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This paper is about the fitting or inversion of dynamic causal models (DCMs) of fMRI time series. It tries to
establish the validity of stochastic DCMs that accommodate random fluctuations in hidden neuronal and
physiological states. We compare and contrast deterministic and stochastic DCMs, which do and do not ignore
random fluctuations or noise on hidden states. We then compare stochastic DCMs, which do and do not ignore
conditional dependence between hidden states and model parameters (generalised filtering and dynamic
expectation maximisation, respectively). We first characterise state-noise by comparing the log evidence of
models with different a priori assumptions about its amplitude, form and smoothness. Face validity of the
inversion scheme is then established using data simulated with and without state-noise to ensure that
stochastic DCM can identify the parameters and model that generated the data. Finally, we address construct
validity using real data from an fMRI study of internet addiction. Our analyses suggest the following. (i) The
inversion of stochastic causal models is feasible, given typical fMRI data. (ii) State-noise has nontrivial
amplitude and smoothness. (iii) Stochastic DCM has face validity, in the sense that Bayesian model
comparison can distinguish between data that have been generated with high and low levels of physiological
noise and model inversion provide veridical estimates of effective connectivity. (iv) Relaxing conditional
independence assumptions can have greater construct validity, in terms of revealing group differences not
disclosed by variational schemes. Finally, we note that the ability to model endogenous or random
fluctuations on hidden neuronal (and physiological) states provides a new and possibly more plausible
perspective on how regionally specific signals in fMRI are generated.
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Introduction

This paper is about stochastic dynamic causal modelling of fMRI
time series. Stochastic DCMs differ from conventional deterministic
DCMs by allowing for endogenous or random fluctuations in
unobserved (hidden) neuronal and physiological states, known
technically as system or state-noise (Riera et al., 2004; Penny et al.,
2005; Daunizeau et al., 2009). In this paper, we look more closely at
the different ways in which stochastic DCMs can be treated.
Deterministic DCMs provide probabilistic forward or generative
models that explain observed data in terms of a deterministic
response of the brain to known exogenous or experimental input.
This response is a generalised convolution of the exogenous input
(e.g. the stimulus functions used for defining design matrices in
conventional fMRI analyses). In contrast, stochastic DCMs allow for
fluctuations in the hidden states, such as neuronal activity or
hemodynamic states like local perfusion and deoxyhemoglobin
content. These fluctuations can be regarded as a result of (endoge-
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nous) autonomous dynamics that are not explained by (exogenous)
experimental inputs. This state-noise can propagate around the
system and, potentially, can have a profound effect on the correlations
among observed fMRI signals from different parts of the brain. In this
work, we ask whether it is possible to model endogenous or random
fluctuations and still recover veridical estimates of the effective
connectivity that mediate distributed responses. In particular, we
compare and contrast DCMs with and without stochastic or random
fluctuations in hidden states and explore variants of stochastic DCMs
that make different assumptions about the conditional dependence
between unknown (hidden) states and parameters.

Dynamic causal modelling (DCM) refers to the inversion of state-
space models formulated with differential equations. Crucially, this
inversion or fitting allows for uncertainty about both the states and
parameters of the model. To date, DCMs for neuroimaging time series
have been limited largely to deterministic DCMs, where uncertainty
about the states is ignored (e.g., Friston et al., 2003). These are based
on ordinary differential equations and assume that there are no
random variations in the hidden neuronal and physiological states
that mediate the effects of known experimental inputs on observed
fMRI responses. In other words, the only uncertainty arises at the
point of observation, through measurement noise. However, many
for fMRI, NeuroImage (2011), doi:10.1016/j.
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studies suggest that physiological noise due to stochastic fluctuations
in neuronal and vascular responses need to be taken into account
(Biswal et al., 1995; Krüger and Glover, 2001; Riera et al., 2004).
Recently, there has been a corresponding interest in estimating both
the parameters and hidden states of DCMs based upon differential
equations that include state-noise. Examples of this have been in the
DCM literature for a while (e.g., Friston, 2008; Daunizeau et al., 2009).
Early pioneering work in this area focussed on multivariate
autoregression and state-space models formulated as difference
equations (Riera et al., 2004; Valdes-Sosa, 2004; Penny et al., 2005;
Valdés-Sosa et al., 2005). Riera et al. (2004) considered stochastic
differential equations to model hemodynamic responses in fMRI data,
and estimated the underlying states and parameters from BOLD
responses using a local linearisation innovation method. Penny et al.
(2005) used difference equations to furnish a bilinear state-space
model for fMRI time series and estimated its parameter and states
using expectation maximisation (EM). This work was extended by
Makni et al. (2008), who used a Variational Bayes inversion scheme
that allowed for priors over model parameters and enabled model
comparison (Penny et al., 2004). More recently, Daunizeau et al.
(2009) introduced a general variational Bayesian approach for
approximate inference on nonlinear models based on stochastic
differential equations. In their recent work, Sotero et al. (2009) used
the innovation method to invert a biophysical generative model of
fMRI, which included both physiological and observation noise.

This paper deals with models based on random differential
equations rather than stochastic differential or difference equations.
This affords a model of state-noise that is not restricted to Wiener
processes or Markovian assumptions. Furthermore, we will consider
DCMs that comprise a network of regions (see also Valdés-Sosa et al.,
2005), instead of the single regions considered previously (Penny
et al., 2005; Makni et al., 2008). Our work in this area has focused on
schemes that simplify the inversion problem, using various assump-
tions about the posterior or conditional density on unknown
quantities in the model. Usually this density is assumed to have a
Gaussian form. This is known as the Laplace approximation. In
addition to this assumption, schemes based upon variational Bayes
assume that the states and parameters (and any hyperparameters
governing the amplitude of random noise) are conditionally inde-
pendent. This is known as the mean-field approximation. Each set of
conditionally independent quantities induces a separate optimisation
step in the variational inversion scheme. For deterministic DCMs there
are only two unknown quantities, the parameters and the hyperpara-
meters. These are optimised by maximising a variational (free-
energy) bound on the model log evidence in two steps. These are
usually described as expectation and maximisation steps in varia-
tional EM schemes (Friston et al., 2003). Stochastic DCMs include a
new set of unknown variables, namely, the hidden states. This
introduces a third (dynamic) step, leading to schemes like dynamic
expectation maximisation (DEM; Friston et al., 2008). Recently, we
have developed a simpler andmore general scheme called generalised
filtering (GF; Friston et al., 2010) that dispenses with the (mean-field)
conditional independence assumption. In this paper, we examine the
utility and validity of modelling uncertainty about hidden states and
the impact of conditional independence assumptions implicit in the
difference between DEM and GF. We will show that estimates of
effective connectivity (parameter estimates) from fMRI data are
relatively robust to these fluctuations. Furthermore we demonstrate
the potential usefulness of generalised filtering over its mean-field
variant (DEM), when making inferences about differences in coupling
among brain regions.

This paper comprises four sections. In the first, we present an
illustrative application of generalised filtering to the same fMRI data
set (attention to motion) that we have used previously to demon-
strate DCM using EM (Friston et al., 2003; Stephan et al., 2008) and
DEM (Friston et al., 2008). This section serves to illustrate the nature
Please cite this article as: Li, B., et al., Generalised filtering and
neuroimage.2011.01.085
of the GF scheme and the results it produces. Our focus here will be on
estimates of hidden neuronal and physiological states causing data
and how their estimation affects inference on the parameters we are
interested in (effective connectivity). Having established that it is
possible to recover estimates of both parameters and states, the
second section turns to the nature of noise or fluctuations in the
hidden states. This section uses model comparison to search over
models with different hyperpriors on the amplitude, form and
smoothness of noise. In the third section, we turn to face validity
and ensure that the accuracy of parameter estimates is robust to the
introduction of state-noise. We generated data with and without
state-noise (using the conditional parameter estimates from the first
section) and fitted stochastic (GF) and deterministic (EM) DCMs.
Using the conditional density on parameters and models, we then
assessed the ability of each DCM to distinguish between data that
were generated with and without state-noise and the impact of false
assumptions about state-noise on parameter estimates. In the final
section, we turn to construct validity and apply DCM to empirical data
from an fMRI study of (clinical) group differences. Our focus here was
on the conditional estimates of effective connectivity from EM, DEM
and generalised filtering. Our objective in these analyses was to see if
the deterministic and mean-field assumptions (implicit in EM and
DEM) improved or subverted the ability of the estimators to
distinguish between the two groups (under the assumption that
group differences exist), in terms of their functional architectures (i.e.
effective connectivity). We discuss the implications of our findings in
the discussion, paying special attention to endogenous brain activity
in dynamic causal modelling.

Stochastic DCM

In this section, we reanalyse an old data set that has been used
extensively in demonstrating connectivity analyses over the years.
These data were acquired during an attention to visual motion
paradigm and have been used to illustrate psychophysiological
interactions, structural equation modelling, multivariate autoregres-
sive models, Kalman filtering, variational filtering, EM and DEM
(Friston et al., 1997; Büchel and Friston, 1997, 1998; Friston et al.,
2003, 2008; Harrison et al., 2003; Stephan et al., 2008). Here, we
revisit questions about the generation of distributed responses by
analysing the data using conventional deterministic DCMs (EM),
stochastic DCMs under the mean-field approximation (DEM) and
generalised filtering (GF). The mathematical details of these schemes
are described in a series of technical papers (e.g., EM: Friston et al.,
2007; DEM: Friston et al., 2008; GF: Friston et al., 2010). In this paper,
we focus on the products of these schemes and how they differ from
each other. One interesting thing that we will see is that modelling
endogenous fluctuations allows one to infer neuronal and physiological
states explicitly. This provides a different perspective on how to model
brain dynamics, which we will return to in the discussion. We will first
describe the data and then review comparative analyses, under the
three different schemes.

Empirical data

Data were acquired from a normal subject at 2 T using aMagnetom
VISION (Siemens, Erlangen) whole-body MRI system, during a visual
attention study. Contiguous multi-slice images were obtained with a
gradient echo-planar sequence (TE=40 ms; TR=3.22 s; matrix
size=64×64×32, voxel size 3×3×3 mm). Four consecutive 100
scan sessions were acquired, comprising a sequence of 10 scan blocks
of five conditions. The first was a dummy condition to allow for
magnetic saturation effects. In the second, Fixation, subjects viewed a
fixation point at the centre of a screen. In an Attention condition,
subjects viewed 250 dots moving radially from the centre at 4.7 ° per
second and were asked to detect changes in radial velocity. In No
stochastic DCM for fMRI, NeuroImage (2011), doi:10.1016/j.
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attention, the subjects were asked simply to view the moving dots. In
a Static condition, subjects viewed stationary dots. The order of the
conditions alternated between Fixation and visual stimulation (Static,
No Attention, or Attention). In all conditions subjects fixated the
centre of the screen. No overt response was required in any condition
and there were no actual changes in the speed of the dots. The data
were analysed using a conventional SPM analysis (http://www.fil.ion.
ucl.ac.uk/spm). The responses of three key regions were summarised
using the principal local eigenvariate of each region (radius=6 mm)
centred on the maximum of a contrast testing for an appropriate
effect. An early visual region (V1) was identified using a contrast
testing for the effect of visual stimulation. An extrastriate cortex
(motion-sensitive area V5; Zeki et al., 1991) was identified using a test
for motion-specific responses, and an attentional area was identified
in the frontal eye fields (FEF), using a test for the effects of attention
(see Fig. 1 for details).

Model architecture and inversion

Fig. 1 shows the DCM dependency graph for this empirical
attention study: The most interesting aspects of this architecture
speak to the role of motion and attention in exerting enabling or
modulatory effects on coupling. Critically, the influence of motion is to
enable connections from V1 to the motion-sensitive area V5. The
influence of attention is to enable forward connections from V5 to a
higher (frontal) region. The location of these regions centred on visual
cortex V1; 9,−87, 6 mm:motion-sensitive area V5; 39, 78, 9 mm and
a frontal region, FEF; 12, −12, 66 mm. Note that in this paper, we
condition everything on a single model and assume this is the correct
Fig. 1. This figure shows the basic architecture of the DCM used to illustrate various in
superimposed on a slice of a (normalised) template MRI (V1: primary visual area; V5: mo
(a priori) to take non-zero values. These regions were identified using appropriate contrasts
the left correspond to visual stimulation, motion in the stimuli and attention to motion, duri
(solid lines; here visual input enters directly into V1) or modulate (enable) connections (do
connection from V5 to FEF). The empirical responses the DCM is trying to explain are show
centred on the (stereotaxic) location of each region in the centre panel. Note the emergence
V1 is not a perfect box car because it has been down-sampled (using a discrete cosine basis se
the empirical sampling rate.

Please cite this article as: Li, B., et al., Generalised filtering and
neuroimage.2011.01.085
model. Usually one would optimise the model before focussing on the
hidden states and parameters. A full treatment of model optimisation
using generalised filtering can be found in Friston et al. (in press).

In this example, the exogenous inputs ui(t)∈{0,1}: i=1,…3,
encode the presence of visual stimulation, the presence of motion in
the visual field and attentional set (attending to speed changes). The
responses yi(t)∈ℜ: i=1,…3 correspond to the three regional
eigenvariates. The unknown connections Aij∈θ: i, j=1,…3 among
regions were constrained to conform to a hierarchical pattern, in
which each area was reciprocally connected to its supraordinate area
(see Fig. 1). The strengths of these connections correspond to the
effective connectivity in the absence of (mean-centred) inputs. Visual
stimulation entered at, and only at, V1. The effect of motion in the
visual field was modelled as a bilinear modulation of the V1 to V5
connection and attention modulated the forward connection from V5
to FEF.

In the DCM used here, these modulatory effects are represented by
bilinear parameters Bij

(k)∈θ:i,j,k=1,…,3 where the random differen-
tial equation for the hidden neuronal states is (in matrix form)

ẋ = A + ∑kukB
kð Þ

� �
x + Cv + ω xð Þ

v = u + ω vð Þ 1

Here Cik∈θ: i,k=1,…,3 couples the k-th input to the i-th region.
The unknown parameters θt {A,B,C,H} include the coupling strengths
and a set of region-specific hemodynamic parameters H governing
the dynamics of four additional hemodynamic states h(t)∈ℜ for
each region (vasodilatory signal, blood flow, blood volume and
version schemes. The central panel shows the location of three regions examined,
tion-sensitive area: FEF: frontal area). The arrows denote the connections we allowed
following a conventional SPM analysis. The experimental (exogenous) inputs shown on
ng 30 s epochs of a block design. These inputs can excite responses in each area directly
tted lines; here motion enables the connection from V1 to V5 and attention enables the
n on the right. These are the principal eigenvariates from voxels within a 6 mm sphere
of attention-related activity at higher levels in this simple visual hierarchy. The input to
t) from the original specification (in time bins of a sixteenth of the inter-scan interval) to

stochastic DCM for fMRI, NeuroImage (2011), doi:10.1016/j.
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deoxyhemoglobin content), as described by an extended version of
the Balloon model (Buxton et al., 1998; Friston et al., 2003). A
nonlinear mixture of volume and deoxyhemoglobin content provides
the predicted BOLD response (Stephan et al., 2007). Here, the random
state fluctuations ω(x)∈Ω(x) have an unknown precision (inverse
variance) and smoothness that are hyperparameterised by π, σ∈γ
such that ω̃ xð Þ eN 0;V σð Þ⊗Σ e−πð Þð Þ. Under this Gaussian assumption
for the state-noise, the hyperparameters π∈γ are log precisions and
the smoothness σ∈γ that encodes correlations V(σ) among the
generalised motion of state-noise ω̃ = ω;ω′;ω″;…

� �T : Similarly
for the fluctuations on the hidden causes ω(v)∈Ω(v), hemodynamic
states ω(h)∈Ω(h) and observation noise ω(y)∈Ω(y).

Note the random differential equation above makes the inputs
u(t)∈ {0,1} priors on the hidden neuronal causes v(t)∈ℜ, because
the fluctuations induce uncertainty about how inputs influence
neuronal activity. Crucially, when state-noise has very low amplitude
(π(v,x,h)→∞), Eq. (1) reduces to a (bilinear) ordinary differential
equation used in conventional deterministic DCMs for fMRI

ẋ = A + ∑kukB
kð Þ� �

x + Cu 2

We will use this limiting case later to simulate data under
deterministic assumptions.

In summary, stochastic DCMs have three sets of unknown quantities:
hidden states st{x,v,h}, unknownparameters θt{A,B,C,H} andunknown
hyperparameters γt {σ,π}. The hidden states include neuronal states
x (t), their causes v(t), and thehemodynamic statesh(t) that engender the
BOLD signal and mediate the translation of neuronal activity into
hemodynamic responses (Friston et al., 2003). Hidden states meditate
the influence of causes ondata and endow the systemwithmemory; they
are called hidden states because they are not observed directly. The
unknown parameters include the coupling strengths A, B, C and a set of
region-specific hemodynamic parameters H, while the unknown hyper-
parameters control the precision (inverse variance) and smoothness of
the random fluctuations. Crucially, all hidden states are represented in
generalised coordinates of motion: s̃ = s; s′; s″;…

� �T . As discussed
elsewhere (Friston, 2008; Friston et al., 2010), representing states in
terms of generalised coordinates has several fundamental advantages.
Most importantly, this schemecan accommodate temporal correlations in
random fluctuations on the hidden states, which are often observed in
biological systems (e.g., 1/f spectra; Billock et al., 2001). This circumvents
the need to make Markovian or Wiener assumptions about state-noise
and allows one to handle real or analytic (continuously differentiable)
noise.

Inversion of the DCM provides an approximate conditional density
on the unknowns and a free-energy bound on themodel log evidence.
These can be expressed as

q s̃; θ;γð Þ = N μ ; Cð Þ≈p s̃; θ;γ j ỹ;mð Þ
F≈ ln p ỹ jmð Þ 3

where μ, C are the conditional means and covariances. Here,
ỹ := ∪t ỹ tð Þ denotes all the data and their temporal derivatives in the
time series (we use derivatives up to fourth order in this paper, under
the assumption that higher order derivatives have no precision, given
the temporal correlations we consider).

In variational schemes, one usually assumes that the approximating
density factorises over sets of parameters; this is called a mean-field
approximation. For example, in DEM, we assume that the hidden states,
parameters and hyperparameters are conditionally independent given
the data. This means, DEM assumes uncertainty about the parameters
(after seeing the data) does not depend on uncertainty about the states or
hyperparameters. While this is clearly not true, it provides a sufficiently
good approximation is most situations and greatly finesses the numerics
of model inversion. Under the mean-field approximation (in DEM), we
have q s̃; θ;γ; tð Þ = q s̃; tð Þq θð Þq γð Þ, and under deterministic approxima-
Please cite this article as: Li, B., et al., Generalised filtering and
neuroimage.2011.01.085
tions (in EM) we have q s̃; θ;γ; tð Þ = q θð Þq γð Þ, because there is no
uncertainty about the states. There is a subtle but important distinction
between the conditional densities furnished by DEM and GF: The
conditional density under GF changes with time and covers the
parameters (and hyperparameters). This means we allow for time-
dependent changes in conditional uncertainty about theparameters, even
though our prior belief is that they are constant. In otherwords, at various
times in the experiment we may have more confidence about some
parameters than others, depending on our uncertainty about the hidden
states. In contrast, the mean-field assumption in DEM means that
uncertainty about the hidden states does not affect uncertainty about
the parameters (and hyperparameters), whichmeanswe can accumulate
(assimilate) all the data before computing the (marginal) conditional
density on the parameters. Technically, this has implications for the way
the evidence for each model is accumulated: One can either use the log
evidence of the accumulated data or the accumulated log evidence of the
data. This corresponds tousing the free-energyF of the accumulated time
series or the accumulated free energy at each point in time (this is known
as the free actionS). In continuous time, these two summaries correspond
to

F ≤ ln p ỹ jmð Þ
S ≤∫dt ln p ỹ tð Þ jmð Þ

4

For internal consistency, we will use the free energy because this
allows the direct comparison with free-energy bounds on log
evidence from mean-field (variational) schemes. The free-energy
bound from GF basically instantiates the mean-field approximation,
after the conditional density has been optimised. This uses Bayesian
parameter averaging over time (see Friston et al., 2010 for details).
This is a useful device because it means we can compare the quality of
the free-energy bounds provided by conditional densities optimised
with and without the mean-field approximation, using GF and DEM
respectively. We will use this in the last section.

Comparative inversions

Here, we focus on the impact of the deterministic and mean-field
approximations on the conditional densities of the interesting
parameters. There are the two bilinear effects mediating the
modulatory influence of motion and attention (B21

(2),B32
(3)) and an

exogenous coupling parameter C11, mediating the effect of visual
simulation on striate cortex. For all analyses we assumed fixed values
for the log precision πm of hidden states; π(x)=π(h)=πm=8, a log
precision π(v)=4 for the hidden causes and a smoothness of
σm = 1

2 TR, unless otherwise stated. Although the inversion schemes
can estimate these hyperparameters, we fixed them here using zero
variance hyperpriors. The optimisation of these hyperpriors is
described in the next section. We used the usual priors on the
hemodynamic and coupling parameters as described previously
(Friston et al., 2003). The stochastic schemes were initialised with
the conditional parameter estimates of the deterministic scheme and
the conditional log precision, plus one (because deterministic
schemes over estimate observation noise variance in the presence of
state-noise). The deterministic schemes are computationally faster
(a few seconds) than the DEM and GF schemes (a few minutes).

Fig. 2 shows the conditional estimates of the parameters, under the
three schemes. A remarkable thing about these results is how similar
the estimates are, particularly when comparing GF and EM and for the
coupling parameters of interest that had uninformative priors. This is
a reassuring result because it suggests that modelling endogenous
activity does not explain away the information in the data that
informs these estimates. However, there are important differences.
Generally speaking, the conditional means or expectations from the
stochastic schemes (GF and DEM) are quantitatively smaller and
more precise than the deterministic (EM) scheme. This quantitative
stochastic DCM for fMRI, NeuroImage (2011), doi:10.1016/j.
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Fig. 2. Conditional estimates of parameters (and log precisions) from the three schemes considered (GF – generalised filtering; DEM – dynamic expectation maximisation; and EM –

expectation maximisation). The log precision or hyperparameter estimates from the three schemes, for each area (1 to 3), are shown on the lower right. The grey bars report the
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measured fMRI signal (not shown in the plot).
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difference suggests that stochastic schemes rely less on exogenous
input to explain the same responses, an observation we will return to
in the discussion. In terms of the difference between the two
stochastic schemes, one can see that generalised filtering produces
larger conditional confidence intervals than DEM (see also Friston
et al., 2010). This is intuitive because uncertainty about the
parameters in GF is affected by uncertainty about the states

This example was also chosen to highlight the failure of the mean-
field approximation (DEM) to detect the enabling or modulatory
effect of motion (particularly the first B parameter), relative to the GF
(and EM) estimates. Furthermore, the value of the exogenous
coupling C parameter is much higher than under generalised filtering.
These results probably reflect our rather inefficient experimental
design: we were originally interested in the effect of attention (not
motion). This means the visual and motion input (stimulus functions)
are very similar, because we only used a small number of epochs
without motion (see Fig. 1). Operationally, this results in a high
degree of conditional dependence between the coupling parameters
mediating the effects of visual and motion input (see Friston et al.,
2010). In this example, DEM has explained motion-related responses
in V5 largely in terms of visual responses. However, the GF scheme is
much more confident about a modulatory effect of motion. The
difference in free energy for the GF and DEM schemes was 5436.1
Please cite this article as: Li, B., et al., Generalised filtering and
neuroimage.2011.01.085
suggesting that GF provided a much tighter (better) bound on the log
evidence than the equivalent mean-field bound.

Fig. 2 also shows the estimates of the observation noise
hyperparameters (log precisions) for the three regions and three
schemes (lower right panel). Again these are quantitatively similar,
with stochastic schemes providing higher estimates of precision (i.e.,
less noise). The results here are interesting and intuitive. First one can
see that the EM thinks observation noise is greater than either
stochastic scheme. This is sensible because EM can only model
random effects in terms of measurement noise, whereas stochastic
models enjoy many more degrees of freedom to fit data. When
comparing the two stochastic schemes, we see that the mean-field
assumption used by DEM results in a higher estimate of precision in
two areas. This is again sensible because these estimates ignore
conditional correlations between the unknown parameters and states.
Note that overestimates of precision contribute to overconfidence
about parameters (c.f. upper right panel of Fig. 2). In summary, the
increase in the estimated precision of observation noise with DEM,
relative to GF, is consistent with the increased conditional precision of
the parameter estimates and may reflect the overconfidence one
generally sees with mean-field approximations.

Fig. 3 shows the (GF) conditional estimates of the hidden causes
and states. It is these estimates that are unavailable in deterministic
stochastic DCM for fMRI, NeuroImage (2011), doi:10.1016/j.

http://dx.doi.org/10.1016/j.neuroimage.2011.01.085
http://dx.doi.org/10.1016/j.neuroimage.2011.01.085


437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480
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schemes. This figure highlights the number and nature of hidden
quantities that are optimised during model inversion, in addition to
the unknown parameters and hyperparameters above. It also depicts
the accuracy of model predictions, in terms of prediction errors
(upper left). The predictions are generated by hidden causes (lower
left) that can represent an estimate of afferent neuronal activity
elicited by experimental inputs. Here, there are three such inputs (see
Fig. 1). The solid lines are time-dependent means and the grey regions
are 90% confidence intervals (i.e., confidence tubes, providing5%bounds
on either side of the conditional mean). The responses of the hidden
states are shown on the upper right. These comprise neuronal activity,
vasodilatory signal, normalised flow, volume and deoxyhemoglobin
content for each region. These hidden states generate the predicted
responses and associated prediction errors, in relation to the observed
data. One can see that the prediction errors are small in relation to the
predicted responses.

Fig. 4 focuses on responses in the early visual region and compares
the estimates of hidden neuronal and hemodynamic states with and
without the mean-field approximation (i.e., for DEM and GF). The two
schemes give very similar estimates of early visual responses, with the
exception of neural activity and ensuing vasodilatory signal. These are
quantitatively larger in the DEM scheme, relative to the GF scheme.
This reflects a greater influence of the visual input, reflecting the
Please cite this article as: Li, B., et al., Generalised filtering and
neuroimage.2011.01.085
larger exogenous coupling parameter estimate described above. These
conditional estimates provide an interesting picture of the dynamics
that underlie fMRI signals. Here, we see that afferent visual activity
(upper panel) drives regional neuronal activity (second row, blue
line), which induces transient bursts of vasodilatory signal (green),
which are suppressed rapidly by the resulting increase in blood flow
(third row, blue line). The increase in flow dilates the venous capillary
bed to increase blood volume (green) and dilute deoxyhemoglobin
(red). Volume and deoxyhemoglobin content determine the pre-
dicted fMRI response (lower row). As expected, the predicted
response is generally less than the observed response. This reflects
the fact that there are shrinkage priors on the hidden causes and
states.

Summary

In summary, we have seen that modelling endogenous fluctua-
tions using DCMs based on random differential equations is possible
and, indeed, provides conditional estimates of parameters that are
comparable to deterministic schemes. This is the first time that
stochastic DCM has be used to explain fMRI responses in a distributed
network of coupled regions and shoes that the numerics
are computationally feasible and the results are consistent with
stochastic DCM for fMRI, NeuroImage (2011), doi:10.1016/j.
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deterministic schemes. We have seen that stochastic DCMs reduce to
deterministic DCMs when the amplitude of state-noise falls to zero.
One interesting consequence of this is that the stimulus functions
used in conventional analyses take on the role of prior expectations
about exogenous influences on neuronal dynamics. This means that
when one inverts stochastic DCMs one obtains conditional estimates
of hidden neuronal causes. In other words, it is possible to estimate
the neuronal inputs to a region elicited experimentally, before
convolution with a hemodynamic operator. This may be useful in
identifying systematic adaptation and other fluctuations over the
course of trials or blocks. All the analyses of this section used assumed
fixed values (through infinitely precise hyperpriors) for the noise on
hidden causes and states. The next section describes how these values
were chosen.

The nature of noise

In this section, we characterise the random fluctuations in terms of
their amplitude, smoothness and form. These are interesting issues
Please cite this article as: Li, B., et al., Generalised filtering and
neuroimage.2011.01.085
from several perspectives. Physiologically speaking, a large number of
biophysical and empirical studies suggest quantitative bounds on the
excursion of hemodynamic states that generate fMRI signals. These
provide a quantitative reference when assessing the validity of any
model that accommodates these fluctuations. In brief, we know that
typical fMRI signals are caused by changes in physiological states that
seldom exceed about 20% of their baseline values. If we assume that
about 10% of the variation in these states is due to autonomous
(random) fluctuations (cf, Eke et al., 2006), then we would expect a
standard deviation of about 2%, which corresponds to a log precision
of about 8≈-2ln(2%). The value of 10% is based on common sense, in
that if (non-neurogenic) hemodynamic fluctuations approached their
maximum amplitude, they could not report neuronal activity and
fMRI would not work. The argument here is a bit more involved for
hidden states because the random fluctuations are on their motion.
The resulting variance of hidden states scales with both the variance
of these fluctuations and the time constants of the associated
dynamics. However, there is a quantitative correspondence when
the time constants are about one unit of time, which is largely the case
stochastic DCM for fMRI, NeuroImage (2011), doi:10.1016/j.
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for both neuronal and hemodynamics (noting that the time constants
of neuronal population dynamics are much greater than for single
neurons).

These quantitative arguments mean that if we compared the log
evidence of DCMs with different hyperpriors on the amplitude of
state-noise, wewould hope to find that the best models assumed a log
precision of around eight. This provides a test of construct validity, i.e.
whether the hyperparameters of state-noise actually represent what
they should represent. This analysis is pursued below and can be
regarded as a validation in relation to known neurophysiological
constraints.

From a technical perspective, the issue of smoothness in noise is
fundamental. Nearly all conventional approaches to the estimation of
dynamic (state-space) models assume that random fluctuations are
Markovian (i.e., they conform to a Wiener process). This means the
models are implicitly or explicitly based on stochastic differential
equations (in the Ito sense; Itō, 1951). This contrasts with the models
used by generalised filtering and DEM, which do not make Wiener
assumptions and use random differential equations (in the Stratonovich
sense;Stratonovich,1967). This iswhyweusegeneralised states; e.g.,ω̃ tð Þ
and smoothness above (see Friston, 2008 and Carbonell et al., 2007 for a
more detailed discussion). Although there are compelling arguments
(Stratonovich, 1967) that suggest real biophysicalfluctuations areanalytic
(differentiable) and correlated, the nature and extent of these correlations
in fMRI is unknown. This is because no one has tried to invert stochastic
DCMs of fMRI time series to remove the correlations induced by the
hemodynamic response function.

Model comparison

To quantify the precision and smoothness of physiological state-
noise, we inverted two series of DCMs using GF and the empirical data
for the previous section. The DCMs had a range of infinitely precise
hyperpriors; in other words, each DCM assumed a fixed level of state-
noise (resp. smoothness). This allowed us to compare the evidence for
different levels of state-noise (resp. smoothness) using Bayesian
model comparison. This comparison is based on the free-energy
bound F≈ ln p(y|πm⊂m) on the log evidence for a model that entails
the prior belief that the log precisions are πm (resp. smoothness is σm).

The first series of DCMs assumed log precisions πm=2,3,…10
that ranged from high levels 36%≈ exp − 1

2 2
� �

to low levels
0:6%≈ exp − 1

2 10
� �

of state-noise (with a fixed smoothness of σm = 1
2).

The second used a log precision of eight but varied the smoothness
σm = 1

2 ;
1
3 ;…; 1

10. We repeated the search over smoothness assumptions,
using two forms for the autocorrelation functions of state-noise; a
Gaussian and a Lorentzian form
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These correlation functions determine the correlations V(σ) among
generalised states (see Friston et al., 2008).

Fig. 5 shows the profile of log evidences over log precisions (upper
panel) and smoothness (lower panels). One can see immediately that
there is much more evidence for models with nontrivial levels of
state-noise. This is because the evidence formodels with intermediate
levels of state-noise (log precision) is much greater than the evidence
for alternative models (a difference in log evidence of about five is
Please cite this article as: Li, B., et al., Generalised filtering and
neuroimage.2011.01.085
generally considered very strong evidence for the better model;
Penny et al., 2004). As anticipated by quantitative physiological
arguments above, the optimum model has a log precision of about
eight. This result constitutes one piece of collateral evidence for the
form of these DCMs and the assumptions on which they rest. In terms
of smoothness, we again see clear evidence of substantial smoothness.
Fig. 5 (lower panels) shows a peak at around a smoothness of a half of
a time bin (TR). Crucially, there is very strong evidence against
Markovian noise (i.e., fluctuations that conform to Wiener processes
with no smoothness). Furthermore, the correlations appear to be
modelled better with a Gaussian form (left), compared to a Lorentzian
form (right). This may reflect the fact that long range correlations in
the data were removed by regressing out drift terms during pre-
processing. These results do not mean random fluctuations are
necessary Gaussian, just that assuming they are Gaussian provides a
better model of these data. Note we have simplified things here by
assuming all the fluctuations (observation and state-noise) have the
same correlation function. This assumption is easily relaxed and will
be revisited in future work.

Summary

In summary, this section has addressed the nature of physiological
noise in fMRI, insofar as it can be inferred with stochastic DCMs. We
have seen that Bayesian (i.e., evidence-based) model comparison can
be used to search over the space of unknown hyperparameters, while
implicitly accommodating uncertainty about other model unknowns.
The conclusions of this section are that state-noise conforms
quantitatively to physiological predictions and that it is serially
correlated. These correlations are almost impossible to avoid, in that
fluctuations of this sort are themselves generalised convolutions of
mesoscopic dynamics andmust therefore be analytic (continuous and
smooth). They also counsel against procedures (or their implemen-
tation) based on Markovian assumptions, like Granger causality and
Kalman filtering. It is well known that Granger causality is not valid
when data are generated by hidden states. This is because Granger
causality effectively conflates observation and state-noise (Newbold,
1978; Nalatore et al., 2007). The results of this section introduce a new
dimension (one which motivated the inception of DEM and
generalised filtering), namely serially correlated state-noise, which
confounds the use of Kalman filtering to finesse the application of
Granger causality to systems with hidden states (e.g., Nalatore et al.,
2007).

Face validity and synthetic data

In this section, we apply generalised filtering to simulated data to
ensure that veridical parameters can be recovered in the presence of
state-noise and that the levels of state-noise do not confound this
accuracy. Using a DCMwith the same structure and inputs as in Fig. 1,
we simulated data with high (stochastic) and low (deterministic)
levels of state-noise and then inverted both sorts of data using
deterministic (EM) and stochastic (GF) schemes.We hoped to see that
the appropriate DCM provided conditional densities on the para-
meters, whose 90% confidence intervals contained the true values.We
were also interested in the accuracy of stochastic model inversion
given data with negligible (deterministic) levels of state-noise; i.e.,
when πm=32. This is the situation assumed by conventional
deterministic DCMs, and we wanted to ensure valid inference with
stochastic DCMs in this limiting case.

This rather limited set of analyses is not meant to constitute an
exhaustive face validation of the approach but simply to ensure
stochastic DCM is not cofounded by data that conform to the usual
deterministic assumptions. More extensive simulations looking at
different levels of noise and graph size (number of edges or
connections) will be presented elsewhere.
stochastic DCM for fMRI, NeuroImage (2011), doi:10.1016/j.
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Synthetic data

Fig. 6 shows the simulated deterministic data ỹlow under very low
levels (left panels: πm=32) of state-noise and stochastic data ỹhigh
under realistic levels (right panels: πm=8). The format of this figure
follows Fig. 3. These simulated responses illustrate, quantitatively,
how state-noise affects the hidden states and its relative contribution
to the measured respond, in relation to observation noise (here with a
log precision of four). These two synthetic data sets were inverted
using EM and GF to examine the conditional densities on parameters
and models.

Comparative evaluations

Fig. 7 reports the conditional estimates of the parameters using the
same format as Fig. 2. However, here we have the true values (black
bars) in addition to the conditional expectations and confidence
intervals. These estimates derive from applying deterministic (EM)
and stochastic (GF) schemes to the synthetic deterministic and
stochastic data above. The main things to take from these estimates
Please cite this article as: Li, B., et al., Generalised filtering and
neuroimage.2011.01.085
are that the GF schemes provide smaller (but veridical) values than
the EM scheme but with a greater conditional precision. This means
the stochastic scheme was more accurate. The effect of state-noise
(stochastic data) is almost imperceptible but results in a very slight
increase in conditional uncertainty for both schemes. This is most
evident for parameters 4 and 5. With few exceptions, the true values
lie in the 90% confidence regions for all parameters, for all
combinations of data and schemes. The notable exceptions are largely
in the deterministic (EM) scheme (for deterministic data), which
estimates the transit time to be too small and the intrinsic (self)
inhibition of neuronal activity to be too high in one (early visual)
region. Interestingly, most of the coupling parameters are over-
estimated in relation to their true values. Conversely, the stochastic GF
scheme provided slight underestimates in relation to the true values
and is slightly overconfident about these underestimates. This bias or
shrinkage of the GF parameter estimates to their prior mean (also
seen in Fig. 2) is characteristic of all our simulations. This shrinkage
may reflect the fact that stochastic schemes can explain data with
changes in both the parameters and hidden states, from their prior
values. In general, these changes are minimised when optimising free
stochastic DCM for fMRI, NeuroImage (2011), doi:10.1016/j.
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Fig. 6. These plots show the simulated data under very low levels (left panels) of state-noise and realistic levels (right panels). The format of this figure follows Fig. 3. These dynamics
illustrate, quantitatively, how state-noise affects the hidden states and the relative contribution to stochastic components of the measured respond, in relation to observation noise
(here with a log precision of four). These two synthetic data sets were inverted using EM and GF (see next figure).
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energy, because they entail a complexity cost. In short, although the
conditional estimates may be biased in relation to the ‘true’ values,
they offer a more parsimonious explanation for the data. Having said
this, in all cases, non-zero parameters are detected with 90%
confidence or more by either scheme.

Fig. 8 shows the log precision (hyperparameter) estimates of
observation noise in relation to their true values. For stochastic data
(left panel), the stochastic DCM (GF) furnished slight overestimates of
the correct precision (with a mild overestimation), while the
deterministic EM scheme underestimates precision (overestimates
noise variance), presumably because it cannot model the effects of
state-noise and their contribution to observed signals. Conversely,
when the data are deterministic, the deterministic scheme (EM)
provides the best estimates, while the stochastic scheme over-
estimates precision, presumably because it has explained a compo-
nent of the true observation noise with fluctuation on hidden states.

In terms ofmodel comparison, there is a slight problemcomparing the
log evidence from deterministic and stochastic schemes. This is because
the contribution from the conditional density on the hidden causes and
states is impossible to evaluate under deterministic schemes (because it
has infinitely low entropy due to deterministic assumptions about the
states). To circumvent this comparison problem, we adopted priors p(m)
on eachmodel that rendered their posterior probabilities, given both sets
of data, the same. We then compared the log posteriors ln p m j ỹið Þ =
ln p ỹi jmð Þ + ln p mð Þ of both models for a given data set ỹi. This is
equivalent to looking at the difference in differences of log evidences.
These log posteriors suggested that the deterministic DCM is better for
deterministic data ln p mEM j ỹlowð Þ− ln p mGF j ỹlowð Þ = 95:6, while the
stochastic DCM is better for the stochastic data ln p mEM j ỹhigh

� �
−

ln p mGF j ỹhigh
� �

= −95:6, as one might hope.
Please cite this article as: Li, B., et al., Generalised filtering and
neuroimage.2011.01.085
Summary

In this section, we have seen that veridical parameter estimates
can be recovered by generalised filtering, even if deterministic
assumptions hold. Furthermore, (after suitable adjustments) the log
evidence furnished by deterministic and stochastic DCMs appears to
select models with and without random fluctuations correctly. These
results are a provisional attempt to establish face validity (i.e., the
scheme does what it is meant to), or at least to describe a procedure
for establishing face validity with synthetic data generated using
conditional estimates from empirical data.

Construct validity and real data

In this section, we apply the EM, DEM and GF schemes to empirical
data acquired from two clinically distinct groups of subjects, internet
addiction (IA) patients and matched healthy controls, during
performance of a Go/Stop task. Having optimised all three sorts of
DCM for each subject, we harvested the coupling parameter estimates
as subject-specific summary statistics. We then used classical
inference to look for group differences that would distinguish
between the two groups. Our reasoning here was that there are true
differences between the groups and that veridical effective connec-
tivity estimates would disclose this difference. This is the construct we
used to establish construct validity. In brief, we will see that
generalised filtering enabled at least one extra connection to be
identified as differing significantly between the two groups, compared
to estimates provided by EM and DEM. To assess the impact of the
mean-field approximation on the log evidence bound, we also
examined the free energy from DEM and GF schemes over subjects.
stochastic DCM for fMRI, NeuroImage (2011), doi:10.1016/j.
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Fig. 7. These bar graphs report the conditional estimates of the DCM parameters using the same format as Fig. 2. However, here, we have the true values (black bars) in addition to the
conditional expectations and confidence intervals. These estimates derive from applying deterministic (EM) and stochastic (GF) schemes to the deterministic and stochastic data
from the previous figure. The main conclusion to take from these estimates is that the GF schemes provide smaller (but veridical) values than the EM scheme but with a greater
conditional precision. This means the stochastic scheme was more accurate. The effect of state-noise is not enormous but results in a slight increase in conditional uncertainty for
both schemes. With occasional exceptions, the true values lie in the 90% confidence regions for all parameters, for all combinations of data and schemes. The notable exceptions are
largely in the deterministic (EM) scheme (for deterministic data), which estimates the transit time to be too small in one region and the intrinsic (self) inhibition of neuronal activity
to be too high in the same (early visual) region. Interestingly, most of the coupling parameters are slightly overestimated in relation to their true values. The stochastic scheme
(for stochastic data) is overconfident about the input coupling (and underestimates it).

Fig. 8. The figure shows the log precision (hyperparameter) estimates of observation noise in relation to their true values, using the inversion of synthetic data reported in the
previous figure. For stochastic data (left panel), the stochastic GF furnished slight overestimates of the correct values, while the deterministic EM scheme underestimates precision
(overestimates noise variance), presumably because it cannot model the effects of state-noise and their contribution to observed signals. Conversely, when the data are
deterministic, the deterministic scheme (EM) provides the best estimates, while the stochastic scheme overestimates precision, presumably because it has explained a component of
the true observation noise with fluctuations in hidden states.
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We first describe the study design and data, and then turn to the
results of the comparative analyses.

The analyses in this section are not presented to establish the
functional architecture of internet addiction (a full analysis and
discussion of these data will be presented elsewhere). They are used
to illustrate how the procedures of the previous sections can be
applied in a practical setting and to provide a preliminary construct
validation of the approach. This validation rests only on the existence
of some difference between the groups of subjects studies. Under the
null hypothesis of no difference, none of the DCM schemes can
provide estimates of coupling that show systematic group differences
and, crucially, no differences among the schemes.

Empirical data

Twenty right-handed Chinese subjects participated in the study
(for details, see Li et al., under review). Eleven of the subjects were
IA patients and the other nine were matched control subjects.
There were no group differences in gender, race (all of the subjects
were Chinese), age (mean±S.D., IA: 13.1±0.7 years versus control:
12.9±0.8 years) or education. The fMRI study used a block design
(Fig. 9). At the beginning of the scan, each subject had a 12 s period of
preparation before implementing a block of a Go/Stop task for 30 s
(task condition). This was followed by a rest block, in which the word
‘rest’was fixated for 30 s (rest condition). The rest condition was then
followed by another block of the task condition for 30 s. Rest and task
blocks were repeated five times in each experiment and the whole
scanning session lasted 5 min and 12 s. Go/Stop is a procedure for
assessing the capacity to inhibit an initiated response. We presented
five-digit numbers in black on a white background. The randomly
generated five-digit numbers appeared for 500 ms, once every 2 s
(500 ms on, 1500 ms off). There were three trial types: go, stop and
novel trials. On go trials, participants are told to respond when the
number they see is identical to the previous number. A stop trial
consists of a stimulus that matches the one before it, but it changes
unpredictably from black to red at some specified interval (50, 150,
250, or 350 ms) after stimulus onset. The participants are instructed to
Fig. 9. This figure illustrates the nature of the Go/Stop task, which assesses the capacity to
appear for 500 ms, once every 2 s (500 ms on, 1500 ms off). There are three trial types: go, s
the previous number; this is a go trial. A stop trial consists of a stimulus that matches the one
stimulus onset. Participants are instructed to withhold response to a number that turns red.
time. The remaining 50% are novel trials.
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withhold their response when a number turns red. Novel trials
present non-matching numbers. Go and stop trials each occurred 25%
of the time.

MRI scanningwas performed using a GE 1.5 Twhole-body scanner.
Blood oxygen level-dependent (BOLD) responses were measured
with a T2*-weighted gradient-echo EPI sequence (TR/TE=3000/
60 ms, 5 mm slice thickness, 1.5 mm gap, with 18 axial slices, 64×64
matrix size, 24×24 cm FOV, 90°-flip angle).

Model architecture and inversion

Functional data were analysed with SPM2. After pre-processing
(i.e. realignment, spatial normalization and smoothing), subject-
specific responses were modelled using a general linear model (GLM)
for block designs. The ensuing contrast (i.e. “task minus rest”) images
were then entered into a second-level (between-subject) two-sample
t-test to determine group activation differences in the Go/Stop task.
fMRI studies have revealed that response inhibition is largely
accomplished by a network of right lateralized regions (Chevrier
et al., 2007; Garavan et al., 1999; Konishi et al., 1999; Liddle et al.,
2001); therefore, our DCM analysis was restricted to the right
hemisphere for simplicity. Based on the group analysis results, three
regions of interest (ROI) were defined: the right ventrolateral
prefrontal cortex (VLPFC), the supplementary motor area (SMA),
and the basal ganglia (BG). Visual input entered a fourth node of the
DCM (visual area V3) from which activity was propagated to the
motor system. Subject-specific ROI were centred on the subject-
specific local maximum of SPMs testing for “task minus rest” that was
nearest to the maxima in the equivalent group SPM (within the
same anatomically defined region). For each subject, the principal
eigenvariates for all ROI were extracted from a sphere region
(radius=6 mm).

In this study, we were primarily interested in the differences in
coupling between the two groups. The SPM analysis used to define the
ROI therefore focussed on group effects by simply comparing “task”
vs. “rest” contrasts (activations) across subjects. The ensuing SPM is
shown in Fig. 10 (left panel). In our subsequent DCM analyses, we did
inhibit an initiated response. Five-digit numbers were presented serially. The numbers
top and novel. Participants are told to respond when the number they see is identical to
before it but changes from black to red at some interval (50, 150, 250, or 350 ms) after
A novel trial presents a non-matching number. Go and stop trials each occur 25% of the
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entered a fourth node (visual area V3) from which activity was propagated to the motor system.
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not model any bilinear or modulatory effects. This means the
estimates of connectivity pertain to coupling during the processing
of visual stimuli under the task set induced by the Go/Stop task
instructions. Fig. 10 (right panel) shows the architecture of the DCM
Fig. 11. This figure reports the conditional estimates of the parameters under the EM, DEM
estimates from the three schemes, for each area (1–3), are shown on the lower right. The gr
conditional confidence intervals. (For interpretation of the references to colour in this figur
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for this study, with full connectivity among the four regions and visual
stimuli driving activity in area V3.

Fig. 11 reports the conditional estimates of the parameters of the
EM, DEM and GF schemes, respectively, for an exemplar subject. As
and GF schemes, respectively, for a single subject. The log precision or hyperparameter
ey bars are the conditional means or expectations, and the red bars correspond to 90%
e legend, the reader is referred to the web version of this article.)
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seen in the first section, the parameters are remarkably similar,
especially the conditional means of the EM and the DEM schemes.
However, the conditional means from the GF schemes are much
smaller and more precise than that from the other two schemes. In
terms of the estimates of region-specific observation noise (lower
right panel), the EM scheme yields much lower precision estimates
than the stochastic schemes (because it cannot model endogenous
fluctuations in hidden states).

Between-subject analyses

Fig. 12 shows those connections in the control group that were
found to be significant across subjects, using one sample t-tests
(pb0.05), applied to the conditional means or maximum a posteriori
(MAP) coupling estimates from each of the three schemes. This
between-subject (second-level) analysis can be regarded as a
summary statistic approximation to a random effects analysis,
where the MAP estimates summarize subject-specific effects. The
numbers alongside the arrows denote the mean connection strengths
over subjects. Overall, the three schemes yield comparable results; the
EM and the DEM schemes provide particularly similar estimates.
Generalised filtering detects significant negative coupling from VLPFC
to BGwhile this connection is not significant in the other two (EM and
DEM) schemes. On the other hand, the connection from BG to V3 is
significant in the EM and DEM schemes but not in the GF scheme. In
Fig. 13. This figure shows significant connections for the patient group (one sample t-test on
in Fig. 12, the results provided by the EM and the DEM schemes are very similar, while two
under the GF scheme.
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the patient group (Fig. 13), the results provided by the EM and the
DEM schemes are again highly similar, while two connections (from
BG to SMA and between VLPFC and SMA) do not reach significance
under the GF scheme.

We then compared the connectivity between the control group
and the IA group using two-sample t-tests (pb0.05). The results are
shown in Fig. 14. It is apparent that only under the GF scheme
significant group differences in the bidirectional connections between
BG and VLPFC are detected, while this difference is not found by either
EM or DEM schemes. In other words, by relaxing the conditional
independence (mean-field) assumptions implicit in variational
schemes like DEM, the GF scheme was able to detect two additional
connections exhibiting significant group differences.

Finally, to assess the impact of the mean-field approximation on
the log evidence bound, we compared the (negative) free energy from
the DEM and GF schemes over subjects (Fig. 15). In each and every
subject, the negative free energy of models inverted under the GF
scheme is much higher than when inverted by DEM. In other words,
GF provides a much tighter (better) bound on the log evidence than
DEM, at least in this example. As noted by our reviewers, this is
mandated theoreticallyby thenatureof the free-energyobjective function
used to optimise the conditional densities: The free energy is the log
evidenceminus theKullback–Leibler divergence (difference)between the
true and approximating conditional density. The factorisation of the
approximate density, under mean-field (conditional independence)
MAP estimates across subjects, pb0.05, from the three different inversion schemes). As
connections (from BG to SMA and between VLPFC and SMA) do not reach significance
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assumptions,means that therewill generallybe agreaterdivergence (that
reduces the bound), because the true posterior contains conditional
dependencies among states, parameters and hyperparameters that DEM
cannot model.

Summary

The comparison of model inversion results under the EM, DEM and
GF schemes for the empirical fMRI data set in this section showed that
stochastic schemes (DEM, GF) generally resulted in more precise
conditional estimates than deterministic (EM) ones. GF yielded
numerically smaller estimates than DEM, but the most precise
conditional estimates of all the schemes considered. More impor-
tantly, the GF scheme showed the highest sensitivity to detecting
group differences in connectivity (in terms of classical inference) and
provided a much tighter (better) bound on the log evidence than
DEM. This anecdotal analysis is not meant to suggest that generalised
filtering is superior to DEM in general; it simply serves to show that
examples exist where GF can be better.

Discussion

In this paperwehave tried to establish the faceand construct validity
of generalised filtering and stochastic DCM, when applied to fMRI time
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Fig. 15. This figure compares the free energy from the DEM and GF schemes over
subjects to assess the impact of the mean-field approximation on the log evidence
bound. For each and every subject, the free energy provided by GF is much higher than
that by DEM, providing a much tighter (better) bound on log evidence.
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series.Wehave shown that Bayesianmodel comparison can recover the
underlying level of endogenous fluctuations in hidden states (state-
noise). We then went on to show, that in at least one case, relaxing the
mean-field assumption implicit in variational schemes likeDEM leads to
better estimates of effective connectivity. In what follows, we will focus
on the fundamental differences between generativemodels based upon
random differential equations (stochastic DCMs) in relation to their
deterministic counterparts.

The introduction of endogenous activity into a model is potentially
risky from the point of view of parameter estimation. This is because,
in principle, one can explain observed data completely by endogenous
and random fluctuations in the hidden states of each region; even in
the absence of coupling among regions. In other words, the inclusion
of state-noise will not necessarily improve sensitivity, when one is
primarily interested in the underlying parameters that determine
distributed responses or functional architecture. On the other hand,
models that include endogenous activity are clearly more plausible
models (i.e., have higher a priori probability). Our initial experience
with these sorts of models made us re-examine some of our
preconceptions about the generation of neuronal activity: For
example, the results of the stochastic DCM analyses of the attentional
data suggest that direct visual stimulation of V1 is less important
when compared to the equivalent deterministic model (compare the
relative strength of the exogenous coupling parameter, C11 in Fig. 2,
where it is about half the size under generalised filtering). This makes
perfect sense from a physiological perspective, when one recalls that
the number of top-down or backward connections to early visual
structures greatly outnumber the forward geniculostriate connec-
tions. This means that activity in V1 may be determined, to some
extent, by top-down and lateral interactions, whose effective
connectivity is modulated by visual information and attentional set.
In other words, the recurrent exchange of endogenous activity
between regions (that is enabled during specific conditions) may
contribute substantially to measured responses. Whether this sort of
behaviour is characteristic of stochastic models in general remains to
be seen. It does, however, provide an interesting and alternative
perspective on howwe think about self-organised activity in the brain
and the influence of experimental manipulations on endogenous
activity (Curto et al., 2009; Nadim et al., 2009; van Dijk et al., 2008).

Conclusion

In conclusion, we have established initial face and construct
validity of stochastic DCM that accommodates random fluctuations in
hidden states, such as neuronal activity or hemodynamic states like
local perfusion and deoxyhemoglobin content. We performed
comparative inversions on two empirical data sets, using a determin-
istic scheme (EM) as well as stochastic schemes with (DEM) and
stochastic DCM for fMRI, NeuroImage (2011), doi:10.1016/j.
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without (GF) a mean-field approximation. We have seen that
modelling endogenous fluctuation of physiological states underlying
fMRI data is possible by using DCMs based on random differential
equations. Furthermore, we have characterised the nature of the noise
in terms of the evidence for models with different prior beliefs about
its amplitude and form. Initial face validity was established using
simulated data with high (stochastic) and low (deterministic) levels
of state-noise.We have seen that veridical parameter estimates can be
recovered by generalised filtering, even if deterministic assumptions
hold. Finally, we applied the EM, DEM and GF schemes to empirical
data acquired from two groups of subjects during performance of a
Go/Stop task. We have seen that relaxing the mean-field approxima-
tion can be advantageous in that generalised filtering showed higher
sensitivity to detecting group differences than alternative schemes.
Furthermore, GF provided a tighter bound on the log evidence,
compared to the DEM scheme.

This paper is a first step towards introducing practical applications
of stochastic DCMs. Clearly, many questions for the pragmatic use of
stochastic DCM remain open. For example, how do DCMs for different
data modalities (e.g., fMRI, EEG, local field potentials) benefit,
comparatively speaking, from modelling endogenous fluctuations in
neuronal states? Are stochastic DCMs better for certain types of
experimental design than for others? Do stochastic DCMs confer
robustness to missing neuronal populations? Finally, the opportunity
to model endogenous fluctuations means that one can, in principle,
identify the functional architectures (effective connectivity) subtend-
ing endogenous dynamics observed in resting-state studies (e.g.,
Damoiseaux and Greicius, 2009): we are currently pursuing this
(Friston et al., in press).

Software note

The schemes described in this paper are implemented in Matlab
code and are available freely as part of the open-source software
package SPM8 (http://www.fil.ion.ucl.ac.uk/spm). A DEM toolbox
provides several demonstrations of DEM and generalised filtering
from a graphical user interface (see spm_DEM.m and spm_LAP.m and
ancillary routines). Furthermore, the attentional data set used in this
paper can be downloaded from the above website for people who
want to reproduce the analyses reported in this paper.
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