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In neuroimaging, functional mapping usually implies mapping function
into an anatomical space, for example, using statistical parametric
mapping to identify activation foci, or the characterization of distrib-
uted changes with spatial modes (eigenimages or principal compo-
nents) (Friston et al., 1993a). This article is about a complementary
approach, namely, mapping anatomy into a functional space. We de-
scribe a simple variant of multidimensional scaling (principal coor-
dinates analysis; Gower, 1966) that uses functional connectivity as its
metric. The scaling transformation maps anatomy into a functional
space. The topography, or proximity relationships, in this space em-
body the functional connectivity among brain regions. The higher the
functional connectivity, the closer the regions. Functional connectivity
is defined here as the correlation between remote neurophysiological
events. The technique represents a descriptive characterization of an-
atomically distributed changes in the brain that reveals the structure
of corticocortical interactions in terms of functional correlations. To
illustrate the approach we have analyzed data from normal subjects
and schizophrenic patients obtained with PET during the performance
of word generation tasks. In particular, we focus on prefrontotemporal
integration in normal subjects and show that in schizophrenia, the
left temporal regions and prefrontal cortex evidence abnormal func-
tional connectivity.

This article is about the topography of functional brain spaces
and corticocortical interactions. We present a descriptive
method for characterizing the interrelationships of cortical
areas in terms of functional connectivity. The method em-
ploys metric multidimensional scaling with functional con-
nectivity as the metric, or measure, that determines the prox-
imity between cortical areas. The objective is to transform
anatomical space so that the distance between cortical areas
is directly related to their functional connectivity. This trans-
formation defines a new space whose topography is purely
functional in nature.

Functional Connectivity
In the analysis of neuroimaging, time series functional con-
nectivity is defined as the temporal correlations between
spatially remote neurophysiological events (Friston et al.,
1993a). This definition is operational and provides a simple
characterization of functional interactions. The alternative is
to refer explicitly to effective connectivity (i.e., the influence
one neural system exerts over another) (Friston et al.,
1993b). These sorts of concepts were originated in the anal-
ysis of separable spike trains obtained from multiunit elec-
trode recordings (e.g., Gerstein and Perkel, 1969; Gerstein et
al., 1989; Aertsen and Preissl 1991; Gochin et al., 1991). In
electrophysiology, it is often necessary to remove the con-
founding effects of stimulus-locked transients (which intro-
duce correlations that are not causally mediated by direct
neural interactions) in order to reveal the underlying effective
connectivity. The confounding effect of stimulus-locked tran-
sients is less problematic in neuroimaging because the pro-
mulgation of dynamics from primary sensory areas onward is
mediated by neural connections (usually reciprocal and inter-

connecting). However, it should be remembered that func-
tional connectivity is not necessarily due to effective connec-
tivity and, where it is, effective influences may be indirect.
Because functional connectivity (as defined here) is simply a
comment on observed correlations, it cannot be used to infer
causal relationships in any rich way; however, it does provide
a very useful phenomenological characterization of cortical
interactions at any scale.

Clearly, the biological nature of functional connectivity in
neuroimaging is different from functional connectivity in
electrophysiology. The neural networks that might be identi-
fied on the basis of phase-locked interactions (using multiunit
electrode recordings) in a particular and transient brain state
are not the same as macroscopic systems identified on the
basis of correlated blood flow observed with neuroimaging
over a variety of brain states. However, in both instances the
distributed and coordinated physiological changes can be
used to infer something about functional interactions either
at the level of neural dynamics and phase-locked cohorts or
at the level of hemodynamics and cortical coactivations.

Consider two times-series of K hemodynamic measure-
ments, from voxels i and j in the brain. Let m'k denoted the
feth measurement from voxel i. The functional connectivity
between i and j can be defined as

= 2 mvm'k, (1)

where the time series have been normalized to zero mean
and unit sum of squares (Euclidean normalized, i.e.,1(mlj2 =
1). pM is also known as the scalar or dot product of vectors
m' and m1. Patterns of functional connections, or correlations,
define distributed brain systems. These systems are identified
using principal component analysis (PCA) or singular value
decomposition (SVD) of the functional connectivity matrix.
The distributed systems that ensue are called eigenimages or
spatial modes, and have been used to characterize the spa-
tiotemporal dynamics of physiological time series from sev-
eral modalities, including multiunit electrode recordings (May-
er-Kress et al., 1991), EEG (Friedrich et al., 1991), MEG (Fuchs
et al., 1992), PET (Friston et al., 1993a), and functional MRI
(Friston et al., 1993c).

In the present application, functional connectivity is used
in a different way, namely, to constrain the proximity of two
cortical areas in some functional space. This application cap-
italizes on the fact that the functional connectivity between
i and> is the same as between j and i. This symmetry means
functional connectivity can support a measure of distance in
a Euclidean sense (a metric). The space on which this mea-
sure is made is constructed using multidimensional scaling.

Multidimensional Scaling
Multidimensional scaling is a descriptive method for repre-
senting the structure of a system, on the basis of pairwise
measures of similarity or confusability (Torgerson, 1958; Shep-
ard, 1980). The resulting multidimensional spatial configura-
tion of the system's elements embodies (in its proximity re-
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lationships) the comparative similarities. The technique was
developed primarily in the analysis of perceptual spaces. The
proposal that stimuli be modeled by points in space, so that
perceived similarity is represented by spatial distances, goes
back to the days of Isaac Newton (1704). The implementation
of this idea is, however, relatively new (Kruskal, 1964; Gower,
1966; Shepard, 1980). In this article we focus on classical or
metric scaling (see Chatfield and Collins, 1980). The input to
a scaling analysis is a (w X ri) square symmetric matrix of
similarities, and the output is an (w X r) matrix of coordinates
of n point in r dimensions. A typical model underlying clas-
sical scaling can be summarized by

dM = (2)

where Fmon(-) is a decreasing monotonic function. 8,, is the
measure of similarity between elements i and j . di( is the dis-
tance between them in a Euclidean space, x*, is the projection
of the fth point onto the fth dimension (= means equal, ex-
cept for unspecified error terms). The points are usually plot-
ted in a subspace of this Euclidean space spanned by the r
eigenvectors (of the matrix of dot products of the point lo-
cations) with "large" eigenvalues (Carroll and Wish, 1974;
Chatfield and Collins, 1980; Shepard, 1980) (see below). The
resulting distribution of points in the new r-dimensional sub-
space will capture, in a parsimonious way, the structure of
the comparative similarities.

Multidimensional Scaling with Functional Connectivity
In this section we observe that if the correlation or functional
connectivity is used as the measure of similarity between
brain regions, then there is a very simple way to compute the
distances d£j above to construct a functional (multidimension-
al scaling) space. The approach is equivalent to a principal
coordinates analysis (Gower, 1966) of the imaging time series. .

One normally considers K measurements at n voxels as K
points in an n-dimensional space (w-space). However, there
is an entirely equivalent representation of n points in a K-
space. The distance between points in this X'-space can be
used directly as a measurement of diy This is the same as using
the functional connectivity (p,,) as the measure of similarity
CStj = p,,), where the function relating similarity and distance
is given by

= dl( = V 2 V l - Pl).- P.i- (3)

The points in Jf-space are simply rotated to reveal the
greatest structure using the eigenvectors of the K X K dot
product matrix of their locations. This rotation brings the
"principal coordinates" of the distribution into view. The ve-
racity of Equation 3 is demonstrated by noting that orthogo-
nal rotation does not change Euclidean distances, and so

(x\ - (m'k -

C4)

where m't and x1, are the coordinates of the points before and
after rotation. This approach to identifying the coordinates x1,
is called a principal coordinates analysis (Gower, 1966), al-
though the term classical scaling is preferred to avoid con-
fusion with PCA (Chatfield and Collins, 1980).

Although care has been taken to relate this characteriza-
tion of functional topography to classical scaling, principal
coordinates analysis, and metric multidimensional scaling, the
underlying idea is very simple: imagine K measures from n

voxels plotted as n points in a X-space. Because they have
been normalized to zero mean and unit sum of squares, these
points will fall on an K — 1 dimensional hypersphere. The
closer any two points are to each other, then the greater their
correlation or functional connectivity (in fact, the correlation
is the cosine of the angle subtended at the origin). The dis-
tribution of these points embodies the functional topography.
A view of this distribution, that reveals the greatest structure,
is simply obtained by rotating the points to maximize their
apparent dispersion (variance). In other words, one looks at
the subspace with the largest "volume" (spanned by the ei-
genvectors with the largest eigenvalues). Note that in this
view (or projection) the distances seen will not be the actual
distances in the K — 1 dimensional space. One can either
regard this discrepancy as being attributable to "noise"
(where the variance in the remaining dimensions is sufficient-
ly small to be ignored and the equality in Eq. 3 becomes =),
or acknowledge explicitly that one is looking at a high di-
mensional space "from the side."

Mathematically, this rotation can be implemented using
SVD. Let M = [m1 . . . mn] be a matrix of the normalized data
(one column vector per voxel time series), and X = [x1 . . .
xr]T be the matrix of desired coordinates C denotes transpo-
sition). Using SVD, M can be factorized (Golub and Van Loan,
1991):

such that

[usv] = SVD{M}

M = u s vT, (5)

where u and v are unitary orthogonal matrices and s is a
diagonal matrix. The principal axes of the n points in Af-space
are given by the eigenvectors of M • W, that is, u:

where X. = s2 and

M MT = u \ uT,

X = MTu. (6)

Voxels that have a correlation of unity will occupy the
same point in the new space. Voxels that have independent
dynamics <pi( = 0) will be V2 apart. Voxels that are negatively
but totally correlated (p,, = — 1) will be maximally separated
(by a distance of 2). Profound negative correlations denote a
functional association that are modeled in the functional
space as diametrically opposed locations on the hypersphere.
In other words, two regions with profound negative correla-
tions will form two "poles" in functional space.

There is an interesting aspect of this application of classi-
cal scaling to neuroimaging data. Normally, the data used in
multidimensional scaling represent similarities between dis-
crete elements (e.g., voxels). However, neuroimaging data can
also be thought, of as a good lattice representation of a con-
tinuous and smooth process in anatomical space. This means
that the scaling transformation represents a mapping (or dis-
tortion) of one volume into another. In other words an ana-
tomical region (e.g., the superior temporal gyms) has a con-
tinuous and distributed representation in the functional space
defined by the scaling procedure. The location and shape of
this new volume will, of course, be completely different from
the anatomical volume, but local contiguity relationships will
be preserved. This preservation is due to high local autocor-
relations (smoothness) in the underlying process (that is as-
sumed to have a twice differentiable autocorrelation function
at zero). Consider two points in the image process separated
by dx. As dx tends to zero the correlation between the two
points will tend to unity (because of the assumption about
the autocorrelation function) and the distance in functional
space will tend to zero by Equation 3. In other words, prox-
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Figure 1. Experimentally introduced vari-
ance. Left, Statistical parametric map
[SPMj of the F ratio following an AN-
COVA of the six-subject 12-condition
verbal fluency study. The display format
is standard and provides three views of
the brain in the stereotactic space of Ta-
lairach and Tournoux (1988) (from the
back, from the right and from the top).
Right, Eigenvalues (singular values
squared) of the functional connectivity
matrix reflecting the relative amounts of
variance accounted for by the 11 dimen-
sions of the functional space. Only two
eigenvalues are greater than unity and
to all intents and purposes the space de-
fined by classical scaling can be consid-
ered two dimensional.

] \ ^ " /

SPM
projections

experimental variance
10

dimension

imate points in anatomical and functional spaces both tend
to zero in the limit of small separations. Contiguity of this sort
implies that bounded regions in anatomical space remain con-
nected in functional space (however tenuously); however,
these regions may be intersect themselves in a highly com-
plicated way and two anatomical regions can occupy the
same functional space. Clearly for real (voxel) data this con-
tiguity preservation depends on voxel sizes being "small" rel-
ative to the width of the autocorrelation function. For PET
data this is assured but in other modalities (e.g., functional
MRI) this may not be the case.

In what follows, anatomical regions are represented as con-
tinuous distributions in functional space with varying density.
This density is simply the density of points corresponding to
voxels in the original anatomical volume.

The Functional Topography of Word Generation
In this section we apply the scaling transformation to a PET
time series from a verbal fluency activation study. These data
are the same used to illustrate the identification of spatial
modes using PCA in Friston et al. (1993a). In brief, the data
were obtained from six subjects scanned 12 times (every 8
min) while performing one of two verbal tasks. Scans were
obtained with a CTI PET camera (model 953B, CTI, Knoxville,
TN). "O was administered intravenously as radiolabeled water
infused over 2 min. Total counts per voxel during the buildup
phase of radioactivity served as an estimate of regional cere-
bral blood flow (rCBF) (Fox and Mintun, 1989). Subjects per-
formed two tasks in alternation. The first task involved re-
peating a letter presented aurally at one per 2 sec (word shad-
owing). The second was a paced verbal fluency task, where
the subjects responded with a word that began with the letter
presented (intrinsic word generation). To facilitate intersub-
ject pooling, data were stereotactically normalized (Friston et
al., 1990) and whole brain differences were removed using
ANCOVA (Friston et al., 1991). Although the scaling transfor-
mation can be applied to single subjects, we used the average
voxel rCBF over all the subjects for the same reasons given
in Friston et al. (1993a).

A subset of voxels was selected in which a significant
amount of variance, due to the 12 conditions, was observed
[ANCOVA F(l 1,54) > 2.6,p < 0.05]. This subset is shown in
a statistical parametric map (Friston et al., 1991) of the F ratio
in Figure 1 (left). The time series from each of these voxels
formed the data matrix M with 12 rows (one for each con-
dition) and 6477 columns (one for each voxel). Following
normalization (to zero mean and unit sum of squares over
each column), M was subject to singular value decomposition

according to Equation 5 and the coordinates X of the voxels
in the functional space computed as in Equation 6.

This space was essentially two dimensional (only two ei-
genvalues were greater than unity; see Fig. 1, right). The lo-
cation of voxels in this two-dimensional subspace is shown
in Figure 2 by rendering voxels from different regions in dif-
ferent colors. The anatomical regions corresponding to the
different colors are shown in the top row. Anatomical regions
were selected to include those parts of the brain that showed
the greatest variance during the 12 conditions (Fig. 1, left).
Anterior regions (Fig. 2, right) included the mediodorsal thal-
amus (blue), the dorsolateral prefrontal cortex (DLPFC) and
Broca's area (red), and the anterior cingulate (green). Poste-
rior regions (Fig. 2, left) included the superior temporal
regions (red), the posterior superior temporal regions (blue),
and the posterior cingulate (green). The voxels constituting
these regions were within 20 mm of appropriate centers se-
lected from the atlas of Talairach and Tournoux (1988) (see
Table 1). The reason that anterior and posterior regions are
presented separately is simply due to the fact that there are
only three primary colors to play with, but there are more
than three regions of interest.

The corresponding functional space (Fig. 2, lower row)
reveals a number of things about the functional topography
elicited by this set of activation tasks. First, each anatomical
region maps into a relatively localized portion of functional
space. This preservation of local contiguity reflects the high
correlations within anatomical regions, due, in part, to
smoothness in the original data and to high degrees of intrare-
gional functional connectivity. Second, the anterior regions
are almost in juxtaposition, as are the posterior regions; how-
ever, the confluence of anterior and posterior regions form
two diametrically opposing poles (or one axis). This config-
uration suggests an anterior-posterior axis with prefronto-
temporal and cingulocingulate components. Third, within the
anterior and posterior sets of regions certain generic features
are evident. The most striking is particular ordering of func-
tional interactions. For example, the functional connectivity
between the posterior cingulate (green) and superior tem-
poral regions (red) is high and similarly for the superior tem-
poral (red) and posterior temporal regions (blue), yet the pos-
terior cingulate and posterior temporal regions show very lit-
tle functional connectivity (they are V2 apart or equivalently
subtend 90° at the origin). Finally, within the main anteropos-
terior axis there appear to be two subordinate axes. The first
is a prefrontotemporal axis (red/blue-red), and the second is
an anterior-posterior cingulate axis (green-green). These two
axes are closely aligned but are not completely confounded.
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Figure 2. Scaling analysis of the func-
tional topography of intrinsic word gen-
eration in normal subjects. Top, Anatom-
ical regions categorized according to
their color. The location of these regions
and their designation are given in Table
1. Bottom, Regions plotted in a functional
space following the scaling transforma-
tion. In this space the proximity relation-
ships reflect the functional connectivity
between regions. The color of each vox-
el corresponds to the anatomical region
it belongs to. The brightness reflects the
local density of points corresponding to
voxels in anatomical space. This density
was estimated by binning the number of
voxels in 0.02 "boxes" and smoothing
with a Gaussian kernel of full width at
half maximum of three boxes. Each color
was scaled to its maximum brightness.

-1 -0.5 0 0.5
Functimal space

These results are consistent with known anatomical con-
nections. For example, DLPFC-anterior cingulate connections,
DLPFC-temporal connections, bitemporal commissural con-
nections, and mediodorsal thalamic-DLPFC projections have
all been demonstrated in nonhuman primates (e.g., Goldman-
Rakic, 1986, 1988). The mediodorsal thalamic region and
DLPFC are so correlated that one is embedded within the
other (purple area). This is pleasing, given the known thala-
mocortical projections to the DLPFC.

Interpretation of the Functional Space
At this point, one might ask if absolute position in this func-
tional space has any meaning. For example, is the fact that
the prefrontotemporal axis is horizontal (as opposed to ver-
tical) important. The answer is yes. The dimensions of the
transformed space have specific functional attributions that
depend on the tasks employed to elicit the functional inter-
actions. Because the dimensions of the functional space are

Table 1
Location of anatomical regions in Talairach and Tournoux stereotaxic space

Name

Mediodorsal thalamus
Left DLPFC
Broca's area
Anterior cingulate
Posterior cingulate
Superior temporal gyrus
Posterior middle temporal gyms

Location x,y,z
(mm)

0 - 1 2 4
- 4 8 32 12
- 5 8 16 24
- 1 2 24 24

- 8 - 4 8 24
±56 8 4
±54 - 5 6 0

Putative
Brodmann's
area

46
44
32
32
21
22

Color

blue
red
red
gren
green
red
blue

Regions chosen for the analysis of the 12-condition word generation study of normal subjects. All
voxels that reached criteria following ANC0VA and fell within 20 mm of the above location constituted
a "region." See Figure 2 (left) for a graphical presentation of this anatomical parcellalion.

defined by unit vectors in a Kspace of tasks, each dimension
is associated with a particular profile of the experimental
conditions. For example, the first dimension points in the
direction of all the intrinsic word generation tasks and away
from the baseline word-shadowing tasks. Conversely, the sec-
ond dimension points toward the first scans and away from
the last scans. The vectors denning these directions are simply
the first two columns of u and are shown in Figure 3 (left).
On the basis of these task-dependent profiles one could des-
ignate the first dimension of the functional space as inten-
tional (corresponding to the intentional or intrinsic genera-
tion of words) and the second as attentional (attentional
changes or changes in perceptual set as the experiment pro-
ceeds).

This perspective provides a slightly richer interpretation
of the functional space in the following way: functional con-
nectivity (distance) between two regions can be partitioned
into intentional (horizontal) and attentional (vertical) com-
ponents. For example, the horizontal proximity of the DLPFC
(red) and anterior cingulate (green) is greater than their ver-
tical proximity. In other words, the functional connectivity
between the DLPFC and anterior cingulate is dominated by
the intentional aspects of the tasks used to elicit the func-
tional interactions. Similarly, the (horizontal) prefrontotem-
poral axis is almost entirely intentional, whereas the (oblique)
anteroposterior cingulate axis suggests both intentional and
attentional components. This interpretation will be important
below in examining the functional topography of schizophre-
nia.

The Relationship between the Functional Space and the Spatial Modes
(Eigenimages) of the Time Series
The last part of this section comments on the intimate rela-
tionship between the dimensions of the functional space and
the eigenimages or spatial modes associated with the time
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Figure 3. Functional attribution of the
functional space. Left, Eigenvectors of
the distribution of points in the functional
space, for instance, eigenvectors of
MM7 . These eigenvectors (or singular
vectors) are unit vectors that define a
direction in functional space. The attri-
bution of this direction or dimension de-
pends on relating this vector to the tasks
employed during the activation. The first
eigenvector (fop) is clearly related to the
difference between word generation
(even-numbered conditions) and word
shadowing (odd-numbered scans). This
difference is the intentional or intrinsic
generation of word representations. The
second eigenvector {bottom) corre-
sponds to some largely monotonic time
effect we have labeled attentional. Right
The eigenimages corresponding to the
first two eigenvectors of the functional
connectivity matrix. These eigenimages
(or spatial modes) are the eigenvectors
of M U l The eigenimages are displayed
as a maximum intensity projection in
standard SPM format The color scale is
arbitrary, and each SPM is scaled to its
maximum.
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series. The relationship is, in fact, very simple (see Chatneld
and Collins, 1980, p. 200). The time-dependent expression of
the eigenimages are the same as the vectors describing the
dimensions in the functional ^T-space. Figure 3 (right) show
the eigenimages that correspond to the two dimensions used

• in the scaling transformation. They are images of the first two
columns of v in Equation 5 (see Friston et al., 1993a, for a
fuller discussion of how one interprets these eigenimages). In
brief, they represent the distributed systems that best account
for the observed variance-covariance structure exhibited by
a neurophysiological time series (it should be noted that the
eigenimages presented here are not exactly the same as those
presented in Friston et al. (1993a), because the current eigen-
images are images of the eigenvectors of the correlation ma-
trix, as opposed to the covariance matrix that is usually used).
Consider again the singular value decomposition of M:

and

M = u-s-vT

MTM = p = v - \ v T

Therefore, v is a matrix whose columns correspond to the
eigenimages of M. The rotation implicit in our scaling ap-
proach is effected by

X = MT u = v s .

X is a matrix of the eigenvectors v scaled by their singular
values. Put simply, one can either use the eigenvectors of the
functional connectivity matrix to (1) generate a series of ei-
genimages, or (2) scale them according to tiieir singular val-
ues and use them as coordinates to construct a functional
space. These two analyses (principal coordinates analysis and
principal components analysis) are entirely equivalent from a

mathematical point of view, but reveal the nature of function-
al interactions from different perspectives.

Functional Disintegration in Schizophrenia
In this section we present an analysis of previously published
PET data examining functional connectivity in schizophrenia
(Friston et al., 1996). The notion that schizophrenia repre-
sents a disintegration of the psyche is as old as its name, in-
troduced by Bleuler (1913) to convey a "splitting" of mental
faculties. We have investigated the hypothesis that this men-
talistic "splitting" has a physiological basis, with a precise and
regionally specific character.

Neurodevelopmental (e.g., Weinberger, 1987) and cogni-
tive models of schizophrenia (e.g., Frith, 1987) have empha-
sized abnormal frontolimbic and prefrontotemporal integra-
tion. Structural MR1 studies of schizophrenic brains have
found abnormalities in the temporal cortex and underlying
white matter with some consistency (Shenton et al., 1992;
Williamson et al., 1992; McCarley et al., 1993). Our previous
analysis of the eigenimages, derived from word-generation
PET activation studies, in normal subjects and schizophrenic
patients, pointed to abnormal functional connectivity be-
tween the left dorsolateral prefrontal cortex (DLPFQ and the
left superior and middle temporal gyri (Friston et al., 1996).
We applied the scaling transformation to the data in the hope
of revealing, in a direct way, the relationship between the
temporal regions and prefrontal areas, in terms of functional
connectivity.

The details of the experimental design and data acquisition
have been described elsewhere (Friston et al., 1996) and will
be summarized briefly. Four groups of six subjects were
scanned six times during the performance of a series of word-
generation tasks (verbal fluency, semantic categorization, and
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word shadowing; each task was preformed twice in balanced
order). The four groups comprised (1) controls, a normal
group; (2) poor, patients who produced a small number of
words during FAS verbal fluency; (3) odd, patients who pro-
duced odd, inappropriate words; and (4) unimpaired, patients
whose performance was near normal. The patients all met
DSMIII-R criteria (American Psychiatric Association, 1987) for
schizophrenia.

The data were stereotactically normalized (Friston et al.,
1991) and a mean rCBF estimate for each voxel, for each
condition, for each group, was obtained by averaging over
subjects in each group using the same techniques mentioned
in the previous section. A subset of voxels was selected at
which differences between any of the six scans accounted
for a significant amount of variance [ANCOVA,F(5,24) > 3-9,
p < 0.001] in one or more of the four groups. The result was
a large matrix of rCBF estimates (M), each comprising six
rows (one for each condition) and 4802 X 4 columns (one
for each voxel in each group). M was normalized to a mean
of zero and unit sum of squares (over each column).

The matrix (M) was subject to the scaling transformation,
as described in the above section. Note that all four groups
were entered at the same time. This meant that the functional
designation of the dimensions of the functional space was the
same for all groups. The results of these analyses are seen in
Figures 4 and 5. Figure 4 (left) shows the anatomical regions
rendered in subsequent figures. They included the left DLPFC
and medial prefrontal cortex (red), the left superior temporal
region (green), and the left posterior middle temporal cortex
(blue). Table 2 gives the centers of these regions in stereotac-
tic coordinates. The two dimensions used in the scaling trans-
formation were very similar to the intentional and attentional
dimensions seen in the previous section. The first dimension
(Fig. 4, top right) pointed toward the verbal fluency (first and
last conditions) and away from word shadowing (middle con-
ditions). It was largely indifferent (orthogonal) to the seman-
tic categorization conditions. The second dimension showed
monotonic time effects suggesting physiological adaptation
due to putative attentional changes.

The functional space for the normal subjects and the
schizophrenic groups are shown in Figure 5. In the normal
subjects (top left), this set of tasks elicited a prefrontotem-
poral axis. The axis is slightly oblique, suggesting some of this
functional connectivity is due to systematic time-dependent
effects. The similarity between this configuration and that of
similar regions in the previous section is evident. The equiv-
alent spaces for the schizophrenic groups are markedly dif-
ferent from the normal space. Although the DLPFC (red) has
retained its position, the temporal regions have moved across
from the opposite side to occupy a domain that spans high
positive correlations with the DLPFC to total independence.
The migration of the superior temporal regions is remarkably
consistent across the three schizophrenic groups and is pre-
dominantly in a right-left direction, suggesting this abnormal-
ity is due to intentional aspects of the tasks employed. Con-
versely, the posterior temporal regions are less consistent in
their displacement. The horizontal (intentional) shift is similar
in all three groups, but the vertical or attentional component
is different for each of the three groups (the unimpaired
group showed a pronounced movement of posterior tempo-
ral regions in the attentional dimension). This suggests that
the functional connectivity elicited by intentional aspects of
the word generation tasks result in an abnormal pattern of
prefrontotemporal integration that is largely invariant over dif-
ferent schizophrenic subgroups. However, the (dys)functional
connectivity elicited by attentional components is specific to
the grdup in question.

Notice that in the poor group the distance between the

left DLPFC (red) and the superior temporal regions (green)
suggests an absence of functional connectivity (positive or
negative). This represents a true left prefronto-superior tem-
poral disintegration.

This is not the place to embark on a detailed analysis of
these results in terms of the neuropsychology of schizophre-
nia; however, it is worth pointing out that the observed re-
versal and/or loss of prefrontotemporal integration is partic-
ularly relevant given the signs and experiential symptoms of
schizophrenia (for a fuller discussion, see Frith, 1993; Friston
et al., 1996).

Discussion
We have presented a simple application of metric multidi-
mensional scaling that uses functional connectivity as the un-
derlying metric. Functional connectivity is simply the corre-
lation between remote neurophysiological events. The tech-
nique provides an expedient transformation that maps ana-
tomical space into a functional space. The topography of this
functional space is such that proximity implies a high degree
of functional connectivity. The nature of this mapping means
that anatomically distributed systems that are functionally
connected converge toward the same locus in functional
space.

Potential applications of the technique have been dem-
onstrated in the context of word generation in normal sub-
jects and abnormal prefrontotemporal integration in schizo-
phrenia. In particular, the negative correlations between pre-
frontal and temporal activity normally seen are reversed in
schizophrenia and the left superior temporal gyrus appears
to be dissociated from the prefrontal systems implicated in
word generation.

The techniques described here are not new. Principal co-
ordinates analysis or classical metric scaling was introduced
in the 1960s, and other forms of multidimensional scaling
have been used in the context of neuroimaging (see Golden-
berg, 1989; Goldenberg et al., 1989). What is new here is that
the correlations used in the classical scaling are correlations
in neuroimaging time series. These correlations are a simple
characterization of functional interactions and render the
space defined by the scaling technique meaningful in terms
of functional connectivity. The second novel aspect of the
proposed (voxel-based) application is that the transformation
can be thought of as being applied to continuous volumes (if
the voxel data are a good lattice representation of a smooth
continuous processes).

The Relationship between Eigenimages, Spatial Modes, and
Functional Topography
There is a pleasing and complementary relationship between
functional topography defined using the scaling transforma-
tion arid the use of the eigenvector solution of the functional
connectivity matrix to identify spatial modes (e.g., Friedrich
et al., 1991; Friston et al., 1993a). In the latter approach, the
data are considered as K points in an w-dimensional space.
These points define a trajectory in a space who dimensions
are voxels. The principal axes (eigenvectors) of the distribu-
tion traced out by the trajectory correspond to the spatial
modes embedded within the data. An image of these eigen-
vectors is called an eigenimage. Eigenimages, or spatial modes
represent a simple and powerful way of mapping function
into anatomical space.

In defining a functional space one considers the data as n
points in an iC-dimensional space. The principal axes (eigen-
vectors) of this distribution are used to rotate the points to
reveal the greatest structure in their interrelationships. A sub-
space of the rotated points represents a mapping of anatomy
into a functional space.
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Figure 4. The functional topography of
normal subjects and schizophrenic pa-
tients. Left, Anatomical regions detailed
in Table 2. Right The first two eigenvec-
tors of the distribution in the functional
space showing that the first {top) vector
is associated with the difference be-
tween the first and last conditions (in-
trinsic word generations) and the middle
two conditions (word shadowing). The
second vector [beloW) corresponds to a
monotonic time effect

-0.5

Anatomical regions

-0.5

Figure 5. The functional topography of
normal subjects and schizophrenic pa-
tients. Top left. Functional space of the
normal group demonstrating the marked
prefrontotemporal axis that characteriz-
es normal functional connectivity. Top
right The equivalent space for the poor
group of schizophrenic subjects in which
all the temporal regions have migrated
from the left-hand pole to the bottom
right quadrant This corresponds to a
loss and reversal of normal negative pre-
frontotemporal functional connectivity.
Bottom left Functional space for the odd
group. Bottom right Functional space for
the unimpaired group.

- 1 -0.5 0 05 1
controls

-1 -0.5 0 0.5 1
poverty

-1 -0.5 0 05 1 -1 -0.5 0 0.5 1
unimpaired
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Table 2
Location of anatomical regions in Talairach and Tournous stereotaxic space

Name

LeftDLPFC
Braca's area
Medial PFC
Superior temporal gyms
Posterior middle temporal gyms

Location x,y,z
(mm)

- 4 8 36 12
- 5 8 16 24
- 1 2 46 24
- 5 6 - 8 4
- 4 0 - 5 8 - 8

Putative
Brodmann's
area

46
44
9

22
21

Color

red
red
red
green
blue

Regions chosen for the analysis of the six-condition word generation study of normal subjects and
schizophrenic patients. All voxels that reached criteria following ANCOVA and fell within 20 mm of the
above location constituted a "region." See Figure 4 (left) for a graphical presentation.

As with eigenimages, the functional spaces created using
classical scaling will change fundamentally with different
brain states and are, as a consequence, experiment and time
dependent.

There is a parallel between the present work, using func-
tional connectivity and that of Young (1992) who used a
meta-analysis of anatomical connectivity and nonmetric mul-
tidimensional scaling. This analysis allowed the authors to
comment on the segregation of dorsal and ventral processing
streams and reconvergence in the DLPFC and the superior
temporal area. Although we have chosen to illustrate the tech-
nique with an (important) example of abnormal functional
topography in schizophrenia, there are clearly many applica-
tions to normal functional anatomy. It would be interesting
to examine the issues addressed by Young (1992) to provide
a complementary functional perspective. The technique ap-
plied in this article uses metric multidimensional scaling as
opposed to nonmetric scaling used by Young (1992). There
have been some concerns expressed about the application of
nonmetric scaling to connectivity data (Simmen et al., 1994;
Young et al., 1994). These concerns are avoided with metric
scaling. In this sense, the current application of metric scaling
could prove very useful in resolving important questions
about large scale connectivity and functional organization in
the brain.

At the present time, it is not easy to make statistical infer-
ences about the topographic features or changes in these fea-
tures obtained with multidimensional scaling (Chatfield and
Collins, 1980); however, this does not detract from the pro-
posed application as a powerful descriptive approach to neu-
roimaging data.

Notes
This work was based on an original idea of Stephen Kosslyn. We are
indebted to him for his inspirational comments and ensuing persis-
tence. We also thank our colleagues at the MRC Cyclotron Unit, with-
out whom these studies would not have been possible.

Address correspondence to Wellcome Department of Cognitive
Neurology, Institute of Neurology, Queen Square, London WCIN 3BG,
UK.
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