised filtering [53]
and has the same form as Bayesian (e.g., Kalman-Bucy) filter-
ing, used in time series analysis. The first term is a prediction
based upon the differential operator D that returns the gene-
ralised motion of internal states encoding conditional pre-
dictions. The second term is usually expressed as a mixture
of prediction errors that ensures the internal states (sufficient
statistics) are updated in a Bayes-optimal fashion (see below).
The differential equations above are coupled because sensory
states depend upon action, which depends upon perception
through the conditional predictions. This circular depen-
dency leads to a sampling of sensory input that is both pre-
dicted and predictable, thereby minimising free energy and
surprise. This is known as active inference.

In generalised filtering, one treats hidden parameters as
hidden states that change very slowly: the ensuing generalised
descent can then be written as a second-order differential
equation: μ̈θ = −∂θF − κμ′θ , where κ is the (high) prior pre-
cision on changes in hidden parameters. See [53] for details.
In neurobiological formulations of free energy minimisation,
internal states generally correspond to conditional expecta-
tions about hidden states and parameters, which are associ-
ated with neuronal activity and connections strengths, res-
pectively. In this setting, optimising the conditional expec-
tations about hidden states (neuronal activity) corresponds
to perceptual inference while optimising conditional expec-
tations about hidden parameters (neuronal plasticity) corre-
sponds to perceptual learning.

Equation (12) describes the dynamics of action and in-
ternal states, whose particular form depends upon the gener-
ative model of the world. We will assume this model has the
following form:

˙̃x = f (x̃, θ) + ω̃x,

s̃(t) = g(x̃, θ) + ω̃s.
(13)

As in the previous section, ( f , g) are nonlinear functions
of hidden states that generate sensory states; however, these
are distinct from the real equations of motion and sensory
mappings (f , g) that depend on action. The generative model
does not include action, because action is not a hidden state.
Random fluctuations (ωs,ωx) play the role of sensory noise
and induce uncertainty about the motion of hidden states.
Hidden states are abstract quantities (like the motion of an
object in the field of view) that the agent uses to explain or
predict sensations. Gaussian assumptions about the random
fluctuations in (13) furnish a probabilistic generative model
of sensory states p(s̃, ϑ | m) that is necessary to evaluate free
energy. See [53] for a full description of generalised filtering
in the context of hierarchical dynamic models. For simplicity,
we have assumed that state-space associated with the genera-
tive model is the same as the hidden state-space in the world.
However, this is not necessary, because exchanges with the
environment are mediated through sensory states and action.

Given the form of the generative model (13) and an as-
sumed (Gaussian) form for the recognition density, we can
now write down the differential equations (12) describing the

dynamics of internal states in terms of (precision-weighted)
prediction errors (ε̃s, ε̃x) on sensory states and the predicted
motion of hidden states, where (ignoring some second-order
terms and using g̃ := g(x̃, θ))

˙̃μ =D μ̃ + ∂μ̃g̃ · ε̃s + ∂μ̃ ˜f · ε̃x −DT ε̃x,

ε̃s = ˜Πs
(

s̃− g̃
)

,

ε̃x = ˜Πx

(

D μ̃− ˜f
)

.

(14)

The (inverse) amplitude of generalised random fluctuations
are encoded by their precision (˜Πs, ˜Πx), which we assume to
be fixed in this paper. This particular free energy minimi-
sation scheme is known as generalised predictive coding and
has become a useful metaphor for neuronal message passing
in the brain: see also [12]. The simplicity of this scheme
stems from the assumed Gaussian form of the recognition
density. This means the internal states or sufficient statistics
can be reduced to conditional expectations (see Appendix C).
In neural network terms, (14) says that error-units receive
predictions while prediction-units are driven by prediction
errors. In neurobiological implementations of this scheme,
the sources of prediction errors are usually thought to be
superficial pyramidal cells while predictions are conveyed
from deep pyramidal cells to superficial pyramidal cells en-
coding prediction error [54].

Because action can only affect the free energy by changing
sensory states, it can only affect sensory prediction errors.
From (13), we have

ȧ = −∂as̃ · ε̃s. (15)

In biologically plausible instances of active inference, the par-
tial derivatives in (15) would have to be computed on the
basis of a mapping from action to sensory consequences,
which is usually quite simple; for example, activating an in-
trafusal muscle fibre elicits stretch receptor activity in the
corresponding spindle: see [6] for discussion.

3.2. Summary. In summary, we can account for the unnatu-
ral persistence of self-organising biological systems in terms
of action that counters the dispersion of their states by ran-
dom fluctuations. This action minimises the entropy of their
ergodic density by minimising a free energy bound on sen-
sory surprise or self-information as each point in time. To
ensure the free energy is a good proxy for surprise, internal
states must also minimise free energy and implicitly repre-
sent hidden states. This minimisation rests upon a generative
model, which furnishes conditional predictions that action
can fulfil. These predictions rest of on equations of motion
that constitute (empirical) priors [55] on the flow of hidden
states in the world. In short, agents are equipped with a
model of dynamics in their local environment and navigate
that environment to minimise their surprise.

We can now associate the expected flow of the previous
section with the empirical priors learned under the genera-
tive model: f(x,u) = f (x,μθ). This rests upon the assump-
tion that action eliminates (on average) the difference bet-
ween the actual and predicted flow. This means the predicted
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flow corresponds to the policy. The policy f(x,u) = f (x,μθ)
is an empirical prior because it depends on conditional beliefs
about hidden parameters encoded by μθ . This is an impor-
tant point because it means that the environment causes
prior beliefs about motion (through parameter learning),
while these beliefs cause the sampled environment. This cir-
cular causality is the basis of autopoietic flow and highlights
the fact self-organisation rests on a reciprocal exchange
between implicit beliefs about how an agent or system will
behave and behavioural constraints that are learned by be-
having. Minimising free energy ensures that the beliefs and
constraints are consistent and enables the agent to create its
own environment. In this view, perceptual inference becomes
truly embodied or situated and is an integral part of sustain-
able interactions with the environment. The previous sec-
tion suggested that action was the key to understanding
self-organised behaviour. This section suggests that action
depends on a policy or empirical priors over flow. In what
follows, we consider the nature of this flow and its specifica-
tions.

4. Policies and Value

The previous section established differential equations that
correspond to action and perception under a model of how
hidden states evolve. These equations are based on the as-
sumption that agents suppress (a bound on) surprise and,
implicitly, the entropy of their ergodic density. We now con-
sider optimising the model per se, in terms of formal priors
on flow. These correspond to the form of the equation of
motions in (13). In particular, we will consider constraints
encoded by a (cost) function c(x̃) ⊂ m over hidden states.
The existence of autopoietic flow is not mysterious, in the
sense that agents who do not have a random attractor cannot
exist. In other words, every agent (phenotype) can be reg-
arded as a solution to the Fokker-Planck equation, whose
policy is compatible with the biophysics of its environmen-
tal niche. One might conjecture that each solution (random
attractor) corresponds to a different species, and that there
may be a limited number of solutions as evidenced by con-
vergent evolution [17]. This section considers the policies
that underwrite these solutions and introduces the notion of
value in terms of the Helmholtz decomposition. In brief, we
will see that flow determines value, where value is negative
surprise.

We start with the well-known decomposition of flow into
curl- and divergence-free components (strictly speaking, the
first term is only curl-free when Γ(x̃) = γ(x̃) · I ; that is, the
diffusion tensor is isotropic. However, this does not affect
the following arguments, which rest on the divergence-free
component),

f = Γ · ∇V +∇×W. (16)

This is the Helmholtz decomposition (also known as the fun-
damental theorem of vector calculus) and expresses any
policy in terms of scalar V(x̃) and vector W(x̃) potentials
that prescribe irrotational (curl-free) Γ · ∇V and solenoidal
(divergence-free)∇×W flow. An important decomposition
described in [37, 56], formulates the divergence-free part in

terms of an antisymmetric matrix, Q(x̃) = −Q(x̃)T and the
scalar potential, which we will call value, such that

f = (Γ + Q)∇V =⇒
∇×W = Q∇V.

(17)

Using this (standard form) decomposition [57], it is fairly
easy to show that p(x̃ | m) = exp(V(x̃)) is the equilibrium
solution to the Fokker-Planck equation (4):

p = exp(V) =⇒ ∇p = p∇V =⇒
Λp = ∇ · Γ∇p −∇ · ( f p)

= −p(∇ · (Q∇V) + (Q∇V) · ∇V) = 0.

(18)

Equation (18) uses the fact that the divergence-free compo-
nent is orthogonal to ∇V (see Appendix D). This straight-
forward but fundamental result means that the flow of any
ergodic random dynamical system can be expressed in terms
of orthogonal curl- and divergence-free components, where
the (dissipative) curl-free part increases value while the (con-
servative) divergence-free part follows isoprobability con-
tours and does not change value. Crucially, under this de-
composition value is simply negative surprise: ln p(x̃ | m) =
V(x̃) = −L(x̃ | m). It is easy to show that surprise (or value)
is a Lyapunov function for the policy

V̇(x(t)) = ∇V · f = ∇V · Γ · ∇V +∇V · ∇ ×W

= ∇V · Γ · ∇V ≥ 0.
(19)

Lyapunov functions always decrease (or increase) with time
and are used to establish the stability of fixed points in deter-
ministic dynamical systems. This means every policy (expec-
ted flow) reduces surprise as a function of time. In other
words, it must direct flow towards states that are more prob-
able (and have a greater sojourn time). This is just a formal
statement of the fact that ergodic systems must, on average,
continuously suppress surprise, to offset the dispersive effect
of random fluctuations. Ao reviews the importance and
generality of the decomposition in (17) and how it pro-
vides a unifying perspective on evolutionary and statistical
dynamics [38]: this decomposition shows that fluctuations
in Darwinian dynamics imply the existence of canonical dis-
tributions of the Boltzmann-Gibbs type. Furthermore, it de-
monstrates the second law of thermodynamics, without
detailed balance. In particular, the dynamical (divergence-
free) component responsible for breaking detailed balance
does not contribute to changes in entropy. In short, (17) rep-
resents “a simple starting point for statistical mechanics and
thermodynamics and is consistent with conservative dynam-
ics that dominates the physical sciences” [58]. The generality
of this formulation can be appreciated by considering two
extreme cases of flow that emphasise the curl and divergence-
free components, respectively.

4.1. Conservative (Divergence-Free) Flow. When the random
fluctuations are negligible (i.e., Γ → 0), irrotational (curl-
free) flow Γ · ∇V = 0 disappears and we are left with
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divergence-free flow that describes conservative dynamics
(e.g., classical mechanics). These flows would be appropriate
for massive bodies with virtually no random fluctuations in
their motion. A simple example would be the Newtonian
mechanics that result from a Lagrangian (surprise) and anti-
symmetric matrix,

L(x̃) = ϕ(x) +
1
2
x′2

Q =
⎡

⎣

0 −1

1 0

⎤

⎦ =⇒ f = −Q∇L =
⎡

⎣

ẋ

ẋ′

⎤

⎦ =
⎡

⎣

x′

−∇ϕ

⎤

⎦.

(20)

This describes the motion of a unit mass in a potential field
ϕ(x), where the Lagrangian comprises potential and kinetic
terms. Things get more interesting when we consider random
fluctuations in the velocity,

Γ =
⎡

⎣

0 0

0 γ

⎤

⎦ =⇒

f = −(Γ + Q)∇L =
⎡

⎣

x′

−∇ϕ− γx′

⎤

⎦.

(21)

This introduces a motion-dependent reduction in the
motion of velocity (acceleration) that corresponds to fric-
tion. Note that friction is an emergent property of random
fluctuations in velocity (and nothing more). A more thor-
ough treatment of the relationship between the diffusion due
to random fluctuations and friction can be found in [57],
using the generalised Einstein relation. Consider now sys-
tems in which random fluctuations dominate and the con-
servative (divergence-free) flow can be ignored.

4.2. Dissipative (Curl-Free) Flow and Detailed Balance. Here,
irrotational (curl-free) flow dominates and the dynamics
have detailed balance, which means that flow can be ex-
pressed as an ascent on a scalar (value) potential: f = Γ ·
∇V = −Γ · ∇L. Crucially, because there is effectively no
conservative flow, the ergodic density concentrates around
the maximum of value (or minimum of surprise), which (in
the deterministic limit) induces a fixed point attractor. Curl-
free polices are introduced here, because of their central role
in optimal control and decision (game) theory: in the next
section, we will consider curl-free policies that are specified
in terms of value-functions, V(x̃). These range from rein-
forcement-learning heuristics in psychology to more formal
optimal control theory treatments. However, one should
note that these approaches are incomplete in the sense they
do not specify generic policies: a complete specification of
flow would require the vector potential W(x̃) or, equiva-
lently, the anti-symmetric matrix, Q(x̃). This means that it
is not sufficient to know (or learn) the value of a state to
specify a policy explicitly, unless the environment permits
curl-free policies with detailed balance (i.e., with no classical
or conservative dynamics).

Ergodic densities under detailed balance are closely con-
nected to quantal response equilibria (QRE) in economics and
game theory. QRE are game-theoretical formulations that

provide an alternative to Nash equilibria [18]. QRE do not
require perfect rationality; players are assumed to make nor-
mally distributed errors in their predicted payoff. In the limit
of no errors, QRE predict unique Nash equilibria. From the
point of view of game theory, the interesting questions per-
tain to different equilibria prescribed by the policy or state-
transitions. These equilibria are analogous to the solutions
of the Fokker-Planck equation above, where V(x̃) is called
attraction and Γ ∈ R+ is temperature or inverse sensitivity [9,
59]. In this context, the ergodic density p(x̃ | m) = exp(−L)
prescribes optimal states or choices probabilistically, in terms
of value, where V = −L. This prescription is closely related
to softmax or logit discrete choice models [60], which are
the most common specification of QRE. In economics, opti-
mal state-transitions lead to equilibria that maximise value
or expected utility. These are low-entropy densities with pro-
bability mass on states with high utility. We purse this theme
in below, in the context of optimal control theory and rein-
forcement-learning.

4.3. Summary. In this section, we have seen that a policy or
empirical priors on flow (specified by conditional beliefs
about the parameters of equations of motion) can be decom-
posed into curl and divergence-free components, specified
in terms of a value-function and antisymmetric matrix that
determines conservative flows of the sort seen in classical
mechanics. Crucially, this value-function is just negative sur-
prise and defines the ergodic (invariant) probability density
over hidden states. However, we have no idea about where the
policy comes from. All we know is that it furnishes a solution
to the Fokker-Planck equation; an idiocentric description of
an agent’s exchange with the environment. The remainder of
this paper will be concerned with how policies are specified
and how they are instantiated in terms of value-functions.

Evolutionary theory [61, 62] suggests that species (ran-
dom attractors) do not arise de novo but evolve through
natural selection (e.g., by punctuated equilibria or phyletic
gradualism; [63, 64]). We take this to imply that policies are
heritable and can be encoded (epigenetically) in terms of
value or cost-functions. We will assume the agents are equip-
ped with a cost-function that labels states as attractive or not

c(x | m) ≤ 0 : x ∈A =
⋂

ω̃∈Ω
A(ω̃),

c(x | m) > 0 : x /∈A.

(22)

Technically, cost indicates whether each state is in a kernel or
the set of fixed points of a random attractor [65]. In the deter-
ministic limit Γ → 0 this kernel reduces to an attractor in
the usual sense. From now on, we will use A ⊂ O to mean
the kernel of a random attractor or an attractor in the de-
terministic sense. The introduction of cost allows us to con-
nect attractors in dynamical systems with attractive states
in reinforcement-learning and optimal control. Informally,
cost labels states as either attractive (e.g. sated) or costly
(e.g., thirsty). The cost-function could also be regarded as
a characteristic function that indicates whether the current
state is characteristic of the class the agent belongs to.
This labelling is sufficient to prescribe policies that assure
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equilibrium solutions, as evidenced by the existence of evol-
ved agents. This question is how? We will begin by consider-
ing control theory.

5. Optimal (Fixed Point) Control and
Reinforcement-Learning

In this section, we look at policies and value from the point of
view of optimal control theory and reinforcement-learning.
In the previous section, value was considered to arise from
a decomposition of flow into curl, and divergence-free parts.
In that setting, value simply reports the surprise that a state is
occupied. In other words, value is an attribute of the policy.
Optimal control theory turns this around and assumes that
the policy is an attribute of value. This enables policies to
be specified by value, via cost-functions. In this section, we
will consider optimal control theory as optimising policies
(flows), whose attracting fixed-points are specified by cost-
functions. Crucially, because optimal control policies do not
specify divergence-free flow, they can only specify policies
with attracting fixed points (the maxima of the value func-
tion). In the next section, we turn to generalised policies that
exploit divergence-free flow to support itinerant policies. We
will persist with continuous time formulations in this section
and provide discrete time versions of the main results in the
appendices.

5.1. Optimal Control Theory. In optimal control theory and
its ethological variants (i.e., reinforcement-learning), adap-
tive behaviour is formulated in terms of how agents navigate
state-space to access sparse rewards and avoid costly regimes.
The aim is to find a (proximal) policy that attains long-term
(distal) rewards. In terms of the previous section, a policy
f = Γ · ∇V + ∇ ×W was specified via the scalar potential
or value V(x̃) also known as (negative) cost-to-go. In optimal
control theory, value is defined as the expected path-integral
of cost. More formally, the cost-to-go of x̃0 ∈ X is the cost
expected over future times t ∈ [t0,∞], starting with a point
density p(x̃, t0 | m) = δ(x̃0), which evolves according to (3)
(see Appendix E),

V(x̃0) = −
∫∞

t0

∫

c(x̃)p(x̃, t | m)dx dt =⇒

c(x̃) = f · ∇V(x̃) +∇ · Γ · ∇V(x̃).

(23)

Or in the deterministic limit Γ → 0

V(x̃0) = −
∫∞

t0
c(x̃(t))dt =⇒

c(x̃) = f · ∇V(x̃) = V̇(x̃(t)).

(24)

This definition of value as an expected path-integral of cost
(first line) allows cost to be expressed as a function of value
(second line). It says that cost is the expected increase in
value. This may sound counterintuitive but makes sense if
one considers a reward now means less in the future (i.e., a
decrease in the value of the next state). Crucially, (24) shows
that the maxima of the ergodic density can only exist where

cost is zero or less (cf. (22)): at a maximum of p(x̃ | m) =
exp(V) we have the following:

∇V(x̃) = 0

∇ · Γ · ∇V(x̃) ≤ 0

⎫

⎬

⎭

=⇒ c(x̃) ≤ 0, (25)

with c(x̃) = 0 in the deterministic limit. Put simply, costly
regions induce value gradients that guide flow towards points
where there is no cost (i.e., no gradients). In this sense, value
is sometimes called a navigation function. This means that,
in principle, we have a way to prescribe ergodic densities
with maxima (attracting fixed-points) that are specified with
a cost-function. Equation (23) shows that the cost-function
can be derived easily, given the policy and implicit value-
function. However, to specify a policy with cost, we have
to derive the flow from the cost-function. This entails as-
sociating a unique flow with the value-function and solving
(24) for value: this association is necessary because optimal
control does not specify the divergence-free part of the policy.
Solving (24) is the difficult problem optimal control and
value-learning deal with.

Let optimal control be denoted by π(x̃), where optimal
control maximises the ascent of the value-function

π(x̃) = arg max
u

f (x̃,u) · ∇V(x̃). (26)

This extremal condition associates a unique (optimal) flow
with every value-function such that value can be expressed
in terms of cost using (24)

max
u

f (x̃,u) · ∇V(x̃) = f (x̃,π) · ∇V(x̃) = c(x̃). (27)

This is the celebrated Hamilton-Jacobi-Bellman (HJB) equa-
tion. More general forms are provided in Appendix F for the
interested reader. The basic problem, posed by the solution
of the HJB equation for value, is that the value-function
depends on optimal control, so that future cost can be eva-
luated. However, optimal control depends on the value-func-
tion. This circular dependency can only be resolved by solv-
ing the self-consistent equations above, also known as the
dynamic programming recurrence. This is the raison d’être
for value-learning.

In engineering, planning, and control problems, the HJB
equation is usually solved by backwards induction (staring at
the desired fixed-point and working backwards). However,
this is not an ethological option for agents that have to learn
the value-function online. An alternative solution exploits
the fact that the expected increase in the value of the current
state is cost. This leads to a straightforward value-learning
scheme

V(x(t))←− V(x(t)) + δ : δ = V̇(x(t))− c(x(t)). (28)

Such that, at convergence, the value-function satisfies the de-
terministic limit of (24), at least for the states visited,

δ(t) −→ 0 =⇒ c(x) = V̇(x(t)) = f · ∇V(x). (29)

Heuristically, this scheme erodes the value landscape, creat-
ing gradients that ensure flow through costly regions of state-
space. The only points that are exempt from this erosion are
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maxima with zero flow and cost (or negative cost in the pre-
sence of fluctuations). These are the fixed-points of the at-
tracting set prescribed by the cost-function.

In (28), δ(t) reports the difference between the cost pre-
dicted V̇(x(t)) and observed c(x(t)). This is the negative cost
or reward prediction error. There is a vast literature on rein-
forcement-learning schemes that solve the discrete time ver-
sion of the HJB equation; either by backwards induction
(model-based schemes) or by using reward prediction error
(model-free schemes). Model-free schemes use a discrete
time version of (28) using the Robbins-Monro algorithm;
[66, 67]. Appendix G provides a brief survey of these
schemes. Intuitively, they all involve increasing the value of
the last state in proportion to the reward prediction error.
This is the basis of temporal difference schemes [2] and
Rescorla-Wagner [68] models of conditioning in psychology.
See [5] for a comprehensive review. If the agent has no model
of flow or state-transitions, similar schemes can be invoked
to optimise the policy, (e.g., actor-critic schemes). A general-
isation of value-learning, called Q-learning, considers a value
or quality Q : X × U → R on the joint space of states and
control [69]. Q-learning does not need a model in the form
of probabilistic transitions to optimise control, because the
quality of an action is encoded explicitly. Perhaps the most
important thing to come out of these modelling initiatives
is that phasic dopamine discharges in the brain are a prime
candidate for reporting reward prediction error [3, 70, 71].
In some cases theoretical predictions preempted empirical
findings; for example, “in the absence of an expected reward,
value system responses should show a decrease in activity at
the time when the reward would normally be delivered” [72],
which was confirmed subsequently [73].

5.2. Summary. In summary, one can decompose any policy
or expected flow into a part that is divergence-free and a part
that increases value, where value is negative surprise or the
log probability of a state being occupied. This means, given
expected flow and the amplitude of random fluctuations
about that flow, one can compute the ergodic density and
associated value-function. Furthermore, if one defines sur-
prise (negative value) of any state as the expected cost accu-
mulated from that state, then it is straightforward to evaluate
the cost-functions implied by any given policy. An example
is given in Figure 4 using the Lorentz attractor in previous
figures.

Using this definition of cost, reinforcement-learning and
optimal control theory try to derive value from cost-func-
tions by assuming controlled flow minimises accumulated
cost. This involves solving self-consistent equations that
entail these assumptions. The ensuing value-function guides
flow to ensure cost is minimized under constraints on
motion. In dynamical terms, this approach optimises a policy
in terms of its scalar potential, whose maxima coincide with
points in state-space where c(x) ≤ 0. However, despite its
prominence in the neurosciences, optimal control theory
is not very useful for understanding self-organisation in
biological systems. For example, one could not specify the
policy followed by the Lorentz attractor in Figure 4, because
its dynamics do not have detailed balance. In other words,

although one can derive a cost-function from any flow, one
cannot specify any flow with a cost-function: to specify any
given policy one would need the vector potentials (or anti-
symmetric matrices) above.

Furthermore, optimal control schemes and related heuri-
stics have several shortcomings: (i) they are notoriously slow,
requiring hundreds if not thousands of trials to learn even
the simplest value-function, (ii) value-learning based on sto-
chastic iteration depends on the same random fluctuations
that need to be suppressed to pursue the policy, (iii) optimal
control theory says nothing about exploration of state-space,
(iv) an exigent limitation of these schemes is that they only
account for policies with stationary fixed-points (i.e., agents
who would optimally do nothing). This means they cannot
account for the itinerant and context-sensitive nature of
real behaviour. To resolve these problems we now turn to
generalised policies that include divergence-free flow and are
constrained directly, as opposed to placing constraints on
value functions.

6. Generalised (Itinerant) Policies

In the previous section, cost was used to specify policies or
expected flow in terms of value-functions. However, policies
with detailed balance (of the form f = Γ · ∇V) place
severe constraints on the attractors they engender. In the
deterministic limit, they can only prescribe attractors with
a single fixed-point (per basin of attraction), which is a local
maximum of value V : X → R. This is not a useful des-
cription of real agents that exhibit itinerant dynamics with
quasiperiodic and chaotic behaviour. In what follows, we
consider policies in generalised coordinates of motion that
do not have detailed balance (and exploit divergence-free
flow); we will refer to these as generalised policies. These
policies provide a rich repertoire of dynamics with attracting
sets that can be specified directly by policies. In other words,
we dispense with the assumptions of optimal control theory
and consider the more general problem of how to specify
attracting sets. In what follows, cost-functions are used to
specify (unstable) fixed points for fairly generic flows. We
will see how this leads to a dynamical formulation of policies
and the emergence of optimal itinerancy. This section focuses
on the basics and provides some simple examples, noting
that there are many potential extensions; some of which have
already been addressed in the application of dynamical sys-
tems theory to biological systems (see below).

Generalised policies rest on the ensemble dynamics per-
spective: we start by considering how cost can restrict the
probability mass of an ergodic density to a subset of state-
space A ⊂ X. The Fokker-Planck equation (3) provides a
fundamental constraint on flow that must be satisfied when
Λp = 0 and

∇ · Γ∇p = ∇ · ( f p) = f · ∇p + p∇ · f =⇒

p(x̃ | m) = ∇ · Γ∇p − f · ∇p

∇ · f .
(30)

This straightforward result shows that as divergence ∇ · f
decreases, the sojourn time (i.e., the proportion of time
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Figure 4: Value and cost functions of dynamical systems. This figure shows the value and cost functions of the Lorentz attractor used in
the previous figures. These functions always exist for any global random attractor because value (negative surprise) is the log density of the
eigensolution of the systems Fokker-Planck operator. This means, given any deterministic motion (flow) and the amplitude of random fluc-
tuations (diffusion), we can compute the Fokker Planck operator Λ( f ,Γ) and its eigensolution p = E(Λ) and thereby define value V = ln p.
Having defined value, cost is just the expected rate of change of value, which is given by the deterministic flow and diffusion (see (23)). In
this example, we computed the eigensolution or ergodic density using a discretisation of state-space into 96 bins over the ranges: [−32, 32]×
[−32, 32] × [4, 64] and a diffusion tensor of Γ = (1/64) · I . The upper panels show the resulting value and (negative) cost functions for a
slice through state-space at x3 = 24. Note how cost takes large values when the trajectory (red line) passes through large value gradients. The
lower left panel shows the resulting ergodic density as a maximum intensity projection over the third state. A segment of the trajectory pro-
ducing this density is shown on the lower right.

a state is occupied) rises. This means divergence decreases
value and increases surprise. This is intuitive, in that diver-
gence represents the extent to which flow behaves like a
source or a sink at a given point. Attractive or valuable points
in state-space are sinks with low divergence. At the peaks of
the ergodic density its gradient is zero and its curvature is
negative:

p > 0

∇p = 0

∇ · Γ · ∇p < 0

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

=⇒ ∇ · f < 0. (31)

This means divergence must be negative. This generalises an
almost trivial result in deterministic systems: divergence is
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the sum of the flow’s real Lyapunov exponents ∇ · f =
tr(∂x̃ f ) = ∑

i Re(λi), where λi are the eigenvalues of the
Jacobian ∂x̃ f . If divergence is negative, then all the Lyapunov
exponents are negative, implying a stable fixed-point attrac-
tor.

This provides a straightforward way of ensuring the
peaks of the ergodic density lie in, and only in A ⊂ X . This
is assured if∇ · f < 0 when x̃ ∈ A and∇ · f ≥ 0 otherwise.
We can exploit this using the equations of motion in (21)

f (x, x′) =
⎡

⎣

x′

c(x) · x′ − ∂xϕ

⎤

⎦ =⇒ ∇ · f = c. (32)

This flow describes the classical (Newtonian) motion of a
unit mass in a potential energy well ϕ(x), where cost plays the
role of negative dissipation or friction. Crucially, under this
policy or flow, divergence is cost. This means the associated
ensemble density can only have maxima in regions of nega-
tive (divergence-based) cost. This provides a means to specify
attractive regions A ⊂ X by assigning them negative cost,
which brings us back to (22),

c(x) ≤ 0 : x ∈A,

c(x) > 0 : x /∈A.
(33)

Put simply, this scheme ensures that agents are expelled from
high-cost regions of state-space and get “stuck” in attractive
regions. Equivalently, cost can be regarded as destroying un-
attractive fixed points at the minima of the potential land-
scape ϕ(x). It should be noted that negative divergence does
not ensure an attractive fixed point; however, if divergence is
sufficiently negative, the point will act as a sink and become,
almost surely, part of the attracting set. We will see an exa-
mple of this below. In summary, in attractive regions with
low cost, flow slows down sufficiently to increase sojourn
time and implicitly value. This is not dissimilar to Win-Stay,
Lose-Shift strategies used to model optimal decisions in
game theory [74]. We will now illustrate how divergence-
based cost works using the mountain car problem.

6.1. The Mountain Car Problem. Here, we use active infer-
ence and a generative model based on (31) to solve a fairly
difficult problem in optimal control based purely on the the-
oretical treatment above. Crucially, the agent that solves this
problem has no prior information about constraints on its
action and yet it can respond adaptively, when supplied with
a cost-function, to find its goal almost immediately. Note that
there is no value-learning because we use divergence-based
cost, which does not require a value-function. Furthermore,
this behaviour is resilient to perturbations, because the policy
provides predictions, which are fulfilled by action.

In the mountain car problem, one has to park a mountain
car halfway up a hill. However, the car is not sufficiently
powerful to ascend the hill directly. This means the only solu-
tion to problem is to back away from the parking location
and then accelerate towards it, in the hope of acquiring
sufficient momentum to access the target. The upper left
panel of Figure 5 shows the landscape or potential energy
function (with a minimum at position, x = −0.5) that exerts

forces on the car. The car is shown at the target position at the
top of the hill at x = 1 (red dot). The equations of motion of
the car are shown below. Crucially, at x = 0 the force is unity
and cannot be overcome by the agent, because a squashing
function−1 ≤ σ(a) ≤ 1 is applied to action. The right panels
show the agent’s generative model in terms of the equations
of motion in (13). These correspond to (31), where the cost-
function is shown on the upper right. Here, the cost-function
c(x, z) has an auxiliary parameter z ∈ R that enables cost
to be switched on or off. This can be thought of as satiety,
such that when z = 0 cost is positive everywhere, except the
target location (see figure legend for details). In this example,
the sensory mapping and its assumed form were just g(x̃) =
g(x̃) = x̃. Notice that the true equations of motion
depend on action while the policy does not. This means the
actual behaviour of the agent is selected from a family of
flows by action. Figure 6 shows two exemplar flows under
different values for action. Under active inference, action
tries to realise conditional beliefs that are specified by the
policy or empirical priors on motion.

Figure 7 shows how paradoxical but adaptive behaviour
(moving away from a target to ensure it is secured later)
emerges from this sort of generalised policy on the motion of
hidden states, using c(x, 0). These simulations are the results
of integrating (1) and (2) (see Appendix H for details). The
inferred hidden states (upper right) show that the car explo-
res its landscape until it encounters the target and negative
cost or friction increases dramatically to prevent it escaping
(i.e., falling down the hill). This ensuing trajectory is shown
on the upper left panel. The paler lines provide exemplar tra-
jectories from other trials, with different starting positions.
In the real world, friction is constant (one eighth). However,
the car expects friction to change with position, enforcing
exploration or exploitation. These expectations are fulfilled
by action (lower right).

It is important to appreciate what has and what has not
been achieved in this simulation: using a single scalar cost-
function of position we have been able to induce adap-
tive goal-directed behaviour without any value-learning or
enforced exploration of the environment. This behaviour is
elicited immediately without the need for repeated trials or
exposures. Furthermore, the requisite exploration and ex-
ploitation is manifest as a direct consequence of the agent’s
priors, without the need for carefully calibrated stochastic
terms during training. This sort of adaptive behaviour is
reminiscent of foraging seen in insects and other biological
agents; where the environment is explored under autono-
mous dynamics until some reward is encountered. In an
experimental context, the above simulation could be re-
garded in terms of eliciting foot-shock escape behaviour
[75]; in that the uniformly high cost can only be avoided by
escaping to a low-cost location. It may seem implausible to
specify behaviour in terms of cost that is generally high every-
where; however, one can see easily how drive states might
correspond to high cost and subsequent foraging or seeking
behaviour [76, 77]. Mathematically, this reflects the fact that
cost plays a permissive role, in that it ensures maxima of
the ergodic density lie in low-cost regions of sate-space by
precluding maxima elsewhere. In this sense, the emphasis is
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on autovitiation of costly fixed points, as opposed to the auto-
poiesis of attractors.

What we have not addressed here is learning: we have
assumed that the agent has already learned the potential
energy function ϕ(x) that corresponds to environmental
constraints on its motion: see [6] for an example of this
learning. However, there is a subtle but important point
about learning: learning the parameters of the potential func-
tion corresponds to learning divergence-free flow, which
does not affect the ergodic density or fixed points of the
attractor. This contrasts with value-learning, in which
divergence-flow is unspecified and the parameters of the
value-function are learned. We now look at generalis-
ing divergence-based schemes and their role in prescribing
sequential and itinerant dynamics.

6.2. Optimal Itinerancy and Weakly Attracting Sets. There are
clearly many different ways in which we could formulate
generalised policies and constrain them with cost-functions:
We will concentrate on the use of cost to specify itinerant
policies: itinerancy is important because it provides a prin-
cipled explanation for exploration and foraging in ethology

[78]. Furthermore, it provides a key connection to dynamical
systems theory approaches to the brain [79] that emphasise
the importance of itinerant chaos [80], metastability [81],
self-organised critically [82], winnerless competition [83],
and attractors [84]. Similar constructs based on metastability
have been invoked to understand the dynamics of molecular
biology and the emergence of disease states like cancer [85].
The common theme here is the induction of itinerancy
though the destruction of fixed-points or the gradients
causing them [86]. The ensuing attractor ruins or relics [87]
provide a framework for heteroclinic orbits that are ubiq-
uitous in neurobiology, in electrophysiology [88], cognition
[89], and large-scale neuronal dynamics [90].

It is fairly easy to extend the mountain car example above
to produce itinerant behaviour with heteroclinic orbits and
winnerless competition [83]. Intuitively, this can be regarded
as adaptive behaviour in which various rewards are accessed
in sequence to maintain physiological homoeostasis (e.g.,
eating and drinking). This is straightforward to model by
making the cost-function state dependent. This enables cost
to be changed by the behaviours it induces. A simple example
is provided in Figure 8, in which we have made the satiety
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previous figure (the mountain car problem). These action-dependent flows provide a repertoire from which the agent has to compose a
policy that conforms to its prior beliefs.

parameter of the cost function a hidden state in the gen-
erative model (and environment) so that satiety increases
whenever cost is low. Cost can only be low in attractive states,
which means attractive states become unattractive when
occupied for too long. In the mountain car setup, when
satiety rises, cost is uniformly low everywhere and the agent
will simply settle at the bottom of the valley and stay there
until satiety decays sufficiently to make the parking location
attractive again. Figure 8 shows the equations of motion and
ensuing dynamics, using the same format as in previous
figures. This behaviour is characteristic of winnerless compe-
tition, in the sense that attractive fixed points are inherently
unstable and release the trajectory to the next fixed point in
the sequence. In this instance, instability is induced dyna-
mically through state-dependent cost. This causes the moun-
tain car to periodically rouse itself from the bottom of the
valley and visit the parking location for a short time, until
sated and then return to the bottom of the valley for a rest.

The vitiation of costly attractors is a mechanism that ap-
pears in several guises and has found important applications
in a number of domains. For example, it is closely related
to the notion of autopoiesis and self-organisation in situated
(embodied) cognition [42]. It is formally related to the des-
truction of gradients in synergetic treatments of intention-
ality [86]. Mathematically, it finds a powerful application in
universal optimisation schemes [91] and, indeed, as a model
of perceptual categorization [92]. The dynamical phenom-
ena, upon which these schemes rest, involve an itinerant

wandering through state-space along heteroclinic channels
(orbits connecting different fixed points). Crucially, these at-
tracting sets are weak (Milnor) attractors or attractor ruins
that expel the state until it finds the next weak attractor. The
result is a sequence of transitions through state-space that,
in some instances, can be stable and repeating. The result-
ing stable heteroclinic channels have been proposed as a
metaphor for neuronal dynamics and underlying cognitive
processing [83]. Furthermore, the notion of Milnor or
ruined attractors underlies much of the technical and cogni-
tive literature on itinerant dynamics. For example, one can
explain “a range of phenomena in biological vision, such
as mental rotation, visual search, and the presence of mul-
tiple time scales in adaptation” using the concept of weakly
attracting sets [92], see also [93]. It is this sort of dynamical
behaviour that may underpin generalised policies that are
specified directly in terms of equations of motion (as oppo-
sed to value functions in optimal control).

6.3. Summary. In this section, we have seen how cost can be
used to induce attractive fixed points in hidden state-space
while destroying unattractive fixed points. This does not
involve any value-learning but rests upon the fact that
stable fixed points result from flow with the negative diver-
gence. We have seen how these policies can be realised in
a straightforward manner under active inference and how
endowing cost with a context sensitivity leads to itinerant
but purposeful behaviour that is reminiscent of biological
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Figure 7: Active inference with generalised policies. This example shows how paradoxical but adaptive behaviour (moving away from a target
to secure it later) emerges from simple priors on the motion of hidden states. These priors are encoded in a cost function c(x, 0) (upper left).
The form of the agent’s (generalised) policy ensures that divergence is positive or friction is negative in regions of positive cost, such that the
car expects to go faster. The inferred hidden states (upper right: position in blue, velocity in green, and friction in red) show that the car
explores its landscape until it encounters the target and friction increases dramatically to prevent it escaping (i.e., falling down the hill).
The ensuing trajectory is shown in blue (lower left). The paler lines provide exemplar trajectories from other trials, with different starting
positions. In the real world, friction is constant (one eighth). However, the car expects friction to change with position, enforcing exploration
or exploitation. These expectations are fulfilled by action (lower right), which tries to minimise free energy.

systems. The basic message here is that it may be sufficient
to understand adaptive self-organised behaviour purely in
terms of the itinerant dynamics induced by an agent’s (imp-
licit) prior beliefs about its motion through state-space.
These dynamics and their associated attractors can be char-
acterised in terms of unstable fixed points (weak attractors)

and, in most instances, an associated sequence of heteroclinic
orbits. In this dynamical setting, a natural way to specify (and
inherit) the weakly attracting sets that define phenotypic
behaviour is to destroy or preclude (stable) fixed points
that do not belong to attracting set. Note that this stands
in stark contrast to optimal control theory, which tries
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satiety, which has been made a hidden (physiological) state. This makes cost time dependent and sensitive to the recent history of the agent’s
states. Placing dynamics on cost enables us to model sequential behaviour elicited by cost functions that are suppressed by the behaviour they
elicit. The left panels show the true (upper) and modelled (lower) equations of motion on hidden states, where the latter are constrained by
the cost function in Figure 5. Here, satiety increases with rewards (negative cost) and decays with first-order kinetics. The resulting behaviour
is summarised in the right-hand side panels. The upper left panel shows the predictions of hidden states and prediction errors; where
predictions are based upon the conditional beliefs about hidden states shown on the upper right. These predictions prescribe optimal action
(lower right), which leads to the behavioural orbits shown on the lower left. The characteristic feature of the ensuing dynamics is a sequential
return to unstable fixed points; denoted by the minimum of the potential landscape (green dots) and the cost-dependent (unstable) fixed
point at the target location (red dots).

to optimise the flow using value-functions. However, the
(generally intractable) computation of these functions may
be unnecessary and unnatural, if it is sufficient to place
straightforward constraints on the flow that defines value.

7. Discussion

This paper started with the existence of agents (systems) with
defining characteristics that are conserved over time. We used
arguments from ergodic theory, random dynamical systems
and information theory to identify the imperatives for their
dynamics. The picture that emerges can be summarised as

follows. Agents are equipped (by evolution or engineering)
with a characteristic (cost) function of the states they should
occupy or possess. This function places constraints on prior
beliefs about motion through state-space (state transitions).
Action realises this policy by suppressing random or sur-
prising deviations from the ensuing predictions, thereby
minimising surprise and the entropy of the ergodic density
(over long periods of time). The result is a random dynamical
attractor, with small measure that ensures agents occupy a
limited attracting set of states (or expresses phenotypic traits
that are conserved over time). Every policy (flow) has an
associated value-function, which is the (log) ergodic density
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(or negative surprise) of any generalised state. The self-con-
sistency of cost-functions and the ergodic densities they
engender is assured by natural selection; in the sense that
cost-functions that do not induce ergodic behaviour cannot
be inherited. In the final sections, we compared and con-
trasted policies from optimal control theory with generalised
policies based on dynamical systems theory that lead to itine-
rant behaviour.

7.1. Dynamics versus Reinforcement-Learning. The formula-
tions in this paper emphasise the link between cost-functions
and policies. Optimal control theory and reinforcement-
learning assumes value is expected cost in the future. This
enables the policy to be optimised in terms of control, such
that the expected path integral of cost is minimised. The
ensuing policies are prescribed directly by value, which acts
as a guiding function. This entails finding a solution to a
set of self-consistent equations linking value and cost. How-
ever, this is a difficult problem and leads to some inconsisten-
cies; for example, the autonomous or random explorations
of state-space needed to furnish solutions to the Bellman
equations are precisely the fluctuations that optimal control
is trying to avoid. Generalised policies resolve these diffi-
culties because they do not define value as expected cost:
value is defined in terms of the states that are visited most
frequently (i.e., the ergodic density), and is a function of
flow (the policy). The last section tried to show that there
are straightforward ways to place constrain policies; namely,
to destroy unattractive fixed points. In summary, reinforce-
ment-learning starts with a cost-function from which the
value-function is derived. The value is then used to optimise
a policy. Conversely, in the setting of random attractors,
cost-functions constrain the policy directly. By definition,
the policy then maximises value or minimises surprise. This
eschews the solution of the appropriate Bellman equation,
provides a principled explanation for exploratory or itinerant
dynamics, and affords an efficient and biologically plausible
scheme. Furthermore, it allows action to actively suppress
unpredicted deviations from the policy.

The importance of dynamical itinerancy has been articu-
lated many times in the past [94], particularly from the pers-
pective of computation and autonomy; see [93] for a focus
on Milnor attractors. It has also been considered formally in
relation to cognition; see [87] for a focus on attractor relics,
ghosts, or ruins. Indeed, there is growing interest in under-
standing brain dynamics per se in terms of itinerancy and
metastability [81, 83, 88, 89]. Tani et al., [95] consider itine-
rant dynamics in terms of bifurcation parameters that gener-
ate multiple goal-directed actions (on the behavioural side)
and optimization of the same parameters (when recognizing
actions). They provide a series of elegant robotic simulations
to show generalization by learning with this scheme. See
also [96] for interesting simulations of itinerant exploration,
using just prediction errors on sensory samples over time.

Reinforcement-learning frames the problem of adaptive
behaviour in terms of accessing distal and sparse rewards. In
one sense this is not a problem; it is the solution entailed by
an agent and its interactions with the environment. In this
view, agents do not seek out valuable (rewarding) states;

valuable states are just states the agent frequents. This chal-
lenges any preconception that optimal control has a central
or unique role in adaptive behaviour. Having said this, the
premise of optimal control and reinforcement-learning that
agents minimise expected future costs is a compelling and
enduring heuristic. This heuristic may be exploited by the
brain, particularly in terms of high-level (e.g., cognitive) pro-
cessing using model-based schemes.

7.2. Value-Learning versus Perceptual Learning. The moun-
tain car example can be regarded as a model of behavioural
responses constrained by innate or formal priors (cost-func-
tions). However, most of the interesting issues in a biological
setting may rest on acquired or empirical priors that are opti-
mised during perception. Irrespective of the details of this
optimisation, under active inference, optimisation becomes
a perceptual inference and learning problem. In other words,
the notion that stimulus-response links are selectively rein-
forced during learning disappears and is replaced by the
learning of stimulus-stimulus associations. These prescribe
conditional beliefs, which action fulfills. This is important
because it places much of behaviourism in the domain of
perception and reiterates the close links between action and
perception.

It is well know from the complete class theorem that there
is a close relationship between priors and cost-functions; in
the sense that any admissible decision rule is Bayes-optimal
for at least one prior and cost-function [97]. The treatment
in this paper suggests that when decisions involve inferred
states of the world, cost-functions can be treated as priors.
Heuristically, cost-functions are a fixed attribute of the agent
and can therefore only manifest as formal priors on the
agent’s inference and consequent behaviour. This is partic-
ularly important in a biological setting, where natural selec-
tion endows agents with formal or innate priors that con-
strain their exchanges with the environment.

8. Conclusion

In this paper, we have tried to understand optimal control
theory in relation to the free energy principle. We started
with a review of ensemble dynamics and the perspective
it provides on reinforcement-learning and optimal control.
These approaches furnish policies or equations of motion
that converge on attractors in state-space that are specified
by a cost-function. Conventional schemes specify these equa-
tions in terms of value-functions or cost-to-go, which entail
the solution of the appropriate Bellman equation. We consi-
dered a dynamical alternative based on the selective destruc-
tion of stable fixed-points in costly regimes of state-space.
Although less efficient at minimising the path integral of cost,
this divergence-based scheme involves no value-learning and
accounts for exploratory dynamics that do not need stochas-
tic interventions. In this context, the policies of optimal con-
trol become formal priors in generative models used to infer
hidden states and predict sensations. Action fulfils these pre-
dictions by suppressing a free energy bound on surprise.
Crucially, optimising action, perceptual inference, perceptual
learning, and the priors themselves are all mandated by the
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free energy principle. This principle is simply a restatement
of the fact that adaptive systems resist a natural tendency to
disorder. In summary, agents must be equipped with policies
that prescribe their expected motion through state-space
(i.e., state transitions) and the ability to counter surprising
(random) deviations from the expected trajectory though
action. The motion prescribed by the policy (and realised by
action) induces low entropy densities (in terms of ensemble
dynamics) or random attractors with small measure (in
terms of random dynamical systems). These are sufficient to
explain to existent of ergodic self-organising systems, whose
attributes are conserved over time.

Appendices

A. Entropy Production

This appendix shows that the dispersion of states x ∈ X by
random fluctuation increases entropy. This implies (autopoi-
etic) flow must reduce entropy to maintain an invariance
probability density over states. This is based on the following
lemma.

Lemma A.1 (entropy production). The entropy production of
a differentiable dynamical system (T ,X , f ) can be decomposed
into a flow and non-negative dispersion term

Ḣ(X) =
∫

X
∇ · ( f p) ln p(x)dx +

∫

X

∇p · Γ · ∇p

p(x)
dx.

(A.1)

Proof. We start with the Fokker-Planck equation describing
the rate of change of an ensemble density p(x, t) in terms of
dispersion due to random fluctuations and flow f : X → X ,

ṗ(x, t) = ∇ · Γ∇p −∇ · ( f p). (A.2)

Without loss of generality, we assume some diffeomorphism
of state-space in which the diffusion tensor can be expressed
as Γ(x) = γ(x)I , where γ(x) ∈ R+. The existence of this state-
space is assured by the positive definiteness of the diffusion
tensor. The entropy is

H(X) = −
∫

p ln pdx =⇒

Ḣ(X) = −
∫

ṗ ln pdx −
∫

ṗdx = −
∫

ṗ ln pdx.

(A.3)

The second term in the expression for entropy production
Ḣ(X) disappears because probability mass is conserved. The
rate of change of entropy can be decomposed into flow- and
dispersion-dependent terms by substituting (A.2) into (A.3)

Ḣ(X) =
∫

∇ · ( f p) ln pdx − γ
∫

(∇2p
)

ln pdx. (A.4)

Finally, the self-adjoint property of the Laplacian operator
∇2 means that the second (dispersion) term is greater or

equal to zero:
∫

(∇2p
)

ln pdx =
∫

p
(∇2 ln p

)

dx

=
∫

(∇2p
)

dx −
∫ ∇p · ∇p

p
dx

= −
∫ ∇p · ∇p

p
dx ≤ 0.

(A.5)

The integral of the curvature ∇2p disappears because p :=
p(x, t) is a proper density. Substituting (A.5) into (A.4) gives
(A.1).

Remarks A.2. Equation (A.5) means that random fluctua-
tions increase entropy in proportion to their amplitude and
the roughness of the ensemble density. In the absence of
deterministic flow, the entropy increases until the density
has dispersed and its gradients disappear; that is, ∇p =
0 ⇒ Ḣ(X) = 0. In the presence of flow, (A.4) implies,
at steady state Ḣ(X) = 0 and flow decreases entropy to
offset dispersion-related increases. See Tomé [41] for a fuller
treatment in terms of probability currents.

B. Sensory Entropy

This appendix shows that the entropy of hidden states is
bounded by the entropy of sensory states. This means that if
the entropy of generalised sensory signals is minimised, so is
the entropy of the hidden states that caused them. We will
assume sensory states are an analytic function of hidden
states plus some fluctuations. This implies (in generalised co-
ordinates of motion) that

s = g(x) + ωs

ẋ = f (x) + ωx
=⇒

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

s

s′

s′′

...

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

g(x)

∂xg · x′
∂xg · x′′

...

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ωs

ω′s
ω′′s

...

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (B.1)

where the second equability can be written more compactly
as s̃ = g̃(x̃) + ω̃.

Lemma B.1 (entropy bounds). If the sensitivity of the sensory
mapping |∂g̃/∂x̃| is uniform over hidden states, then the ent-
ropy of hidden states is bounded by the entropy of sensory states,
to within an additive constant:

H(S | m) ≥ H(X | m) + ln

∣

∣

∣

∣

∣

∂g̃

∂x̃

∣

∣

∣

∣

∣

. (B.2)

Proof. Because the random fluctuations are conditionally in-
dependent, we have (Theorem 6.5 in [98, page 151]) the fol-
lowing:

H
(

˜S | m
)

≥ H
(

˜X | m
)

+
∫

p(x̃ | m) ln

∣

∣

∣

∣

∣

∂g̃

∂x̃

∣

∣

∣

∣

∣

dx̃. (B.3)

Because the log sensitivity is constant, it can be placed out-
side the integral, which integrates to unit, giving (B.2).
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Remarks B.2. Here. ∂g̃/∂x̃ is the sensitivity or gradient of
the generalised sensory mapping with respect to the hidden
states. The integral in (B.2) reflects the fact that entropy is
not invariant to a change of variables and assumes that the
sensory mapping g̃ : X → S is diffeomorphic (i.e., bijective
and smooth). This requires the hidden and sensory state-
spaces to have the same dimension, which can be assured by
truncating generalised states at an appropriate order to make
dim(S | m) = dim(X | m).

C. The Laplace Assumption

This appendix shows why it is only necessary to retain the
conditional mean under a fixed-form Laplace assumption
about the recognition density. If we assume q(ϑ) = N (μ̃,Σ)
is Gaussian (the Laplace assumption), then we can express
free energy in terms of its sufficient statistics; the mean and
covariance, (μ̃,Σ) using Gibb’s energy U(t) = − ln p(s̃, ϑ | m)
and n = dim(μ̃)

F = U
(

μ̃
)

+
1
2

tr

(

Σ
∂

∂μ̃2
U

)

− 1
2

ln|Σ| − n

2
ln 2πe. (C.1)

We can now minimise free-energy with respect to the condi-
tional precision Π = Σ−1 by solving ∂ΣF = 0 to give

∂ΣF = −1
2
Π +

1
2

∂

∂μ̃2
U = 0 =⇒ Π = ∂2

∂μ̃2
U
(

μ̃
)

. (C.2)

Critically, this is an analytic function of the mean and does
not have to be evaluated explicitly. Furthermore, we can sim-
plify the expression for free-energy by eliminating the curva-
ture from (C.1) to give F = U(μ)−(1/2) ln |Σ|−(n/2) ln 2π.

D. Value and Ergodic Densities

For simplicity, we will ignore the state-dependence of Q(x)
and assume it is constant; a full treatment can be found in
[58].

Lemma D.1 (ergodic density). The ergodic density of a dyna-
mical system with Fokker Planck operator Λ = ∇ · (Γ∇ − f )
and flow f = (Γ + Q)∇V subject to Q = −QT is given by

p(x | m) = exp(V) =⇒ ∇p = p∇V =⇒ Λp = 0. (D.1)

Proof. By substituting∇p = p∇V and f = Γ∇V+Q∇V into
the Fokker Planck operator we get

Λp = ∇ · Γ∇p −∇ · ( f p)

= ∇ · (pΓ∇V)−∇ · (pΓ∇V)−∇ · (pQ∇V)

= −p∇ · (Q∇V)− (Q∇V) · ∇p

= −p(∇ · (Q∇V) + (Q∇V) · ∇V)

(D.2)

one can see that (D.2) is satisfied when the second compo-
nent of flow Q∇V is divergence free and orthogonal to ∇V .

Given Q = −QT , it is easy to see both these conditions are
met

∇ · (Q∇V) = tr(Q∂xxV) = 0,

∇V · (Q∇V) = tr
(

Q∂xV∂xV
T
)

= 0.
(D.3)

This means that p = exp(V) is the ergodic density or eigen-
solution Λp = 0 of the Fokker-Planck operator describing
density dynamics.

E. Cost Functions and Value

Here, we derive cost as a function of value, using discrete and
continuous time formulations.

Discrete Case. For the discrete case, let c (resp., v) be a row-
vector of the cost (resp., value) of every discrete state xt ∈ X
at time t and Pi j = p(xt+1 = i | xt = j) be the transition
probability or policy. By definition, value is (assuming cP∞ =
0)

v = −
∞
∑

t=0

cPt =⇒

vP = −
∞
∑

t=1

cPt = v + c =⇒ c = vP− v = v1 − v0.

(E.1)

The subscripted vt := vPt is the value expected at time step t
in the future. It can be seen that cost is just the expected
increase in value over the next time step.

Continuous Case. In the continuous time case, the value of
x0 ∈ X is the cost expected over future times t ∈ (t0,∞],
starting with a point density, p(x, t0 | m) = δ(x0). In the
infinite horizon case, assuming the cost expected at equi-
librium is zero; that is,

∫

x∈X
c(x)p(x | m)dx = 0. (E.2)

We have, by definition

V(x0) = −
∫∞

t0

∫

x∈X
c(x)p(x, t | m)dx dt =⇒

V̇(x0) =
∫

c(x)p(x, t0 | m)dx = c(x0)

=
∫

V(x) ṗ(x, t0 | m)dx

=
∫

V(x)
(∇ · Γ · ∇δ(x0)− f · ∇δ(x0)

−δ(x0)∇ · f )dx
= ∇ · Γ · ∇V(x0) +∇ · (V(x0) f

)

−V(x0)∇ · f =⇒
c(x) = f · ∇V(x) +∇ · Γ · ∇V(x) = V̇(x).

(E.3)

This says that the increase in value expected over time is
the cost at any location in state-space. However, this is also
the increase in expected value over state-space, which can
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be expressed using the Fokker-Planck equation (A.2). Eval-
uating this expression at the initial density shows that cost
comprises two components; one due to deterministic flow
and another to dispersion (the first and second terms in the
last equality).

F. Optimal Control and Policies

This appendix provides a brief review of classical formula-
tions of optimal control in discrete and continuous time.
For simplicity, we will ignore random fluctuations in the
continuous case. The value-function prescribes an optimal
policy, which can be expressed in discrete and continuous
form as

π∗ = arg max
π

vP(π),

π∗ = arg max
π

f(x,π) · ∇V(x),
(F.1)

where π parameterises the transition probability matrix in
the discrete case and u = π(x) represents a mapping between
states and control in the continuous case. Equation (F.1)
means that the optimal policy P(π∗) maximises the expected
value of the next state. This is the solution to the Bellman
and Hamilton-Jacobi-Bellman equations for the discrete and
continuous cases, respectively,

c = max
π
{vP(π)− v},

c(x) = max
π
{f(x,π) · ∇V(x)}.

(F.2)

More generic forms of the Bellman and HJB equations con-
sider loss incurred by the state-transitions per se, in which
case the cost-function is brought into the maximum operator

max
π
{vP(π)− c(π)− v} = 0,

max
π
{f(x,π) · ∇V − c(x,π)} = 0.

(F.3)

Furthermore, one might want to consider cost-functions that
change with time giving, for the continuous case

max
π
{f(x,π) · ∇V − c(x,π)} = −V̇ . (F.4)

Although important cases in engineering problems, these
generalisations are not so interesting from the point of view
of ensemble dynamics with ergodicity (especially when one
considers cost-functions on generalised states). However, in
differential game theory, the HJB equation generalizes to the
Hamilton-Jacobi-Isaacs (HJI) equations [99].

G. Value Learning and Optimality Equations

This appendix reviews standard solutions to the Bellman
(discrete) and HJB (continuous) equations based on the
Robbins-Monro algorithm (or stochastic iteration algorithm
[67]) for solving systems of the form v = h(v),

v ←− v + ρδ : δ = h(v)− v. (G.1)

Here, δ corresponds to a prediction error and ρ ∈ [0, 1] de-
termines the convergence rate.

Discrete Case. Using h(v) = vP(π∗)−c from (F.3), one could
optimize the value-function of all states simultaneously using
(G.1) [100]. This is an example of a model-based scheme
because it rests on a model of state-transitions implicit in the
policy P(π). Simpler model-free schemes adopt a stochastic
or sampling approach to approximating the value-function
with an estimate v(xt) of each state visited

v(xt)←− v(xt) + ρδt : δt = v(xt+1)− v(xt)− c(xt). (G.2)

Here, δ corresponds to a reward prediction error. When its
average converges to zero, then the long-term average vi =
〈v(xi)〉t is the desired solution to the Bellman equation,

〈δt〉t = 0 =⇒ c(xt) = 〈v(xt+1)− v(xt)〉t =⇒ c = vP(π∗)− v.
(G.3)

The variance of v(xi) can be made arbitrary small by dec-
reasing ρ. Q-learning rests on a similar scheme, but replaces
value with quality Q : X×U → R on the joint space of states
and action

Q(xt,ut)←− Q(xt,ut) + ρδ : δ = max
u

Q(xt+1,u)−Q(xt,ut)

− c(xt,ut).
(G.4)

From this stochastic value iteration scheme, one can calculate
expected reward for any state-action pair. A related state-
action-reward-state-action scheme [101] is

Q(xt,ut)←− Q(xt,ut) + ρδ : δ = Q(xt+1,ut+1)−Q(xt,ut)

− c(xt,ut).
(G.5)

This learns the Q-values associated with taking the policy
it follows while Q-learning learns the Q-values associated
with the optimal policy. While these are important genera-
lisations, one can simplify things theoretically by replacing
Q-values with a value-function on the Cartesian product of
state and action spaces; that is, Q(x,u) ≡ V(x) : x ∈ X ×U .
This implicit factorisation of state-space has been used for
approximating value-functions in Markov decision processes
with large state and action spaces [102].

Continuous Case. A neurobiologically plausible continuous-
time scheme was introduced in [72]. This scheme exploits the
fact that the derivative of the value-functional (time-varying
value of the current state) is just cost V̇(x(t)) = c(x) (in the
deterministic limit of (E.3)). Here, the prediction-error or
teaching signal δ = υ̇c + υ̇a is the derivative of innate and
acquired value (e.g., the phasic responses of dopaminergic or
cholinergic neurons). Innate value is the antiderivative of
reward υ̇c = −c(x) registered by specific neuronal systems
(e.g., the lateral hypothalamic area). Acquired value υa is pa-
rameterised by connection strengths coupling sensory states
to the neuronal structures that encode it (e.g., the amyg-
dala). Connection strengths mediating acquired value and
stimulus-response links are optimized by conventional asso-
ciative plasticity. Crucially, this plasticity is modulated or
enabled by the teaching signal. After convergence,

δ = υ̇c + υ̇a = 0 =⇒ υ̇a = −υ̇c = c(x) = V̇(x(t)), (G.6)
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the acquired value becomes the true value υ̇a = V̇(x(t)) (to
within an additive constant).

H. Integrating Active Inference Schemes

The simulations in this paper involve integrating time-vary-
ing states in both the environment and the agent as a single
system, which can be modelled with the following ordinary
differential equation, where random fluctuations enter as
analytic forcing terms and defining ˜f := f(x̃, a, θ):

u̇ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢
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˙̃s
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˙̃μ

ȧ

⎤

⎥
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⎥

⎥

⎥
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⎢
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⎢

⎢
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⎥
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. (H.1)

To update these collective states we use a local linearization;
Δu = (exp(ΔtI)− I)I(t)−1u̇ over time steps of Δt, where

I = ∂u̇

∂u
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 D∂x̃g̃ D D∂ag̃

∂x̃˜f I ∂a˜f

D

D
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.

(H.2)

Because action can only affect free energy through sensory
data, it can only affect sensory prediction error. Therefore
action dynamics are as follows:

ȧ = −∂aF = −∂as̃ · ε̃s,

∂as̃ = ∂x̃g̃
∑

i
D−i

(

∂x̃˜f
)i−1

∂a˜f .
(H.3)

The partial derivative of the generalised sensory data with
respect to action depends on changes in the generalised
motion of hidden states and is specified by the generative
process. Note that this partial derivative depends on the un-
known generative process. However, sensations are generally
produced in a simple and direct way by action (e.g., propri-
oception with stretch receptors), such that the dependency
can be treated as known.

These equations may look complicated but can be evalu-
ated automatically using numerical derivatives. All the simu-
lations in this paper used just one routine—spm ADEM.m.
Demonstrations of this scheme are available as part of
the SPM software (http://www.fil.ion.ucl.ac.uk/spm; DEM
demo.m), which reproduces the example shown in Figure 7.
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