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Abstract: The brain appears to adhere to two principles of functional organization; junctional segregation 
and functional intryration. The integration within and between functionally specialized areas is mediated 
by functional or ejectiue connectioity. The characterization of this sort of connectivity is an important theme 
in many areas of neuroscience. This article presents one approach that has been used in functional 
imaging. 

This article reviews the basic distinction between functional and effective connectivity (as the terms are 
used in neuroimaging) and their role in addressing several aspects of functional organization (e.g. the 
topography of distributed systems, integration between cortical areas, time-dependent changes in 
connectivity and nonlinear interactions). Emphasis is placed on the points of contact between the 
apparently diverse applications of these concepts and in particular the central role of eigenimages or 
spatial modes. Although the framework that has been developed is inherently linear, it has been extended 
to assess nonlinear interactions among cortical areas. 

Key words: functional connectivity, effective connectivity, PET, fMRI, eigenimages, spatial modes, 

r8 19% Wilg-Liss, In&-. 

multidimensional scaling, word generation, visual, modulation 

INTRODUCTION 

In the past decade functional neuroimaging has 
been extremely successful in establishing functional 
segregation as a principal of organization in the 
human brain. Functional segregation is usually in- 
ferred by the presence of activation foci in change 
score or statistical parametric maps. The nature of the 
functional specialization is then attributed to the 
sensorimotor or cognitive process manipulated experi- 
mentally. Newer approaches have addressed the inte- 
gration of functionally specialized areas through char- 
acterizing neurophysiologcal activations in terms of 
distributed changes [e.g., Friston et al., 1993a,b; La- 
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greze et al., 1993; McIntosh et al., 1993; McIntosh and 
Gonzalez-Lima, 1991; Horwitz et al., 1991; Horwitz, 
1990; Moeller et al., 19873. We have published d series 
of papers along these lines that have introduced a 
number of concepts (e.g., functional and effective 
connectivity, eigenimages, spatial modes, information 
theory, multidimensional scaling) and their applica- 
tion to issues in imaging neuroscience (e.g., functional 
systems, cortical integration, associative plasticity, and 
nonlinear cortical interactions) [Friston el al., 1993a,b,c, 
1994a,b,c,d]. The aim of this paper is to describe d 
framework that highlights the (usually simple) relation- 
ships among these concepts and their application to 
neuroimaging data. 

In what follows, intuitive ideas about the integra- 
tion of brain activity are formulated in terms of simple 
mathematical expressions. Many of the techniques 
presented have their origins and counterparts in the 
analysis of multiunit electrode recording data and 
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multichannel EEG (and MEG) data. An effort has been 
made to clarify these points of contact by referring to 
strategies adopted in these other modalities. The 
paper begins with a brief review of two data sets that 
are used to illustrate the techniques. The PET data 
were obtained during an activation study of intrinsic 
work generation. The fh4RI data came from a single- 
subject photic stimulation study. The second section 
deals with the fundamental distinction between func- 
tional connectivity (tcnrpora! correlations between remote 
neurophysiological events) and effective connectivity (the 
influence one neural system exerts o z w  another) and their 
relationship to similar concepts in electrophysiology. 
The remainder of the paper is divided into two parts 
which focus on 1) functional connectivity and 2) 
effective connectivity. 

The discussion of functional connectivity starts with 
a description of how patterns of activity in the brain 
can be measured and how this formulation points to 
eigenimages (spatial modes) as a powerful character- 
ization of distributed systems. Eigenimages are usu- 
ally identified using singular value decomposition 
(SVD) or related techniques. SVD is introduced and 
explained. Eigenimages represent a mapping of func- 
tion in fo  anatomical spacu. These eigenvector solutions 
of the functional connectivity matrix can also be used 
to map anatomy into afunctional space. This complemen- 
tary transformation is equivalent to metric or classical 
(multidimensional) scaling. These techniques are dem- 
onstrated using the PET data set. The next section 
extends the concept of functional connectivity to the 
interactions between two anatomically distributed 
systems. The identification of systems responsible for 
inter-hemispheric integration during word generation 
is presented as an example. These sections on func- 
tional connectivity conclude by relating functional 
connectivity and information theory, in terms of the 
mutual information between two distributed systems. 

The sections on effective connectivity begin by 
contrasting functional and effective connectivity and 
addressing some of the validation issues that ensue. 
The more powerful applications of effective connectiv- 
ity are concerned with changes in effective connectiv- 
ity. This is illustrated with time-dependent changes in 
effective connectivity in the PET data and characteriz- 
ing nonlinear interactions between striate and extrastri- 
ate cortices with fMRI data. This interaction is an 
example of activity-dependent changes in effective 
connectivity. On the surface these two examples 
appear a world apart; however, they use identical 
techniques. These sections include a discussion of 
some plausible biological mechanisms that may medi- 

ate the sort of effective connectivity measured with 
neuroimaging. 

THE DATA 

A PET activation study of word generation 

The PET data were obtained from six subjects 
scanned 12 times (every 8 min) whilst performing one 
of two verbal tasks. Scans were obtained with a CTI 
PET camera (model 9538 CTI, Knoxville, TN, USA). 
Reconstructed images had a resolution of 5.2 mm 
[Townsend et al., 1992; Spinks et al., 19921. 1 5 0  was 
administered intravenously as radiolabelled water 
infused over 2 min. Total counts per voxel during the 
buildup phase of radioactivity served as an estimate of 
rCBF [Fox and Mintun, 19891. Subjects performed two 
tasks in alternation. The first task was reprating a l e t t u  
presented aurally at one per two seconds. The second 
was a paced verbal fluency task, where the subjects 
responded with a word that began with the letter 
presented. This design ensured that the sensorimotor 
components were the same for both tasks. This data is 
the same as that used in Friston et al. [1993a]. To 
facilitate intersubject pooling, data were stereotacti- 
cally normalized [Friston et al., 1989, 1991a; Talairach 
and Tournoux, 19883. 

Whole brain differences were removed using AN- 
COVA [Friston et al., 19901 and the resulting mean 
activity (over subjects) for each voxel was used in 
subsequent analyses. A subset of voxels was selected 
in which a significant amount of variance, due to the 
12 conditions, was observed (ANCOVA F > 3.9 
P < 0.05 df 11,54). The time-series from each of these 
voxels formed a data matrix M with 12 rows (one for 
each condition) and 6,477 columns (one for each 
voxel). Each column of M was normalized to a mean of 
zero. 

The fMRl data 

The data were a time-series of 64 gradient-echo EPI 
coronal slices (5 mm thick, with 64 x 64 voxels 
2.5 x 2.5 x 5 mm) through the calcarine sulcus and 
extrastriate areas. Images were obtained every 3 sec- 
onds from a normal male subject using a 4.0T whole 
body system, fitted with a small (27 cm diameter) 
z-gradient coil (TE 25 ms, acquisition time 41 ms). 
Photic stimulation (at 16 Hz) was provided by goggles 
fitted with 16 light emitting diodes. The stimulation 
was off for the first 10 scans (30 s), on for the second 10, 
off for the third, and so on. Images were reconstructed 
without phase correction. The data were interpolated 
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to 128 x 128 voxels. Each interpolated voxel thus 
represented 1.25 X 1.25 x 5 mm of cerebral tissue. The 
first four scans were removed to eliminate magnetic 
saturation effects. 

To correct for (slight) subject movement during the 
scanning session the images were translated and 
rotated to minimize the sum of squares between each 
image and their average (both scaled to the same 
mean intensity) using the Levenberg-Marquardt 
method [More, 19771. The rotation and translations 
were effected using a computationally efficient cubic 
convolution interpolation method [Keys, 19811. After 
this correction each voxel time-series was normalized 
to a mean of zero. Only the 36 x 60 voxel subpartitions 
(of the original images) containing the brain were 
subject to further analysis. The result was a data 
matrix M with 60 rows (one for each condition) and 
2,160 columns (one for each voxel). 

All image manipulations and calculations were per- 
formed using Matlab (Mathworks Inc, Sherborn, MA, 
USA). 

FUNCTIONAL AND EFFECTIVE CONNECTIVITY 

Origins and definitions 

In the analysis of neuroimaging time-series func- 
tional connectivity is defined as the temporal correla- 
tions between spatially remote neurophysiological events 
[Friston et al., 1993al. This definition is operational 
and provides a simple characterization of functional 
interactions. The alternative is to refer explicitly to 
effective connectivity (i.e., the influence one neuronal 
system exerts over another) [Friston et al., 1993133. These 
sorts of concepts were originated in the analysis of 
separable spike trains obtained from multiunit elec- 
trode recordings [e.g., Gerstein and Perkel, 1969; 
Gerstein et al., 1989; Gochin, 1991; Aertsen and Preissl, 
19911. Functional connectivity is simply a statement 
about the observed correlations; it does not provide 
any direct insight into how these correlations are 
mediated. For example, at the level of multiunit 
microelectrode recordings, correlations can result from 
stimulus-locked transients, evoked by a common affer- 
ent input, or reflect stimulus-induced oscillafions, phasic 
coupling of neural assemblies, mediated by synaptic 
connections [Gerstein et al., 19891. To examine the 
integration within a distributed system, defined by 
functional connectivity, one turns to efective connectiv- 
ity. 

Effective connectivity is closer to the intuitive no- 
tion of a connection and can be defined as the influence 
on neural system exerts over another, either at a synaptic 

(cf. synaptic efficacy) or cortical level. In elcctrophysi- 
ology there is a close relationship between effective 
connectivity and synaptic efficacy; "It is useful to 
describe the effective connectivity with a connectivity 
matrix of effective synaptic weights. Matrix elements 
[C,]] would represent the effective influence by neuron 
j on neuron i" [Gerstein et al., 19891. It has also been 
proposed that "the [electrophysiological] notion of 
effective connectivity should be understood as the 
experiment and time-dependent, simplest possible 
circuit diagram that would replicate the observed 
timing relationships between the recorded neurons" 
[Aertsen and Preissl, 19911. 

Although functional and effective connectivity can 
be invoked at a conceptual level in both neuroimaging 
and electrophysiology they differ fundamentally at a 
practical level. This is because the time-scales and 
nature of the neurophydological measurements are 
very different (seconds vs. milliseconds and hemody- 
namic vs. spike trains). 

In electrophysiology it is often necessary to remove 
the confounding effects of stimulus-locked transients 
(which introduce correlations that are not causally 
mediated by direct neuronal interactions) in order to 
reveal the underlying effective connectivity. The con- 
founding effect of stimulus-evoked transients is less 
problematic in neuroimaging because the promulga- 
tion of dynamics from primary sensory areas onwards 
is mediated by neuronal connections (usually recipro- 
cal and interconnecting). However it should be remem- 
bered that functional connectivity is not necessarily 
due to effective connectivity (e.g., common neuro- 
modulatory input from ascending aminergic neuro- 
transmitter systems or thalamo-cortical aff erents) and, 
where it is, effective influences may be indirect (e.g., 
polysynaptic relays through multiple areas). 

All the examples presented in this paper rely on 
descriptive, as opposed to inferential, statistics. In 
other words the objective is to characterize interac- 
tions among brain areas, not to demonstrate that any 
particular characterization is significant. In some appli- 
cations distributional approximations do exist to com- 
pare one characterization with another, but they are 
not discussed here. 

FUNCTIONAL CONNECTIVITY 

Measuring a pattern of correlated activity 

In this section we introduce a simple way of measur- 
ing the amount a pattern of activity (representing a 
connected brain system) contributes to the functional 
connectivity or variance-covariances observed. 
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Functional connectivity is defined in terms of corre- 
lations or covariance (correlations are normalized 
covariances). The point to point functional connectiv- 
ity between one voxel and another is not usually of 
great interest. The important aspects of the covariance 
structure are the patterns of correlated activity, sub- 
tended by (the enormous number of) pairwise covari- 
ances. In measuring these patterns it is useful to 
introduce the concept of a norm. Vector and matrix 
norms serve the same purpose as absolute values for 
scalar quantities. In other words they furnish a mea- 
sure of distance. One frequently used norm is the 
2-norm, which is simply the length of the vector. The 
vector 2-norm can be used to measure the degree to 
which a particular pattern of brain activity contributes 
to the covariance structure: If a pattern is described by 
a column vector (p), with an element for each voxel, 
then the contribution of that pattern to the covariance 
structure can be measured by the increase (or de- 
crease) in length it experiences when multiplied by 
the data matrix M. This measure is provided by the 
2-norm of M.p = /M.pI 2. For mathematical expedi- 
ency we will work with the square of the 2-norm 
(T will denote transposition). 

IM.p(i = pT.MT.M.p. (1) 

Put simply the 2-norm is a number which reflects the 
amount of variance-covariance or functional connec- 
tivity that can be accounted for by a particular distrib- 
uted pattern: If the time-dependent changes occur 
predominantly in the regions described by the pattern 
(p) then the correlation between the pattern of activity 
and p at any one time will itself vary substantially with 
each successive scan. The 2-norm measures this vari- 
ance in the correlation. The pattern p embodies the 
functional connectivity one is interested in. For ex- 
ample if one were interested in the functional connec- 
tivity between the left dorsolateral prefrontal cortex 
(DLPFC) and the left superior temporal region one 
could test for this interaction using the 2-norm in 
Equation (1) where p had large values in the frontal 
and temporal regions of interest. 

The 2-norm has been used to good effect in demon- 
strating abnormal prefrontotemporal integration in 
schizophrenia [Friston et al., 1Y94a,b]. The notion that 
schizophrenia represents a disintegration or fraction- 
ation of the psyche is as old as its name, which was 
introduced by Bleuler [1Y13] to convey a ”splitting” of 
mental faculties. Many of Bleuler’s primary processes, 
such as ”loosening of associations,” emphasize a 
fragmentation and loss of coherent integration. In 

order to investigate the neurobiological basis of this 
disintegration we tested for diff erences in functional 
connectivity between the left DLPFC and superior 
temporal cortex between normal subjects and schizo- 
phrenic patients. This involved performing a word 
generation activation study in one normal and three 
schizophrenic groups and testing for the integrity of 
prefronto-temporal integration with a prefronto- 
temporal pattern (p). This pattern had high values in 
the left DLPFC and negative values in the superior 
temporal regions (and smaller values elsewhere). Us- 
ing this approach we were able to show that profound 
negative prefronto-temporal functional connectivity 
prevalent in normal subjects was absent in three 
groups of schizophrenic subjects (Fig. 1). In this 
instance p was actually chosen to maximize the 2-norm 
differences between normal subjects and schizo- 
phrenic patients by applying SVD to the differences in 
covariance or functional connectivity matrices (see 
Friston et al. [1994a] for a fuller discussion). This sort of 
analysis identifies differences in functional connectiv- 
ity or covariance structure (a second order eflect) as 
opposed to regionally specific differences in physiol- 
ogy (afirst order effect). In other words the 2-norm can 
be used to characterize the difference between one 
subject (or subjects) and another in terms of interac- 
tions (functional connectivity) among regions. The 
2-norm is an example of a statistic which (in some 
instances) has a simple distributional approximation 
(not discussed). It should be noted, of course, that the 
2-norm only measures the pattern one is interested in. 
There may be many other important differences in 
functional connectivity even if the 2-norms from two 
time-series are similar for a particular pattern. 

Eigenimages and spatial modes 

In this section the concept of eigenimages or spatial 
modes is introduced in terms of the patterns of activity 
(p) in the previous section. In the previous section p 
was chosen to investigate an interaction of interest. In 
this section we show that the spatial modes are simply 
those patterns which account for the most variance- 
covariance (i.e., have the largest 2-norm). 

Consider the ubiquitous orthogonalization device 
singular value decomposition (SVD). SVD is an opera- 
tion which decomposes the original time-series (M) 
into two sets of orthogonal vectors (patterns in space 
and patterns in time). Let M = [m’ . . . mn] be a matrix 
of the normalized data (one column vector per voxel 
time-series) and: 

[usv] =SVD(M} 
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positive 

Analysis of fronto-temporal functional connectivity in normal 
subjects and schizophrenic patients. The maximum intensity projec- 
tions (top) depict the positive and negative components of the 
pattern (p) used to test for the covariance (functional connectivity) 
of interest. The 2-norm of this pattern was markedly attenuated in 
three groups of schizophrenic subjects compared to normal 

such that: 

M = u.s.vT. (2) 

In this equation u and v are unitary orthogonal 
matrices (the sum of squares of each column is unity 
and all the column are uncorrelated) and s is a 
diagonal matrix (only the leading diagonal has non- 
zero values) of decreasing singular values. A rearrange- 
ment of Equation (2) gives: 

vT.MTM.v = sz. (3) 

negative 

subjects. The 2-norm was calculated according to Equation (I) 
where the data matrices (M) represented the adjusted condition 
means for each of the four groups studied. The schizophrenic 
patients were divided into three groups according to their perfor- 
mance on FAS verbal fluency (poverty of words, odd inappropriate 
words, and relatively unimpaired performance). 

Because MTM is the functional connectivity matrix (p 
where pa = mil.mi ) the columns of v = [v' . . . v"] are 
the eigenvectors of the functional connectivity matrix. 
The corresponding eigenvalues are given by the lead- 
ing diagonal of sz. Referring back to Equation (1) 
shows that the singular value of each eigenvector (or 
singular vector) is simply its 2-norm. Because SVD 
maximizes the largest singular value, the first eigenvec- 
tor is the pattern which accounts for the greatest 
amount of the variance-covariance structure. In other 
words SVD and equivalent devices are simple and 
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powerful ways of decomposing a neuroimaging time- 
series into a series of orthogonal patterns that em- 
body, in a stepdown fashion, the greatest amounts of 
functional connectivity. Each eigenvector defines a 
distributed brain system that can be displayed as an 
image. The distributed systems that ensue are called 
eigenimages or spatial modes and have been used charac- 
terize the spatiotemporal dynamics of neurophysiologi- 
cal time-series from several modalities; including mul- 
tiunit electrode recordings [Mayer-Kress et al., 19911, 
EEG [Friedrich et al., 19911, MEG [Fuchs et al., 19921, 
PET [Friston et al., 1993a1, and functional MRI [Friston 
et al., 1993~1. 

Many readers will notice that the eigenimages 
associated with the functional connectivity or covari- 
ance matrix are simply the principal components of 
the time-series [e.g., Friston et al., 1993a1. In the EEG 
literature one sometimes comes across the Karhunen- 
Loeve expansion, which is employed to identify spa- 
tial modes. If this expansion is in terms of the eigenvec- 
tors of the p (and it usually is), then the analysis is 
formally identical to the one presented above. 

One might ask what the column vectors of u 
correspond to in Equation (2). The vectors are the 
time-dependent profiles associated with each eigenim- 
age. They reflect the extent to which an eigenimage is 
expressed in each experimental condition or over 
time. These vectors play an important role in the 
functional attribution of the distributed systems de- 
fined by the eigenimages and in setting up functional 
spaces of the sort used in multidimensional scaling. 
These and other points will be illustrated in the next 
two sections. 

Mapping function into anatomical space- 
an illustration 

The PET data matrix M was subject to SVD as 
described in the previous section. The distribution of 
eigenvalues (Fig. 2 right) suggests only two spatial 
modes (distributed systems) are required to account 
for most of the observed variance-covariance struc- 
ture. The first mode accounted for 68% and the second 
16% of the variance. The first two eigenimages (v’ and 
vz) are shown in Figure 3 (right) along with the 
corresponding vectors in time (u’ and u2-left). The 
first eigenimage (top right) has positive loadings in the 
anterior cingulate (BA 24,32), the left DLPFC (BA 46), 
Broca’s area (BA 44), the thalamic nuclei, and in the 
cerebellum. Negative loadings were seen bitemporally 
and in the posterior cingulate (although not shown 
here the negative loadings were almost identical to 

the top right hand panel in Figure 5). According to u1 
the first mode is prevalent in the verbal fluency tasks 
with negative scores in word shadowing. The second 
spatial mode (Fig. 3-lower right) had its highest 
positive loadings in the anterior cingulate and bitem- 
poral regions (notably Wernicke’s area on the left). 
This mode appears to correspond to a highly non- 
linear, monotonic time effect with greatest promi- 
nence in the earlier conditions (Fig. 3-lower left). 

The post hoc functional attribution of these spatial 
modes is usually based on their time-dependent pro- 
files (ui). The first mode may represent an intentional 
system critical for the intrinsic generation of words in 
the sense that the key cognitive difference between 
the verbal fluency and word shadowing conditions is 
the intrinsic generation of (as opposed to extrinsically 
cued) word representations and implicit mnemonic 
processing. The second system, which includes the 
anterior cingulate, seems to be involved in habitua- 
tion; possibly of attentional or perceptual set (see Wise 
[198Y] for a brief discussion of set). One might infer 
this from previous PET studies on attention [Petersen 
et al., 1989; Pardo et al., 1990; Corbetta et al., 19911 and 
other ideas relating to the distribution of attentional 
systems [Posner et al., 19901. 

The anterior cingulate is an interesting example of 
an area that belongs, coincidentally, to two orthogonal 
systems. In other words the activity of this area 
increases during the verbal fluency task and declines 
with time (possibly with acquisition of perceptual set). 
Y e t  these two effects arc totally independent. 

There is nothing ”biologically” important about the 
particular spatial modes obtained in this fashion, in 
the sense that one could “rotate” the eigenvectors 
such that they were still orthogonal and yet have 
different eigenimages. The uniqueness of the particu- 
lar solution given by SVD is that the first eigenimage 
accounts for largest amount of the variance-covari- 
ance and the second for the greatest amount that 
remains and so on. The reason that the eigenimages in 
the example above lend themselves to such a simple 
interpretation is that the variance introduced by experi- 
mental design (intentional) was substantially greater 
than that due to time (attentional) and both these 
sources were greater than any other effect. Other 
factors that ensure a parsimonious characterization of 
the time-series, with small numbers of well defined 
modes include 1) smoothness in the data and 2) using 
only voxels that evidenced a non-trivial amount of 
change during the scanning session. 
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experimental variance 

Fig. 2. 
Experimentally introduced variance in the PET activation study of 
word generation. Left: Statistical parametric map (SPM [Friston et 
al., I99 I b]) of the F ratio following an ANCOVA of the six-subject, 
12-condition verbal fluency study. The maximum intensity projec- 
tion display format is standard and provides three views of the brain 
in the stereotactic space of Talairach and Tournoux [ I9881 (from 

Mapping anatomy into functional space- 
multidimensional scaling 

In the previous section the functional connectivity 
matrix was used to define the associated eigenimages 
or spatial modes. In this section functional connectiv- 
ity is used in a different way: Namely to constrain the 
proximity of two cortical areas in some functional 
space. The objective here is to transform anatomical 
space so that the distance between cortical areas is 
directly related to their functional connectivity. This 
transformation defines a new space whose topogra- 
phy is purely functional in nature. This space is 
constructed using multidimensional scaling or princi- 
pal coordinates analysis [Gower, 19661. 

Multidimensional scaling (MDS) is a descriptive 
method for representing of the structure of a system, 
on the basis of pairwise measures of similarity or 
confusability [Torgerson, 1958; Shepard, 19801. The 
resulting multidimensional spatial configuration of 
the system's elements embody (in their proximity 
relationships) the comparative similarities. The tech- 
nique was developed primarily in the analysis of 

eig envalue spectrum 
81 1 

"0 5 10 
spatial mode 

the back, from the right, and from the top). Right: Eigenvalues 
(singular values squared) of the functional connectivity matrix 
reflecting the reiative amounts of variance accounted for by the I I 
spatial modes associated with this data. Only two eigenvalues are 
greater than unity and to all intents and purposes the changes 
characterizing this time-series can be considered two-dimensional. 

perceptual spaces. The proposal that stimuli be mod- 
eled by points in space, so that perceived similarity is 
represented by spatial distances, goes back to the days 
of Isaac Newton [1704]. The implementation of this 
idea is however relatively new [see Shepard, 19801. A 
typical model underlying MDS can be summarized by: 

where Fmon(.) is a decreasing monotonic function. 6,, is 
the measure of similarity (functional connectivity) 
between elements (voxels) i and j .  d,, is the distance 
between them in a Euclidean functional space. xi is the 
Ith coordinate of element (voxel) i in this new space. 
(z means equal, except for unspecified error terms.) 

Imagine K measures from n voxels plotted as n 
points in a K-dimensional space (K-space). If they have 
been normalized to zero mean and unit sum of 
squares, these points will fall on a K-1 dimensional 
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Fig. 3. 

Spatial modes and singular vectors. Left. Time-dependent expres- 
sion of the spatial modes (u') or alternatively eigenvectors of the 
distribution of points in a functional space (i.e., eigenvectors of 
MMT). The attribution of the corresponding spatial modes, or 
direction in a functional space, depends on relating this vector to 
the tasks employed during the activation. The first vector (top) is 
clearly related to the difference between word generation (even- 
numbered conditions) and word shadowing (odd-numbered scans). 

hypersphere. The closer any two points are to each other, 
then the greater their correlation or functional connectivity 
(in fact the correlation is the cosine of the angle 
subtended at the origin). The distribution of these 
points embodies the functional topography. A view of 
this distribution that reveals the greatest structure is 
simply obtained by rotating the points to maximize 
their apparent dispersion (variance). In other words 
one looks at the subspace with the largest "volume" 

This difference is the intentional or intrinsic generation of word 
representations. The second vector (bottom) corresponds to 
some largely monotonic time effect we have labelled attentional. 
Right: The eigenimages or spatial modes corresponding to the first 
two eigenvectors of the functional connectivity matrix. These 
modes are the eigenvectors of MTM. The eigenimages are dis- 
played as a maximum intensity projection in standard SPM format. 
The color scale is arbitrary and each SPM is scaled to its maximum. 

spanned by the principal axes of the n points in 
K-space. These principal axes are given by the eigen- 
vectors of M.MT., i.e., the column vectors of u. From 
eqn(2): 

M.MT = u.s'.u'. 

Let X = [x' . . . xT ]'be the matrix of desired coordinates 
derived by simply projecting the original data (MT) 
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onto the axes defined by u: 

Voxels that have a correlation of unity will occupy 
the same point in the MDS space. Voxels that have 
independent dynamics (p,] = 0) will be d 2  apart. 
Voxels that are negatively but totally correlated 
(p,] = -1) will maximally separated (by a distance of 2) .  
Profound negative correlations denote a functional 
association that are modeled in the MDS functional 
space as diametrically opposed locations on the hyper- 
sphere. In other words two regions with profound 
negative correlations will form two "poles" in func- 
tional space. 

This approach is equivalent to using the functional 
connectivity (p,) as the measure of similarity (?ill = p ],) 
where: 

This can be seen by noting that the points defined 
by the coordinates (xi) are an orthogonal rotation of 
the original data (mk-the kth element of mi). Because 
orthogonal rotation does not change Euclidean dis- 
tances: 

An illustration 

Following normalization to unit SUVJ of squares o z w  
each column M was subject to singular value decompo- 
sition according to Equation (2) and the coordinates X 
of the voxels in the MDS functional space computed as 
in Equation (5). Recall that only two eigenvalues 
exceed unity (Fig. 2-right) suggesting the functional 
space is essentially two dimensional. The locations of 
voxels in this two-dimensional subspace are shown in 
Figure 4 (lower row) by rendering voxels from differ- 
ent regions in different colours. The anatomical re- 
gions corresponding to the different colours are shown 
in Figure 4 (upper row). Anatomical regions were 
selected to include those parts of the brain which 
showed the greatest variance during the 12 conditions 
(see Fig. 2-left). Anterior regions (Fig. 4-right) in- 
cluded the mediodorsal thalamus (blue), the dorsolat- 
era1 prefrontal cortex (DLPFC) and Broca's area (red), 
and the anterior cingulate (green). Posterior regions 
(Fig. P l e f t )  included the superior temporal regions 

(red), the posterior superior temporal regions (blue), 
and the posterior cingulate (green). The correspond- 
ing functional spaces (Fig. 4-lower row) reveal a 
number of things about the functional topography 
elicited by this set of activation tasks. First each 
anatomical regon maps into a relatively localized 
portion of functional space. This preservation of local 
contiguity reflects the high correlations within ana- 
tomical regions, due in part to smoothness in the 
original data and to high degrees of intraregional 
functional connectivity. Secondly the anterior regions 
are almost in juxtaposition as are the posterior regions; 
however, the confluence o f  anterior and posterior 
regions form two diametrically opposing poles (or one 
axis). This configuration suggests an anterior-poste- 
rior axis with prefrontotemporal and cingulocingulate 
components. One might have predicted this configura- 
tion by noting that the anterior regions had high 
positive loadings on the first eigenimage (see top right 
panel of Figure 3) while the posterior regions had high 
negative loadings [see top right panel Figure 5 (which 
is very similar to the negative loadings)]. Thirdly 
within the anterior and posterior sets of regions 
certain generic features are evident. The most striking 
is particular ordering of functional interactions. For 
example the functional connectivity between the pos- 
terior cingulate (green) and superior temporal regions 
(red} is high and similarly for the superior temporal 
(red) and posterior temporal regions (blue), yet the 
posterior cingulate and posterior temporal regions 
show very little functional connectivity (they are d 2  
apart or equivalently subtend 90" at the origin). 

These results are consistent with known anatomical 
connections. For example DLPFC-anterior cingulate 
connections, DLPFC-temporal connections, bitempo- 
ral commissural connections, and mediodorsal tha- 
lamic-DLPFC projections have all been demonstrated 
in nonhuman primates [e.g., Goldman-Rakic, 1986, 
19881. The mediodorsal thalamic region and DLPFC 
are so correlated that one is embedded within the 
other (purple area). This is pleasing given the known 
thalamocortical projections to the DLPFC. 

At this point one might ask if absolute position in 
the MDS functional space has any meaning. For 
example, is the fact that the fronto-temporal axis is 
horizontal (as opposed to vertical) important? The 
answer is yes. Each dimension (ui) of the transformed 
space has the same specific functional attribution as 
the spatial mode (v'). Consequently one could desig- 
nate the first horizontal dimension of the functional 
space (u') as intentional (corresponding to the inten- 
tional or intrinsic generation of words) and the second 
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Fig. 4. 
Classical or metric scaling analysis of the functional topography of 
intrinsic word generation in normal subjects. Top: Anatomical 
regions categorized according to their colour. The designation was 
by reference to the atlas of Talairach and Tournoux [1988]. 
Bottom: Regions plotted in a functional space following the scaling 
transformation. In this space the proximity relationships reflect the 
functional connectivity between regions. The colour of each voxel 

corresponds to the anatomical region it belongs to. The brightness 
reflects the local density of points corresponding to voxels in 
anatomical space. This density was estimated by binning the 
number of voxels in 0.02 ‘boxes’ and smoothing with a Gaussian 
kernel of full width at half maximum of three boxes. Each colour 
was scaled to its maximum brightness. 

vertical dimension (u2) as attentinnal (attentional 
changes or changes in perceptual set as the experi- 
ment proceeds). 

This perspective provides a slightly richer interpre- 
tation of the functional space in the following way: 
Functional connectivity (distance) between two re- 
gons can be partitioned into intentional (horizontal) 
and attentional (vertical) components. For example 
the horizontal proximity of the DLFPC (red) and 
anterior cingulate (green) is greater than their vertical 
proximity. In other words the functional connectivity 
between the DLPFC and anterior cingulate is domi- 
nated by the intentional aspects of the tasks used to 
elicit the functional interactions. 

It is fortuitous that the data used to illustrate this 
approach were essentially two dimensional. If the 

data have a greater dimensionality then it is necessary 
to provide several ”views” of the functional space to 
completely capture the important relationships. 

Functional connectivity between systems 

Hitherto we have been dealing with the functional 
connectivity between two voxels. The same notion 
can, however, be extended to the functional connectiv- 
ity between two systems by noting that there is no 
fundamental difference between the dynamics of one 
voxel and the dynamics of a distributed system or 
pattern. The functional connectivity between two 
systems is simply the correlation or covariance be- 
tween their time-dependent activity. The time-depen- 
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1 st pair 

Systems subtending the greatest inter-hemispheric integration as 
defined by SVD. Upper row: The systems associated with the 
largest singular value. Lower row: The systems associated with the 
second largest singular value. Left: Activity of the system depicted 
on the left; right hemisphere, solid line; left hemisphere, broken 
line. Right: images corresponding to the pairs of singular vectors in 

Equation (10). Because each vector specifies the value of voxels in 
each hemisphere the two systems can be shown in one image. 
Although the bitemporal regions figure in both the first and second 
pairs the first pair implicates the posterior cingulate, whereas the 
second pair includes the anterior cingulate. 

dent activity of a system or pattern p is gven by: 

mp = M.p 

therefore: 

ppq = mqT.mp = qT.MT.Mp (8) 

where pp4 is the functional connectivity between the 
systems described bv vectors p and q. Note that 
different spatial modes have no functional connectiv- 
ity (i.e., pvivj = 0; i f j). Consider next functional con- 

nectivity between two systems in separate parts of the 
brain, for example the right and left hemispheres. 
Here the data matrices (MP and Mq) derive from 
different sets of voxels and eqii(8) becomes: 

ppq = mi.rnp = qT.Mi.Mp.p. (9 )  

If one wanted to identify the intra-hemispheric 
systems that showed the greatest inter-hemispheric 
functional connectivity one would need to identify 
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the set of vectors p and q that maximize ppq in 
Equation (9). SVD finds yet another powerful applica- 
tion in doing just this: 

[usv] = SVD{M;.M,} 

such that: 

M;.M, = u.s.vT 

and 

u~.M;.M,.v = s. (10) 

The first columns of U and V represent the singular 
images that correspond to two systems that evidence 
the greatest amount of functional connectivity (the 
singular values in the diagonal matrix S). In words 
SVD of the (generally asymmetric) covariance matrix 
based on the time-series from two anatomically sepa- 
rate parts of the brain yields a series of paired vectors 
(Ui and Vi) that, in a stepdown fashion, define pairs of 
brain systems that show the greatest functional connec- 
tivity. 

To illustrate this the data matrix M was partitioned 
into a matrix that included all the voxels from the right 
hemisphere (M,) and a matrix that included voxels 
from the left hemisphere (MJ. These two matrices 
were subject to SVD as in Equation (10) and the first 
two pairs of singular vectors were rendered as images. 
Because each pair of vectors (V and Vi) are non- 
overlapping in space they can be displayed in the 
same anatomical projection (Fig. 5-upper right U1 
and V1 and lower right U2 and V2). The corresponding 
time-dependent activities (M,.Vi and M,.Ui) are plot- 
ted on the left. 

This analysis reveals that the first pair of systems 
subtending the greatest interhemispheric integration 
(Fig. 5-upper row) are the bitemporal regions and 
posterior cingulate (the negative parts of these profile 
are not shown and included the left DLPFC). The 
covariances mediating this integration reflect the inten- 
tional aspects of the tasks and these pairs of patterns 
are almost indistinguishable from the first spatial 
mode. The second pair (Fig. S l o w e r  row) includes 
the bitemporal regions and the anterior cingulate. The 
corresponding profile of activities suggests these inter- 
actions could be designated as attentional (habituation 
of set-cf. the second spatial mode). 

Functional connectivity and information theory 

This, the final section on functional connectivity, 
places functional connectivity in the context of infor- 
mation theory. In the previous section we provided a 
way of assessing the functional connectivity between 
two single systems, each defined by a pattern or 
vector. In this section we consider the functional 
connectivity between two anatomical regions. The 
essential difference is that the dynamics of a voxel, 
system, or pattern is given by a single time-series. The 
dynamics of an anatomical region containing n voxels 
is given by n time-series. The extension of functional 
connectivity from uni- to multidimensional time- 
series requires a measure of mutual dependence called 
mutual information (MI). MI is a measure of the 
predictability of one set of multidimensional measure- 
ments given another; it an information theoretic mea- 
sure that reflects mutual dependence. More formally: 

MI,, = log([ ~ M ~ . M , ~ . ~ M ~ . M ~ ~ / ~ M T . M ~ ] 1 ~ 2 )  (11) 

where 1 . 1  denotes the determinant and M, and M, 
denote partitions of the data matrix as above. The 
determinant of a covariance matrix (e.g., /Mi.  Mpl.) 
can be thought of as the multidimensional equivalent 
of variance. Because the determinant is unaffected by 
orthogonal rotation the determinants can be simply 
expressed in terms of the singular values. For example 
[from Eq. (2)] :  

In other words the mutual information between 
two spatially extended regions is the log of the 
products of singular values associated with all the 
spatial modes on considering the regions separately 
divided by the product obtained by considering the 
two regions together. Functional connectivity and 
mutual information both reflect the same thing. In the 
limiting case of just two voxels (or patterns) it is easy 
to show that: 

where p is the functional connectivity expressed as a 
correlation. MI has been used as a measure of intra- 
hemispheric functional connectivity to investigate in- 
terhemispheric integration in normal subjects and 
schizophrenic patients with some interesting results 
[Friston and Frith, 1994~1. 
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Clearly this form of quantifying cortico-cortical inte- 
gration is well suited to the characterization of puta- 
tive disconnection syndromes. It should be noted that 
computing the MI requires that the matrices are 
nonsingular (the determinant is not equal to zero). 
This requires the number of time-series be smaller 
than the number of observations. In practice it is 
therefore necessary to apply Equation (11) to the 
dynamics of the spatial modes [Eq. (8)] as opposed to 
the original voxel time-series. 

EFFECTIVE CONNECTIVITY 

Models and validation 

Functional connectivity is an operational definition. 
Effective connectivity is not. It depends on some 
model of the influence one neuronal system exerts 
over another. In this sense the validity of effective 
connectivity reduces to the validity of the model. We 
shall consider linear and nonlinear models and several 
approaches to establishing validity. Perhaps the sim- 
plest model of effective connectivity expresses the 
hemodynamic change at one voxel as a weighted sum 
of changes elsewhere. The weights or coefficients can 
then be identified with effective connectivity: For 
example, in matrix notation, one has: 

mi = M.C' + e (14) 

where Ci is a column-vector of effective connectivities 
from all locations to the one in question ( i ) .  e is an 
error term that is not correlated with any voxel 
time-series. If one selects a point ( i )  in the brain and 
asks; what is the effective connection strength be- 
tween the location chosen and all other locations?, 
then one wants to know the values of all the elements 
of Ci. The least squares solution for Ci is [Binmore, 
19821 : 

This solution can be regarded as a simple linear 
regression where the effective connectivity (C,,) re- 
flects the amount of rCBF variability, at i, attributable 
to rCBF changes at location j .  Implicit in this interpre- 
tation is a mediation of this influence by neuronal 
connections with an effective strength equal to Gj. 
There are three issues that deserve comment when 
estimating effective connectivity from neuroimaging 
data in this way. First these equations are linear, 
whereas cerebral physiology is not. However the 

analysis of functional connectivity (see previous sec- 
tions) suggested that the linear system was a suffi- 
ciently good approximation to account for observed 
changes in rCBF in a fairly comprehensive and mean- 
ingful way. Secondly the fact that there are only a few 
observations (12 in the PET study) but many (here 
6,477) voxels means the set o f  inconsistent linear 
equations Equation (14) represents are underdeter- 
mined, The problem of underdetermination is dealt 
with finding a solution with the minimum 2-norm of 
all minimizers [Golub and Van Loan, 19911. This is 
formally equivalent to solving the equation in the 
space defined by the spatial modes or eigenimages. 
Herein is a fundamental mathematical link between 
functional connectivity and effective connectivity when 
assessed in short time-series of spatially extended 
systems like images. Mathematically: 

mi = M.v.ai + e (16) 

is solved for a', where Ci = v.ai. As in previous sections 
v = [vl . . . v'] is a matrix of r eigenimages and M.v = 
U.S. Only the r (or less) eigenvectors with non-zero (or 
large) eigenvalues are used, giving: 

Ci = v.s-2.vTMT.mi = v. pinv(M.v).m' (17) 

where pinv(.) denote the pseudo inverse. Although 
this works mathematically, the question 'is the estima- 
tion of c' a good one?' remains. 

Issues of validity 

Because effective connectivity is not on operational 
definition (cf. functional connectivity) and is univer- 
sally based on some model, issues of validity should 
always be addressed. These can be seen as comments 
on the validity of the model to account for the 
influences one neural system can be inferred to exert 
over another. In our work we separate these com- 
ments into those dealing with construct validity (does 
the model have validity in terms of another construct 
or framework, face validity (does the model capture 
what it is meant to), and predictive validity (does the 
model accurately predict the system's behaviour). 

To illustrate how one might address the validity of 
the simple linear model above [Eq. (14)] consider 
construct validity in terms of anatomical connectivity. 
The premise here is that if the topography of effective 
connections conform to the known anatomical effer- 
ents to a particular area, one sort of construct validity 
would have established. Figure 6 (lower row) presents 
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maximum intensity projections of (the positive values 
of) c‘ where the reference region (i) was placed in the 
left DLPFC (top). These estimates were derived using 
Equation (17) using the first and last eight PET scans of 
the word generation study (the reason for using these 
subsets relates to the examination of time-dependent 
changes described below). The key (darker) sources of 
effective connections include contiguous and exten- 
sive parts of the DLPFC, frontal operculum and 
Broca’s area (BA 44), the anterior cingulate (BA 24,32), 
a midline region centred on the medial dorsal tha- 
lamic nuclei, the retrosplenial cortex, and a more 
ventral area (including the brainstem), coextensive 
laterally with the parahippocampal gyri. These connec- 
tions have been demonstrated anatomically (either as 
direct or indirect) in nonhuman primates [Goldman- 
Raluc, 1986, 19881. Face validity can be established 
using the empirical data matrix (M) and an assumed 
effective connectivity (C”). These simulations involve 
computing the expected rCBF (ma) in a hypothetical 
repon using C”. and Equation (14), and then working 
backwards to solve for C”, using only M and ma. 
Clearly this would be a rather circular exercise were it 
not for the underdetermination of the problem and 
the effect of simulated noise (ea). Predictive validity 
can be assessed as the ability to predict changes in 
activity at some reference region on the basis of the 
observed changes elsewhere and effective connection 
strengths esfimatedfrom independent data (see Friston et 
al. [1994d] for an example using M R I  data). 

Provisional experience suggests that the linear model 
[Eq. (14)] can be unnaturally well behaved. One 
explanation for this is that the dimensionality (the 
number of things which are going on) of the physi- 
ological changes over the brain can be very small. In 
fact the distribution of eigenvalues associated with the 
PET study suggest a dimensionality of two or three 
(Fig. 2-right) in the subset of voxels analyzed. In 
other words the brain responds to simple and well 
organized experiments in a simple and well organized 
way. In the example presented despite having mea- 
surements in 6,477 voxels there are only substantial 
changes in two or three spatial modes. As there are 
more than three observations the apparently underde- 
termined problem is, in one sense, overdetermined. 

Finally it is important to realize that effective connec- 
tivity is being estimated in terms of the eigenimages 
([v’ . . . vr]). If a particular pattern of connections has 
nothing in common with any of the eigenimages used 
in the least squares analysis, then these connections 
will ”not be seen.” In other words the pattern of rCBF 
correlations completely constrains the estimation of 

effective connections which are, as a result, time and 
experiment-dependent. 

The mathematical relationship between functional 
and linear effective connectivity 

There is a very simple relationship between the 
functional connectivity and effective connectivity ma- 
trices if we are dealing with a linear model. By 
substituting M for mi in Equation (17) we obtain: 

effective connectivity matrix = C = v.vT. 

Compare this with the equivalent expression for the 
functional connectivity matrix 

p = M’.M = VXV’ 

One way of interpreting this relationship is to note 
that linear effective connectivity can be represented 
by a series of orthogonal (noninteracting) spatial 
modes that are all self connected with unit strength. 
The functional ”self” connectivity is simply the vari- 
ance of each mode, namely the eigenvalues in the 
leading diagonal of h (= s2).  The simplicity of effective 
connectivity assessed with a linear model is reflected 
in the fact that C is symmetric (C,, = C,,). Clearly the 
face validity of linear effective connectivity is some- 
what limited by this and points to the importance of 
nonlinear models where asymmetry is allowed (see 
below). 

CHANGES IN EFFECTIVE CONNECTIONS 

In the next two sections we apply the concept of 
effective connectivity to two neurobiologcal ques- 
tions. In both examples the questions can be formu- 
lated in terms of effective connection strength changes 
from one set of circumstances to another. The first 
example uses the PET data and shows that the changes 
in C,, with time conform to those changes that would be 
predicted by an associative model of synaptic plastic- 
ity applied to the C, estimates. The second example 
demonstrates the presence of modulatory interactions 
between V2 and V l  using fMRI data. In this instance 
modulation is characterized by a change in “appar- 
ent” C,, with activity intrinsic to the area being 
nodulated. This can be seen by considering the C, in 
the absence of any intrinsic activity. As there is 
nothing to modulate the apparent C,, will be zero. 
Although these models differ on many levels they 
share a common reliance on demonstrating a change in 
connection strengths and the same mathematical tech- 
niques. 
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effective connectivity (1 st 8 scans) last 8 scans 

Fig. 6. 
The estimated effective connectivity t o  a region in the dorsolateral 
prefrontal cortex (centred on x,y,z = -40,28, I 6  according to the 
atlas of Talairach and Tournoux [ 19881). Top: the location of the 
reference region (all voxels within I 2  mrn of the reference 
location). Lower right and left: The mean effective connectivity 

estimated as in eqn( 17) on the basis of the f irst and last eight scans 
of the I2  scan time-series. The gray scale is arbitrary. The main 
regions highlighted include the left prefrontal cortex, midline and 
thalamic structures, and the anterior cingulate. 

Time-dependent changes in linear 
effective connectivity 

models can be applied to rCBF data and, in particular, 
the changes in effective connectivity they predict. 
Finally provisional evidence is presented confirming 
that the predicted changes are indeed observed. 

Lopez et al. [1990] have characterized associative 
long term modification of the ipsilateral and contralat- 
era1 synapses formed by the bilateral entorhinal corti- 
cal (EC) projections to the dentate gyrus (DG) using 

This section introduces the sort of electrophysiologi- 
cal evidence that has been used in support of associa- 
tive plasticity in the brain and relates empirically 
determined equations to general rules which model 
synaptic change. We then see how these associative 
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extracellular recording of population excitatory post- 
synaptic potentials. The contingencies of associatcd 
pre- and post-synaptic activation accurately prcdicted 
the altered synaptic responses of both ipsilateral and 
contralateral EC-DG pathways to stimulation. The 
authors proposed that the simplest equation consis- 
tent with these (and other electrophysiological obser- 
vations) has the form: 

(our notation where mt and m(, are post and pre 
synaptic activity respectively). f(.) is some monotonic 
function and ( j denotes averaging over time ( t ) .  This 
equation is a variant of Kohonen's [1982] cquation. 
Assumingf(.) is linear Equation (18) becomes a special 
case of a more generic form (in matrix notion): 

ACi = dMTmi - +(M,mi,Cij (1 9) 

used by Oja [1989] (our notation), where ACi is the 
change in effective connectivity and dMTmi is an 
associative or Hebbian term reflecting the correlation 
between pre- (M) and post- (mi) synaptic activity. 
+(M,mi,ci) is a nonassociative, decay or "forgetting" 
term which does not depend on an interaction be- 
tween pre- and post-synaptic activity. The variables d 
and + are constants which govern the rate of associa- 
tive plasticity and decay respectively. 

Applying the notion of associative plasticity to rCBF 
data means that one expects to see an increase in 
effective connectivity between two brain regions if 
their rCBF goes up and down together. In other words 
if two regons have high activity at the same time, the 
effective connections between them will be consoli- 
dated (the mediation of this effect is discussed below). 

The behavior predicted by associative or Hebbian 
changes of this sort is that the connections to any brain 
region will come to reflect the dominant pattern of 
correlations in inputs from the rest of the brain. Thc 
most dominant pattern of correlations is described by 
the first spatial mode (v,). In other words the connec- 
tions from the distributed brain regions defined by the 
first mode will be selectively enhanced relative to any 
competing pattern. The average strength of connec- 
tions from the kth spatial mode is a at  = v l  Ci; this is 
simply the dot product or "overlap" between the 
mode and the pattern of afferent connection strengths. 
Alternatively a; can be thought as a single virtual 
conrzection from the distributed brain system defined 

by vk. Associative plasticity would predict that the 
changeinaa; > a; > aiand soon. 

The hypothesis that changes in effective connectiv- 
ity would show this behavior can be tested by measur- 
ing c' at the beginning of an experiment and some 
time later and estimating the change (ACi). Figure 7 
(left) shows A c  where the two Ci were the estimates 
shown in Figure 6 (for the first and last eight scans of 
the 12 scan time-series). Again this estimation is in the 
space defined by the spatial modes (in this instance of 
the whole time series): 

A C ~  = v.( pinv(Mul,.v).mi - pinv(Mul,.v).m!' 

where the subscripts 1 and 2 denote different parts of 
the time series (in the example presented-the first 
and last eight scans). 

The resulting profile of time-dependent changes in 
effective connectivity to the left DLPFC show in- 
creased effective connectivity from the anterior cingu- 
late, frontal operculum, midline (thalamic) structures, 
and some temporal regions (Fig. 7-left). To see if this 
profile was consistent with an associative model of 
effective connectivity the connection strengths from 
the first three spatial modes were computed for the 
two sets of data. It can be seen that, as predicted, the 
first spatial mode has increased its contribution, 
whereas the second and third have reduced their 
(negative) contribution (Fig. 7-right). A more compre- 
hensive analysis is presented in Friston et al. [1993b]; 
however it should be noted that the results here and 
in Friston et al. [1993b] are only used to illustrate the 
idea and methodology. Clearly a proper examination 
of time-dependent changes in effective connectivity 
would require exhaustive empirical study and a well 
validated experimental model of effective connectiv- 
ity. 

The relationship between synaptic 
and physiological plasticity 

The results in the previvus section suggest rCBF and 
electrophysiological measurements can show a degree 
of homology in terms of associative changes in effec- 
tive connectivity. The use of a Hebbian model, to 
account for changes in rCBF, implies that when two 
brain regions are highly correlated, in terms of their 
physiology, then the effective connectivity between 
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Fig. 7. 
Time-dependent changes in effective connectivity. Left: Changes in 
effective connectivity between the estimates presented in Figure 6 .  
The nature of these changes is characterized by the two graphs on 
the right: These represent the average connectivity from the first 

them should increase. To invoke synaptic plasticity as 
the underlying mechanism presupposes that two re- 
gions that have coincident high pool activity (reflected 
in their rCBF) contain neurons whose activity is highly 
coherent on a time scale of milliseconds: temporal 
summation of two EPSPs will only occur within 15 ms 
[Nelson et al., 19921. This is important because this 
temporal summation may be instrumental in the 
induction of short and long term potentiation (STP 
and LTP). 

Is it then reasonable to suppose that two regions 
with high pool activity will share a significant number 

three spatial modes (ak in text). It can be seen that the first mode 
increases its contribution whereas the remaining two connectivities 
are attenuated. This is predicted by an associative model of changes 
in effective connectivity, 

of neurons whose dynamic interactions occur within a 
time frame of milliseconds? We suggest it is. There are 
two lines of evidence in support of a cooperative 
interaction between fast dynamic correlations and 
slow covariation of pool activity: 1) Aertsen and Preissl 
[1991] have investigated the behavior of artificial 
networks, analytically and using simulations. They 
concluded that short term effective connectivity varies 
strongly with, or is modulated by, pool activity. Pool 
activity is the product of the number of neurons and 
their mean firing rate. The mechanism is simple; the 
efficacy of subthreshold EPSPs (excitatory post- 
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synaptic potentials) in establishing dynamic interac- 
tions is a function of postsynaptic depolarization, 
which in turn depends on the tonic background of 
activity. 2) The second line of evidence is experimental 
and demonstrates that the presence of fast interac- 
tions is associated with intermediate or long term 
correlations between distant neurons or neuronal 
groups. Nelson et al. I19921 have characterized effec- 
tive connections between neurons or small groups of 
neurons, in BA 17 and BA 18 of cat extrastriate cortex. 
By cross-correlating activity they demonstrated that 
the most likely temporal relationship between spikes 
was a synchronous one. Furthermore the cross- 
correlograms segregated into three nonoverlapping 
groups with modal widths of 3 ms, 30 ms, and 400 ms. 
The short term correlation structures (3 and 30 ms) 
where almost always associated with the intermediate 
(400 ms) correlations. These observations suggest an 
interaction between short term ( < 100 ms) and interme- 
diate (100-1,000 ms) effective connectivity. 

In summary co-activated regions will have in- 
creased rCBF and neuronal pool activity. Higher 
background discharge rates augment post-synaptic 
depolarization and susceptibility to fast dynamic inter- 
actions, STP and LTP, both within and between the 
regions co-activated. This sort of cooperative interac- 
tion between neuronal populations has been pro- 
posed as part of the theory of neuronal group selec- 
tion [Edelman, 19781 and related work in this field 
makes explicit use of fast dynamic correlations [Sporns 
et al., 1989; Tononi et al., 19921. 

Nonlinear models of effective connectivity 

Reversible cooling experiments in monkey visual 
cortex, during visual stimulation, have demonstrated 
that neuronal activity in V2 depends on forward 
inputs from V1. Conversely neuronal activity in V1 is 
modulated by backward or reentrant connections from 
V2 to V 1  [Schiller and Malpeli, 1977; Sandell and 
Schiller, 1982; Girard and Bullier, 19881. In this section 
evidence is presented for a homologous asymmetry in 
reciprocal connections between V1 and V2 in human 
cortex, using physiological measurements obtained 
with functional MRI. 

Nonlinear interactions between VI and V2 

Evidence for functional asymmetries is found in the 
work of Schiller and colleagues [Schiller and Malpeli, 
1977; Sandell and Schiller, 19821 on interactions be- 
tween V1 and V2. Retinotopically corresponding re- 
gions of V1 and V2 are reciprocally connected in the 

monkey. V1 provides a crucial input to V2, in the 
sense that visual activation of V2 cells depends on 
input from V1. This dependency has been demon- 
strated by reversibly cooling (deactivating) V1 while 
recording from V2 during visual stimulation [Schiller 
and Malpeli, 1977; Girard and Bullier, 19881. In con- 
trast, cooling V2 has a more modulatory effect on V1 
unit activity. “Most cells became less responsive to 
visual stimulation, while a few became more active 
during cooling.” The cells in V1 that were most 
affected by V2 deactivation were in the infragranular 
layers, suggesting V2 may use this pathway to modu- 
late the output from V1 [Sandell and Schiller, 19821. 
Similar conclusions about the return pathway be- 
tween V5 and V2 were drawn by Girard and Bullier 
[1988]: because, in the absence of V1 input, these 
reentrant connections do not constitute an efficient 
drive to V2 cells, their role is most likely “to modulate 
the information relayed through area 17” (Vl). The 
term modulatory is strictly functional and can be 
applied to either anatomically forward or backward 
connections. 

A nonlinear model of effective connectivity 

To examine the interactions between V1 and V2 we 
used a nonlinear model of effective connectivity, 
extended to include a modulatory interaction: 

This model has two terms which allow for the 
activity in area i to be influenced by the activity in area 
j .  The first represents an effect which depends only on 
afferent input from areaj. This is the activity i n j  scaled 
by Cf. The coefficient Cf will be referred to as an 
obligafory connection strength, in the sense that a 
change in area j results in an obligatory response in 
area i. Conversely the second term reflects a modula- 
tory influence of area j on area i. The coefficient 
determining the size of this effect (Cr) will be referred 
to as a modulatory connection strength, because the 
overall effect depends on both the afferent input ( C y .  
mi) and intrinsic activity (mk). 

This equation, or model, can be interpreted from 
two points of view; 1) by analogy with the nonlinear 
behaviour that characterizes voltage-dependent chan- 
nels in electrophysiology or 2) in terms of classical 
(pharmacological) neuromodulation where post-syn- 
aptic responsiveness is modulated without a direct 
effect on post-synaptic membrane potential. The volt- 
age-dependent analogy is obtained by considering mk 
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as post-synaptic potential and mk as a depolarizing 
current. According to Equation (21) a high Cy reflects a 
greater sensitiz7ity to changes in input at  higher levels of 
intrinsic actizlity. In electrophysiological terms this 
translates as a change in post-synaptic depolarization, 
in response to a fixed depolarizing current, which 
increases with depolarization: This is a characteristic 
of voltage-dependent interactions [Haberly, 19911. 
This intrinsic activity-dependent effect, determined by 
the value of Cy, provides an intuitive sense of how to 
estimate Cy. This estimation involves measuring the 
difference in sensitivity between states with high and 
low intrinsic activity at the location of interest: 

Imagine one were able to "fix" the activity in V1 at a 
low level and measure the connectivity between V2 
and V1 assuming a simple linear relationship [Eq. 
(14)]: a value for the sensitivity of V1 to V2 changes 
could be obtained, say C,. Now, if the procedure were 
repeated with V1 activity fixed at a high level, a 
second (linear) estimate would be obtained (C2). In the 
presence of a substantial modulatory interaction be- 
tween V2 and V1 the second estimate will be higher 
than the first. This is because the activity intrinsic to V1 
is higher for the second estimate and V1 should be 
more sensitive to inputs from V2. In short C2 - C, 
provides an estimate of the modulatory influence of 
V2 on V1. The activity of V1 can be fixed post hoc by 
simply selecting a subset of data in which the Vl 
activity is confined to some small range. 

An estimation of the effective connection strengths 
of both an obligatory and modulatory nature can be 
obtained for the connections between all voxels and a 
reference location in the following way; for any 
reference location (i) assume that a subset of the 
time-series can be selected so that m; is limited to some 
small range about its mean ((m;)). For this subset 
Equation (21) can be approximated by Equation (14) 
(omitting error terms for clarity): 

mk = Cc?.mk + (mk)Ccy.mL 

= mj.(Co + (mi)CM) 

= mj.C. (22) 

Where C = Co + (mi).CM. Now assume two such 
subsets are selected, one with a high mean ((mi)2) and 
one with a low mean ((mi)2) giving two solutions for C 
(C, and Cl), then: 

CM = (C, - C,)/((mi)2 - x AC (23) 

(a similar expression for Co can be derived-see 
Friston et al. [1994d]). AC is computed using exactly 
the same approach as in the section of time-depen- 
dent changes, namely using Equation (20). In the 
present application subsets 1 and 2 are subsets of the 
time-series selected on the basis of intrinsic activity 
(mi) being high or low. This general approach to 
characterizing nonlinear systems with a piece-wise 
series of locally linear models has proved a fruitful 
strategy in many instances [Tsonis, 19921. See Palus et 
al. [1991] for a conceptually related approach to 
multichannel EEG recordings. 

The hypothesis that asymmetrical nonlinear V1 - 
V2 interactions would characterize cortical interac- 
tions in human visual cortex can be formulated in 
terms of Cy: We predicted that 1) the modulatory 
component of effective connections to V1 would be 
regonally specific and include V2 (C&2 would be 
relatively high compared to other regions), and that 2) 
the forward modulatory influences from V1 to V2 
(CY2,"J would be smaller than the reciprocal influ- 
ences (CY,,"J. 

Regional specificity of modulatory connections to V I 

A reference voxel was chosen in V1, according to the 
atlas of Talairach and Tournoux [1988], and the effec- 
tive connection strengths C:!,! and CY, were esti- 

were generated for all voxels, allowing maps of 
and Cv1,] to be constructed. These maps provided a 
direct test of the hypothesis concerning the topogra- 
phy and regional specificity of modulatory influences 
on V1. The lower rows in Figure 8 are maps of C&,, and 
C!& (for a reference in V1 on the right) and reflect the 
degree to which the area exerts an obligatory (left) or 
modulatory (right) effect on V1 activity. These maps 
have been thresholded at 1.64 after normalization to a 
standard deviation of unity. This corresponds to an 
uncorrected threshold of P = 0.05. 

The obligatory connections to the reference voxel 
derive mainly from V1 itself, both ipsilaterally and 
contralaterally with a small contribution from contigu- 
ous portions of V2. The effective connectivity from 
contralateral V1 should not be overinterpreted given 
that 1) the source of many afferents to V1 (the lateral 
geniculate nuclei) where not included in the field of 
view and that 2) this finding can be more parsimoni- 
ously explained by "common input." As predicted, 
and with remarkable regional specificity, the modula- 
tory connections were most marked from ipsilateral 

mated as described above. Values for C",,! 6 and Cy,,, 
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Fig. 8. 
Maps of the estimates of obligatory and modulatory connection 
strengths to VI . Top left Anatomical features of the coronal data 
used. This image is a high resolution anatomical MRI scan of the 
subject that corresponds to the fMRl slices. The box defines the 
position of a (36 x 60 voxel) subpartition of the fMRl time-series 
selected for analysis. Top right: The location of the reference 
voxel designated as V I  (white dot). This location is shown on a 
statistical parametric map of physiological variance (calculated for 

V2, dorsal and ventral to the calcarine fissure (Brod- 
mann's area 18 according to the atlas of Talairach and 
Tournoux [1988]) (note that "common input" cannot 
explain interactions between V1 and V2 because the 
geniculate inputs are restricted to Vl ) .  

To address the functional asymmetry hypothesis 
the modulatory connection strengths between two 
extended regons (two 5 x 5 voxel squares) in ipsilat- 
era1 V1 and V2 were examined. The estimates of 
effective connection strengths were based on hemody- 
namic changes in all areas and the subset of connec- 

each voxel from the time-series of 60 scans). The image has been 
scaled to its maximum. Lower right and lower left: Maps of 
C$',, and Cvl,,. The images have been scaled to unit variance and 
thresholded at P = 0.05 (assuming, under the null hypothesis of no 
effective connectivity, the estimates have a Gaussian distribution). 
The reference voxel in VI is depicted by a circle. The key thing to 
note is that V I  is subject to modulatory influences from ipsilateral 
and extensive regions of V2. 

tions between the two regions were selected to com- 
pare the distributions of forward and backward 
modulatory influences. Figure 9 shows the location of 
the two regions (this time on the right) and the 
frequency distribution of the estimates for connec- 
tions from the V1 box to the V2 box (broken line) and 
the corresponding estimates for connections from V2 
to V1 (solid line). There is a remarkable dissociation, 
with backward modulatory effects (V2 to V1) being 
much greater than forward effects (V1 to V2). Ths  can be 
considered a confirmation of the asymmetry hypothesis. 

+ 75 + 
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Graphical presentation of a direct test of the hypothesis concerning 
the asymmetry between forward and backward VI - V2 interac- 
tions. Left: A map of physiological variance showing the positions of 
two boxes defining regions in V I  and V2. The broken lines 
correspond (roughly) to the position of the VI  /V2 border accord- 
ing to the atlas of Talairach and Tournoux [ 19881. The value of Cl;: 

The biological mechanisms of modulatory dynamics 

The measurements used in this study were hemody- 
namic in nature. This limits an interpretation at the 
level of neuronal interactions. However the analogy 
between the form of the nonlinear interaction be- 
tween V1 and V2 activity and voltage-dependent 
connections is a strong one. It is possible that the 
modulatory impact of V2 on V1 is mediated by 
predominantly voltage-dependent connections. The 
presence of horizontal voltage-dependent connec- 
tions within V1 has been established in cat striate 
cortex [Hirsch and Gilbert, 19911. We know of no 
direct electrophysiological evidence to suggest that 
extrinsic backward V2 to V1 connections are voltage- 
dependent; however our results are consistent with 
this. An alternative explanation for modulatory ef- 
fects, which does not necessarily involve voltage- 
dependent connections, can again be found in the 
work of Aertsen and Preissl [1991] cited in the previ- 
ous section. Recall that they concluded effective con- 
nectivity varies strongly with, or is modulated by, pool 
activity. The mechanism related to the efficacy of 
subthreshold EPSPs in establishing dynamic interac- 
tions as a function of post-synaptic dtpolarization, 

were computed for all voxels in either box and Euclidean normal- 
ized to unity over the image. The frequency distribution of Cy 
connecting the two regions is presented on the right. The 
backward connections (V2 to V I  , solid line) are clearly higher than 
the corresponding forward connections (V I to V2, broken line). 

which in turn depends on the tonic background of 
activity. This clearly relates to the idea that sensitivity 
to afferent input increases with intrinsic activity (the 
original presentation of these results and a fuller 
discussion can be found in Friston et al. [1994d]). 

CONCLUSION 

This paper has reviewed the basic distinction be- 
tween functional and effective connectivity in neuro- 
imaging. Emphasis has been placed the points of 
contact between the diverse applications of these 
concepts and in particular the central role of eigenim- 
ages or spatial modes. The final sections demonstrate 
that nonlinear interactions can be characterized using 
simple extensions of linear models. 

Most of the techniques presented here are both 
simple and established. Many have been used in the 
context of neuroimaging before. One important differ- 
ence between the applications in this paper and other 
applications is that analyses such as eigenvector solu- 
tions, multidimensional scaling and linear regression 
approaches to effective connectivity are applied here 
to neuroimaging time-series. In this sense there is a 
greater correspondence between the current work 
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and the analysis of electrophysiological time-series 
than between this and previous analyses of covari- 
ances in neuroimaging data (where the covariance5 
are across subjects not time). One might anticipate 
that the time-series perspective will dominate with the 
advent of functional MRI and other techniques that 
allow many repeated scans in quick succession. 

An important development in recent years has been 
the use of structural equation modelling to examine 
interactions between brain regions [see McIntosh and 
Gonzalez-Lima, this issue]. In the context of the 
present framework structural equation modelling can 
be thought of as a (linear regression) model for 
effective connectivity. Structural equation modelling 
is particularly interesting in the sense that different 
models can be compared statistically: Furthermore 
control can be exerted over constraints on the model 
by specifying the sparsity structure of the connections 
and error variance. 

Although a less than mature field the approach to 
neuroimaging data and regional interactions dis- 
cussed by the many authors in these pages is an 
exciting endeavour that is starting to attract more and 
more attention. 
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