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This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of
biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the
robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative
(state-space) models of neuronal dynamics, we show how their Volterra kernels prescribe the second-order
statistics of their response to random fluctuations; characterised in terms of cross-spectral density,
cross-covariance, autoregressive coefficients and directed transfer functions. These quantities in turn specify
Granger causality — providing a direct (analytic) link between the parameters of a generative model and the
expected Granger causality.We use this link to show that Granger causalitymeasures based upon autoregressive
models can become unreliable when the underlying dynamics is dominated by slow (unstable) modes — as
quantified by the principal Lyapunov exponent. However, nonparametric measures based on causal spectral
factors are robust to dynamical instability. We then demonstrate how both parametric and nonparametric
spectral causality measures can become unreliable in the presence of measurement noise. Finally, we show
that this problem can be finessed by deriving spectral causality measures from Volterra kernels, estimated
using dynamic causal modelling.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
Introduction

This paper concerns the application of Granger causality to biological
timeseries; in particular, the analysis of electrophysiological data using
(complex) cross spectra (Granger, 1969). Our focus is on spectral
causality measures of the sort introduced by Geweke (Dhamala et al.,
2008; Geweke, 1982; Nedungadi et al., 2009) and their relationship to
dynamic causal modelling (Friston et al., 2013).

We first show how Granger causality can be derived from the
parameters of a state-space model of coupled neuronal dynamics — and
establish that Granger causality correctly reports the true direction of
coupling, under low levels of measurement noise. We then consider
two cases where Granger causality provides unreliable estimates of the
underlying effective connectivity. First, when the dynamics generating
timeseries data contain slow (unstable) modes, recovering the
autoregressive coefficients used in parametric Granger causality becomes
an ill-posed problem. This is important because unstable modes are
ubiquitous in biological systems; for example, in systems with scale-
free characteristics (such as power laws) or dynamics associated with
self-organised criticality (Bullmore et al., 2001; Shin and Kim, 2006;
. This is an open access article under
Stam and de Bruin, 2004). This problem can be resolved by using
nonparametric1 Granger causality that eschews autoregressive
parameterisations (Dhamala et al., 2008;Nedungadi et al., 2009). Howev-
er, both parametric and nonparametric Granger causality can fail in the
context of measurement noise. This is an established shortcoming of
Granger causality (Newbold, 1978) but becomes particularly acute with
noisy electrophysiological recordings (Nalatore et al., 2007). Having
characterised these two problems, we consider a solution using Granger
causal measures based on the posterior parameter estimates of dynamic
causal modelling.

Unlike Granger causality, dynamic causal modelling uses an explicit
model of the dynamics generating data — usually cast in terms of a
state-space model with hidden states. This is crucial because DCM
mandates an explicit parameterisation of both random fluctuations
perturbing hidden states and measurement noise. In contrast, the
innovations assumed to underlie random effects in autoregressive
processes do not make this distinction — and have to assume that the
data are noiseless (Nalatore et al., 2007). However, in principle, the
effects of measurement noise can be removed using DCM and the
resulting Granger causal measures can be derived from the estimated
model parameters furnished by model inversion. These points are
1 Please see later for a discussion of the terms parametric and nonparametric in this
context.
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Table 1
This table presents the expressions that relate unnormalised and normalised measures of second-order statistical dependencies among data to the underlying process generating those
data. Table 1a specifies the generative (state-space) model in terms of stochastic differential equations of motion and a static nonlinear observer function. The random fluctuations that
perturb the motion of hidden (neuronal) states and the observation noise are characterised in terms of their second-order statistics; namely their covariance or spectral density. These
state-space models can be formulated in terms of a convolution of the fluctuations, where the (first order Volterra) convolution kernels are a function of the model parameters.
Table 1b shows how these kernels can generate any characterisation of the ensuing dependencies among the data – as cross-covariance functions of lag or time, cross spectral density
functions of frequency and autoregressive formulations – in terms of autoregression coefficients and associated directed transfer functions. The expressions have been simplified and
organised to illustrate the formal symmetry among the relationships. The key point to take from these expressions is that any characterisation can be derived analytically from any
other using Fourier transforms F[·], expectations E[·] convolution operators * and Kronecker tensor products⊗. Variables with a ~ denote matrices whose columns contain lagged func-
tions of time and † denotes the conjugate transpose. Table 1c provides standardised versions of the second order statistics in Table 1b. These include the cross-correlation function, coher-
ence, Geweke Granger causality and the normalised (Kaminski) directed transfer functions. These results mean that we can generate the expected Granger causality from the parameters
of any generative model in exactly the same way that any other data feature can be generated. Note that in going from a parameterised generative model to the second-order statistics,
there is no return. In otherwords, although second-order statistics can be generated given themodel parameters, model parameters cannot be derived from second-order statistics. This is
the (inverse) problem solved by DCM for complex cross spectra— that requires a generative model.

a: state-space model

State space model Random fluctuations Convolution kernels

ẋ tð Þ ¼ f x; θð Þ þ v tð Þy tð Þ ¼ g x; θð Þ þw tð Þ E½v tð Þ � v t−τð ÞT � ¼ Σv τ; θð ÞE½w tð Þ �w t−τð ÞT � ¼ Σw τ; θð Þ y tð Þ ¼ k τð Þ � v tð Þ þw tð Þ
k τð Þ ¼ ∇xg x0; θð Þ � exp τ �∇x f x0; θð Þð Þ

b: second-order dependencies

Cross covariance
Σ(t)

Cross spectral density
g(ω)

Autoregression coefficients
a

Directed transfer functions
S(ω)

Cross covariance
Σ(t)

Σ(t) = k(τ) ∗ Σv ∗ k(τ) + Σw Σ(t) = F−1[g(ω)] C ¼ I−ea� �−1ð∑z⊗IÞ I−ea� �−T Σ(t) ∝ F−1[S(ω) ⋅ Σz ⋅ S(ω)†]

Cross spectral density
g(ω)

g(ω) = F[Σ(τ)] g ωð Þ ¼ K ωð Þ � gv � K ωð Þ† þ gw
K ωð Þ ¼ F k τð Þ½ �

g ωð Þ ¼ S ωð Þ � Σz � S ωð Þ†
S ωð Þ ¼ I−F a½ �ð Þ−1

g ωð Þ∝S ωð Þ � Σz � S ωð Þ†
¼ Ψ ωð Þ �Ψ ωð Þ†

Autoregression coefficients
a

a ¼ C−1eΣ a ¼ C−1eΣ
Σ τð Þ ¼ F−1 g ωð Þ½ �

y ¼ ey � aþ z⇒

a ¼ E eyTeyh i−1
E eyTyh i

Σz ¼ E zT z
� �

∝ψ 0ð Þ � ψ 0ð Þ†

¼ Σ 0ð Þ−eΣT
C−1eΣ

a ¼ F−1 A ωð Þ½ �
A ωð Þ ¼ I−S ωð Þ−1

S ωð Þ ¼ Ψ ωð Þ � ψ 0ð Þ−1

ψ ¼ F−1 Ψ ωð Þ½ �

Directed transfer functions
S(ω)

S ωð Þ ¼ I−F C−1eΣh i� �−1 S ωð Þ ¼ I−F C−1eΣh i� �−1

Σ τð Þ ¼ F−1 g ωð Þ½ �
S ωð Þ ¼ I−A ωð Þð Þ−1

A ωð Þ ¼ F a½ �
Y ωð Þ ¼ A ωð Þ � Y ωð Þ þ Z ωð Þ

¼ S ωð Þ � Z ωð Þ

c: normalised measures

Cross correlation Coherence Granger causality Normalised directed transfer functions

ρij τð Þ ¼ ∑ij τð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ii 0ð Þ �∑jj 0ð Þ

q γij ωð Þ ¼ gij ωð Þj j2
gii ωð Þgjj ωð Þ Gij ωð Þ ¼ − ln 1− Σzjj−

Σ2
zij

Σzii

	 

Sij ωð Þj j2
gii ωð Þ

	 

Dij ωð Þ ¼ Sij ωð Þj j

Sii ωð Þj j

C ¼ E eyTeyh i
: Cij ¼

Σij 0ð Þ ⋯ Σij −pð Þ
⋮ ⋱ ⋮

Σij pð Þ ⋯ Σij 0ð Þ

24 35 eΣ ¼ E eyTyh i
: eΣij ¼

Σij 1ð Þ
⋮

Σij pþ 1ð Þ

24 35 ey ¼
0
y11 0
y12 y11 0
⋮ ⋱ ⋱

0
y21 0
y22 y21 0
⋮ ⋱ ⋱

…

2664
3775 eaij ¼

0
aij1 0
aij2 aij 0
⋮ ⋱ ⋱

2664
3775
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described below using standard (analytic) results and numerical
simulations. This treatment offers a way forward for Granger causality
in the context of measurement noise and long-range correlations;
however, there are many outstanding issues in the setting of DCM that
we will return to in the discussion.

This paper comprises three sections. In the first, we review the
relationship between state-space models and various characterisations
of their second-order behaviour, such as coherence and spectral Grang-
er causality. This section describes theparticular state-spacemodel used
for subsequent simulations. This model is based upon a standard neural
mass model that is part of the suite of models used in the dynamic
causal modelling of electromagnetic data (David et al., 2006; Friston
et al., 2012; Moran et al., 2008). The section concludes by showing
that – in the absence of noise and with well-behaved (stable) dynamics
– expected Granger causal measures are accurate and properly reflect
the underlying causal architecture. In the second section, we vary
some parameters of the model (and measurement noise) to illustrate
the conditions under which Granger causality fails. This section focuses
on failures due to critical (unstable) dynamics and measurement noise
using heuristic proofs and numerical simulations. The final section
shows that, in principle, Bayesian model inversion with DCM dissolves
the problems identified in the previous section; thereby providing
veridical Granger causal measures in frequency space.

Models and measures of causality in dynamic systems

The purpose of this section is to clarify the straightforward relation-
ships between spectral descriptions of data and the processes generating
those data. This is important because if we know – or can estimate – the
parameters of the generative process, then one can derive expected
measures – such as cross-covariance functions, complex cross spectra,
autoregressive coefficients and directed transfer functions – analytically.
In other words, measures that are typically used to characterise observed
data can be regarded as samples from a probability distribution over
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functions, whose expectation is known. Thismeans that one can examine
the expected behaviour of normalised measures – like cross-correlation
functions and spectral Granger causality – as an explicit function of the
parameters of the underlying generative process. We will use this fact
to see how Granger causality behaves under different parameters of a
neural mass model generating electrophysiological observations — and
different parameters of measurement noise.

In what follows, we use functional connectivity to denote a statistical
dependence between two measurements and effective connectivity to
denote a causal influence among hidden (neuronal) states that produce
functional connectivity. By definition, effective connectivity is directed,
while directed functional connectivity appeals to constraints on the
parameterisation of statistical dependencies that preclude non-causal
dependencies. Because we will be discussing state-space and
autoregressive formulations, we will also make a distinction between
fluctuations that drive hidden states and innovations that underlie
autoregressive dependencies among observations. Innovations are a
fictive construct (effectively amixture offluctuations andmeasurement
noise) that induce an autoregressive form for statistical dependencies
over time. Fourier transforms will be denoted by F[·], expectations by
E[·] convolution operators by * and Kronecker tensor products by ⊗.
Variables with a ~ denote (usually Toeplitz) matrices whose columns
contain (lagged) functions of time and † means conjugate transpose.

Table 1a provides the basic form of the generative models that we
will consider. This form is based on (stochastic and delay differential)
equations of motion and a static mapping to observations. Any system
of this sort has an equivalent Volterra series expansion that can be
Fig. 1. This schematic illustrates the different routes one could take – using the equations in T
parameters of a model— or indeed empirical measures of cross spectral density. The key point
causalitymeasures. These both rest upon the proportion of variance explained, implicit in the di
upon an autoregression model. In contrast, the nonparametric approach uses spectral matrix fa
ters. The boxes in light green indicate spectral characterisations,while the light blue boxes indic
of the variables and operators.
summarised in terms of its first order Volterra kernels. These kernels
can be thought of as an impulse response to each source of fluctuations.

Table 1b shows how variousmeasures of spectral power or variance
(second-order statistics) can be derived from the kernels — and from
each other. This table is arranged so that the representations of
second-order statistics listed against the columns can be derived from
the representations over the rows (see the glossary of variables that
accompanies this table). For example, cross spectral density is the Fou-
rier transform of the cross covariance function. The entries along the
leading diagonal define the models of (linear) dependency upon
which these characterisations are based. The odd and even columns
pertain to functions of time and frequency respectively, where the
Fourier transforms of the kernels are known as transfer functions,
which we will refer to as modulation transfer functions to distinguish
them from directed transfer functions (see below). The modulation
transfer functions in turn specify the cross spectral density and the
cross-covariance function. Note that deriving second-order measures
from the (effective connectivity) parameters of the generative process
is a one-way street. One cannot recover the parameters from the kernels
— in the sense that the mapping from parameters to kernels is not
bijective (there are many combinations of parameters that produce
the same kernels).

Second-order measures like cross-covariance and spectral density
functions do not speak to directed functional connectivity because
they do not appeal to any temporal precedence constraints — they
simply reflect (non-causal) statistical dependence. In contrast,
characterisations based upon autoregressive processes and causal
able 1 – to derive (spectral) Granger causality measures from the (effective connectivity)
made by this schematic is the distinction between parametric and nonparametric spectral
rected transfer functions; however, in the parametric form, the transfer functions are based
ctorisation, under the constraint that the spectral factors are causal or minimum phase fil-
atemeasures in the time domain. See Table 1 andmain text for amore detailed explanation



Fig. 2. This schematic illustrates the state-space or dynamic causal model that we used to generate expected cross spectra and simulated data. Left panel: this shows the differential equa-
tions governing the evolution of depolarisation in four populations constituting a single electromagnetic source (of EEG, MEG or LFP measurements). These equations are expressed in
terms of second-order differential equations that can be rewritten as pairs of first order equations, which describe postsynaptic currents and depolarisation in each population. These pop-
ulations are divided into input cells in granular layers of the cortex, inhibitory interneurons and (superficial and deep) principal or pyramidal cell populations that constitute the output
populations. The equations of motion are based upon standard convolution models for synaptic transformations, while coupling among populations is mediated by a sigmoid function of
(delayed) mean depolarisation. The slope of the sigmoid function corresponds to the intrinsic gain of each population. Intrinsic (within-source) connections couple the different popula-
tions, while extrinsic (between-source) connections couple populations from different sources. The extrinsic influences (not shown) enter the equations in the same way as the intrinsic
influences but in a laminar specific fashion (as shown in the right panel). Right panel: this shows the simple two source architecture used in the current paper. This comprises one lower
source that sends forward connections to a higher source (but does not receive reciprocal backward connections). The intrinsic connectivity (dotted lines) and extrinsic connectivity (solid
line) conform to the connectivity of the canonical microcircuit and the known laminar specificity of extrinsic connections (Bastos et al., 2012). Excitatory connections are in red and in-
hibitory connections are in black. Random fluctuations drive the input cells and measurements are based on the depolarisation of superficial pyramidal cells. See Table 2 for a list of
key parameters and a brief description.
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spectral factors are measures of directed statistical dependencies
because they preclude non-causal influences. Autoregressive formulations
do this by conditioning the current observation on previous observa-
tions (but not future observations), while causal spectral factors corre-
spond to filters (transfer functions), whose Fourier transforms have
zero values at future time points. These are also known as minimum
phase filters. Parametric Granger causality uses autoregressive formula-
tions, while nonparametric measures are generally based on (Wilson–
Burg) spectral matrix factorisation (Dhamala et al., 2008; Nedungadi
et al., 2009). Intuitively, this uses Newton's method to find a square
root (or factor) under the constraint that the Fourier transform of the
factor is causal or a minimum phase filter (Fomel et al., 2003). Once
the cross spectral density has been factorised, the instantaneous part
of the filter is removed — and becomes an estimate of the cross
Table 2
This table provides the parameter values used for simulations (and prior densities used f
(corresponding to the equations in Fig. 2). The second column provides the values used to pr
and variance for dynamic causal modelling. Note that the variance is not the prior variance of

Description of parameter Parameter value used for simulations

Intrinsic connections dij (Hz) 4
5 ;…; 15
� � � 1000

Extrinsic connections (Hz) exp(2) ⋅ 200
Rate constants κi (Hz) 1

2 ;
1
2 ;

1
16 ;

1
28

� � � 1000
Slope of sigmoid γ exp 1

8

� � � 23
Intrinsic delays τ (ms) 1
Extrinsic delays τ (ms) 4
Amplitude of fluctuations exp(−2)
Exponent of fluctuations 1
Amplitude of noise exp(−8)
Exponent of noise 1
covariance of the innovations. The expressions in Table 1b use standard
linear algebra results based uponWiener–Khinchin theorem, the Yule–
Walker relationships and (Wilson–Burg) spectral factorisation to show
the relationships between different approaches to characterising
second-order dependencies between time series.

Note above the difference between themodulation transfer function
K(ω), the directed transfer function S(ω) and the causal spectral factors
Ψ(ω). These all play similar roles as filters or transfer functions but are
distinct characterisations: the modulation transfer function is applied
to the fluctuations to produce the observations, whereas the
(unnormalised) directed transfer function is applied to the innovations.
The directed transfer function only becomes the modulation transfer
function – that mediates causal influences – in the absence of measure-
ment noise. Finally, the causal spectral factors include both instantaneous
or subsequent dynamic causal modelling). The left column describes the parameters
oduce the spectra shown in Figs. 3 and 4. The final two columns provide the prior mean
the value per se but of its log scaling.

Prior mean Prior variance of log scaling

4
5 ;…; 15
� � � 1000 1

8
200 1

8
1
2 ;

1
2 ;

1
16 ;

1
28

� � � 1000 1
16

2
3

1
32

1 1
32

8 1
32

1 1
128

1 1
128

1 1
128

1 1
128



Expected and estimated cross spectra
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Fig. 3. This figure illustrates the convergence of empirical estimates of spectral density av-
eraged overmultiple trials. The top row shows the absolute values of the auto (for thefirst
source) and cross spectral density (between the two sources of Fig. 2). The red lines cor-
respond to the expected spectra under the known parameters of the model (the parame-
ters used for characterising spectral measures in subsequent figures). The green and blue
lines correspond to empirical estimates based upon 16 epochs of simulated (noisy) data,
where each epoch comprised 1024 samples at a sampling rate of 256 Hz. The green
lines report the estimates under an AR(16) model, while the blue lines used Welch's
periodiogram method, as implemented in Matlab. Both give very similar results. The
lower panels show the (absolute value) of the emerging average over 16 trials to show
that stable estimates obtain after about eight trials — although many more are generally
used in practice to obtain smooth spectral estimates.

Expected spectral Granger Causality
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Fig. 4. Thisfigure reports the expectedmodulation transfer functions (blue lines), normal-
ised directed transfer functions (green lines) and the associated spectral Granger causality
(red lines: parametric — solid and nonparametric — dotted) under the dynamic causal
model shown in Fig. 1. In this example, measurement noise was suppressed (with log-
amplitude of−8). The log-amplitude of the neuronal fluctuations was set at a fairly low
level of−2. These fluctuations had a power law formwith an exponent of one. The spec-
tral measures are the expected values, given the model parameters, and correspond to
whatwould be seenwith a very large amount of data. Under these conditions, the (expect-
ed) directed transfer functions andGranger causality identify thepredominance of gamma
in the forward connections— and correctly detect that there is no reciprocal or backward
connection.
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influences and those embodied by directed transfer functions. Table 1c
lists the normalised or standardised versions of non-causal (cross-
covariance and spectral) and causal (directed transfer) functions.
These are commonly used as the basis of inference about undirected
and directed functional connectivity respectively (Friston et al., 2013).

Equipped with the expressions in Table 1, one can derive the
expected functions that characterise functional connectivity, given the
parameters of the underlying state-space model. Furthermore, one can
derive any one representation from another. For example, starting
from a parameterised state-space model, we can derive the Volterra
kernels and resulting cross-covariance functions among observation
channels. One can then compute the autoregressive coefficients and
directed transfer functions to compute parametric spectral Granger
causality. Alternatively, one could take the Fourier transform of the
kernels (and the cross-covariance functions of the fluctuations and
measurement noise) to produce the expected cross spectrum over
observed channels. Using spectral matrix factorisation, one can then
identify the nonparametric directed transfer function and associated
Granger causality. These two (parametric and nonparametric) routes
are illustrated schematically in Fig. 1.

To illustrate thederivation of expected transfer functions andGrang-
er causality, we will use a standard state-space model from the suite of
neural mass models used in the SPM software implementation of
dynamic causal modelling. This suite includes neural mass models
based upon convolution operators (that model synaptic convolution of
presynaptic inputs) or models that are nonlinear in the hidden states
based upon conductance models (that model the interaction between
voltage and transmembrane conductances). All of these neuronal
mass models allow for the coupling of multiple sources, where each
source comprises multiple neuronal populations (usually three or
four). Fig. 2 shows the canonical microcircuit neural mass model – a
convolution model – that we will use in this paper. This particular
model has been used previously to characterise things like intrinsic
gain control mechanisms in hierarchical visual processing (Brown and
Friston, 2012) and impaired top–down connectivity in minimally
conscious states (Boly et al., 2011).

Because our focus is on spectral Granger causality,we limit ourselves
to a simple bivariate case — with two channels reporting observed
depolarisation in two sources. To examine the validity of expected
causal measures, we consider the simplest case of a unidirectional
(forward) connection from the first to the second source — that is not
reciprocated. We wanted to see whether spectral Granger causality
could properly discount the backward connections. Fig. 2 details the
architecture of this model, with four populations per source and one
extrinsic forward connection between the sources. The intrinsic connec-
tions couple different populations within a source— here, spiny stellate



Fig. 5. This figure reports the results of repeating the analysis of the previous figure but
under different levels of various model parameters. The left column shows the estimates
of forward connectivity in terms of the (normalised) modulation transfer function
(green lines) and (parametric) spectral Granger causality estimates based upon an
AR(16) process (blue lines). Themodulation transfer functionswerenormalised according
to Eq. (6) and can be regarded as the ‘true’ Granger causality. The right-hand columns
show the equivalent results for the backward connection (which did not exist). The first
row shows the effects of increasing the extrinsic forward connection strengths. The ranges
of parameters considered are shownas log scaling coefficients (in square brackets) of their
expectation (shown below the range and in Table 2). The second, third and fourth rows
report the results of similar changes to the backward connection strength, the intrinsic
gain (slope of the sigmoid function in Fig. 2) and the amplitude of measurement noise
in the second channel. With these parameters, increases in forward connectivity amplify
the coupling in the gamma range in the forward direction,while increases in backward ef-
fective connectivity are expressed predominantly in the beta range. The key thing to note
here is that changes in extrinsic connectivity are reflected in a veridical way by changes in
spectral causality — detecting increases in backward connectivity when they are present
and not when they are absent. However, Granger causality fails when intrinsic gain and
measurement noise are increased — incorrectly detecting strong backward influences
that peak in the gamma band high-frequency ranges.
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cells, inhibitory interneurons and superficial and deep pyramidal cells.
The equations in the boxes are the equations of motion that constitute
the state-spacemodel. Notice that these are delay differential equations
because the sigmoid function of presynaptic input operates on themean
depolarisation of the presynaptic source in the recent past — to
accommodate axonal conduction delays. Intrinsic (within source)
conduction delays are about 1 ms while extrinsic (between source)
delays are about 4 to 8 ms.

We assumed that observed data were generated by the superficial
pyramidal cells, with parameterised measurement noise. The (neuro-
nal) fluctuations driving both the spiny stellate cells and the measure-
ment noise had a 1/f or power law form. The amplitude of the
measurement noise was suppressed to low values with a log scaling
of −8. In other words, the spectral density of the measurement noise
was gw(ω) = exp(−8) ⋅ ω−1, where the frequency ω range from one
to 128 Hz. We used a sampling rate of 256 Hz or a sampling interval
of about 4 ms. Using the parameters in Table 2, this pair of sources
produces spectra of the sort shown in Fig. 3. The expected spectra
(red line) showed clear spectral peaks at beta and gamma frequencies
superimposed on a power law form. The blue and green lines show
the empirical estimates over 16 (1024 ms) epochs based on simulated
data. Appendix A describes how the delay differential equations in
Fig. 2 were integrated.

Equipped with the expressions in Table 1, one can now derive the
expected transfer functions and spectral Granger causality for any
generative process specified in terms of its parameters. Fig. 4 shows
the functions expected using the parameters in Table 2. Note that the
expected Granger causalities are not estimates — they are analytic
reformulations of the underlying causal architecture using the expres-
sions in Table 1. Given the (effective connectivity) parameters of the
state-space model, the only thing that we have to specify is the order
of the autoregressive model of linear dependencies (we used a model
order of p = 16 here and throughout).

The expected modulation (blue lines) and (normalised) directed
transfer functions (green lines) report the shared variance between
the two regions as a function of frequency. For these parameters, the
causal spectral measures (directed transfer functions and Granger
causality) properly identify the gamma peak and – more importantly –

assign all the causal effects to the forward connections—with noGranger
causality in the backward direction. Note that the directed transfer
functions are normalised and therefore have a different form to the
modulation transfer functions. The modulation transfer functions report
the total amount of power (at each frequency) in one source that appears
in another. In short, under low level measurement noise, Granger
causality can properly identify the directed functional connectivity in
both qualitative and quantitative terms. In the next section, we explore
the parameter space over which Granger causality retains its validity.

The effects of dynamical instability and measurement noise

We repeated the above analyses for different levels of some key
parameters to illustrate two conditions under which Granger causality
may fail. These parameters were the forward and backward extrinsic
connection strengths, the intrinsic gain or the slope of the sigmoid
function (Kiebel et al., 2007) and the amplitude of measurement noise
(in the second source). Table 2 lists the prior expectations for these
parameters, while Fig. 5 lists the levels we explored in terms of their
log scaling. Fig. 5 shows the results of these analyses in terms of
(normalised) modulation transfer functions (green lines) and Granger
causality (blue lines) associated with the forward (left panels) and
backward connections (right panels). Pleasingly, when increasing
forward connection strengths, Granger causality increases in proportion,
without detecting any backward Granger causality. Similarly, when the
backward effective connectivity was increased, Granger causality detect-
ed this, while its estimate of forward influences remained unchanged.
Interestingly, under these neural mass model parameters, the forward
modulation transfer functions peak in the gamma range, while the
backward connections peaked in the lower beta range. This is reminis-
cent of physiological findings: for example, recent findings suggest that
the superficial layers show neuronal synchronization and spike-field
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coherence predominantly in the gamma frequencies, while deep layers
prefer lower (alpha or beta) frequencies (Roopun et al., 2006, Maier
et al., 2010; Buffalo et al., 2011). Since feedforward connections originate
predominately from superficial layers and backward connections from
deep layers, this suggests that forward connections use relatively high
frequencies, compared to backward connections (Bosman et al.,
2012).

In contrast to changes in extrinsic connectivity, when intrinsic
gain and measurement noise were increased, Granger causality
fails in the sense that it detects strong and spectrally structured
backward Granger causality. Interestingly, for increases in intrinsic
gain, this spurious influence was localised to the gamma range of
frequencies. In this example, the increase in measurement noise
was restricted to the second channel and produced spurious spectral
causality measures in high-frequency regimes. We now consider the
reasons for these failures in terms of dynamical instability and
measurement noise.
Fig. 6. This figure shows why Granger causality based upon (finite-order) autoregressive
processes fail under increasing intrinsic gain (and any other parameter that induces insta-
bility through a transcritical bifurcations). Upper left panel: this show the principal (largest
real part of the) eigenvalue of the systems Jacobian; also known as the Lyapunov expo-
nent. When this eigenvalue approaches zero from below, perturbations of the associated
eigenfunction of hidden states decay very slowly— and become unstable when the eigen-
value becomes positive. One can see that increasing the intrinsic gain (red line) induces a
transcritical bifurcation at about a log scaling of one. Furthermore, at a log scaling of .8, the
time constant associated with the eigenvalue becomes greater than p � Δt ¼ 16

256 ¼ 1
16 sec-

onds (dashed line). The blue and green lines show the equivalent results as the (forward
and backward) extrinsic connectivity is increased— showing no effect on the eigenvalue.
However, increasing the intrinsic delay induces instability and critical slowing. This causes
the condition number of the cross covariance matrix to increase, where a large condition
number indicates a matrix is (nearly) singular or rank efficient. Upper right panel: this
shows the corresponding condition number of the cross covariance matrix used to com-
pute the autoregression coefficients, using the same format as the previous panel. Lower
left panel: this shows the corresponding (log) spectral density (of the first source) over
the same range of intrinsic gains shown in the upper panel. It shows that the beta and
gamma peaks increase in frequency and amplitude with intrinsic gain. Lower right panel:
this shows the difference between the expected auto spectrum (shown on the right)
and the approximation based upon autoregression coefficients estimated using the associ-
ated cross-covariance functions. It can be seen that these differences become marked
when the condition number exceeds about 10,000.
Dynamical instability

The failure of Granger causality with increasing intrinsic connectivity
is used to illustrate a key point when modelling dynamical (biophysical)
systems with autoregressive models. Autoregression processes model
temporal dependencies among observations that are mediated by (long
memory) dynamics of hidden states. One can express the dependencies
between the current and past states as follows (using a local linear
approximation):

∂x tð Þ
∂x t−τð Þ ¼ exp τ �∇x fð Þ 1

Clearly, if one wanted to model these dependencies with a p-th
order autoregressive process, one would like the dependency above to
be negligible when τ N p (where p becomes an interval of time). In
other words, the eigenvalues λ of the Jacobian∇xf should be sufficiently
small to ensure that:

∂x tð Þ
∂x t−pð Þ≈0⇔ exp p �∇x fð Þ ¼ U � exp p � λð Þ � U−≈0: 2

Here (U,U−) are the right and left eigenvectors of the Jacobian∇xf=
U ⋅ λ ⋅ U− and λ is a diagonal matrix containing eigenvalues — whose
real parts are negative when the system is stable. This means that the
autoregressive characterisation of temporal dependencies may be
compromised by long range correlations of the sort associated with
slowing near (transcritical) bifurcations. Note that transcritical slowing
does not mean that fluctuations or oscillations slow down — it means
that modes of fast (e.g., gamma) activity decay slowly, where the rate
of decay is determined by the real part of the largest eigenvalue (aka
the Lyapunov exponent).

Practically, this suggests that if the (neuronal) system is operating
near a transcritical bifurcation — and its eigenvalues approach zero
from below, then the autoregressive formulation will not converge
and associated spectral (Granger causality) measures become unreli-
able. Technically, dynamical instability means that the covariance
among observations becomes ill-conditioned, where the cross covari-
ance (at zero lag) can be expressed in terms of the (real part of the)
eigenvalues as follows:

Σ 0ð Þ ¼ −1
2
∇xg � U Re λð Þ−1U−ΣvU

� �
U− �∇xg

T þ Σ 0ð Þw: 3

Eq. (3) means that the mode or pattern of activity described by the
eigenvector whose eigenvalue approaches zero will decay much more
slowly than the other modes and will dominate the cross-covariance.
This is important because the auto regression coefficients are computed
using the inverse of the cross-covariancematrixa ¼ C−1eΣ. As the largest
(real) eigenvalue approaches zero, the inverse cross covariance matrix
therefore becomes singular, precluding a unique solution for the
autoregression coefficients.

Based on this heuristic analysis, onemight anticipate that the extrin-
sic connectivity parameters do not increase the principal eigenvalue of
the Jacobian (also known as the local Lyapunov exponent), whereas
the intrinsic gain parameter does. Fig. 6 (upper left panel) shows that
increasing the intrinsic gain (expressed in terms of log scaling)
produces eigenvalues with associated time constants of over 1/λ ≥ 1/
16 s — which exceeds the temporal support of an AR(16) model with
1/256 second time bins. The upper right panel shows the condition
number (the ratio of the largest eigenvalue to the smallest) of the
cross-covariance matrix, where a larger condition number indicates a
(nearly) singularmatrix. The lower panels of Fig. 6 illustrate the ensuing
failure of an autoregressive characterisation of spectral responses by
comparing the expected spectrum (from the first source) with the
autoregressive approximation associated with the coefficients derived



Fig. 7. This figure presents a more detailed analysis of the effects of increasing intrinsic gain on spectral Granger causality measures. The left column shows the (normalised) modulation
transfer function (green line) and Granger causality (blue line) over eight (log) scaling values of intrinsic connectivity. The right panels show the equivalent results for the backward
connection. The top row shows the expected parametric Granger estimates based upon an autoregressive process, while the middle row shows the equivalent results for the expected
nonparametric measure. The lower row shows the same results as in the upper row but in image format (with arbitrary colour scaling) to clarify the effects of increasing intrinsic gain.
The key thing to take from these results is that parametric Granger causality is unable tomodel the long-range correlations induced bydynamical instability and, improperly, infers a strong
backward connectivity in a limited gamma range. In contrast, the nonparametric measure is not constrained to model autoregressive dependencies and properly reflects the increase in
forward coupling— without reporting any backward coupling.
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analytically from the expected cross-covariance function. One can see
that marked differences are evident when the condition number of
the cross covariance matrix exceeds about 10,000. Clearly, one could
consider increasing the order of the autoregressive process; however,
when the cross covariance matrix becomes (nearly) singular, one
would need a (nearly) infinite order process.

Other model parameters that cause the principal eigenvalue to
approach zero from below include the intrinsic and extrinsic delays
(see Fig. 6). This is important, because neuronal systems necessarily
have delays, which effectively increases the number of hidden states
to infinity: strictly speaking, the introduction of delays into the system's
characteristic function induces an infinite number of eigenvalues
(Driver, 1977). This (almost) inevitably produces near zero Lyapunov
exponents and is an important source of critical behaviour in biological
systems (Jirsa and Ding, 2004). Another perspective on the failure of
autoregressive formulations is based on the fact that a (linear)
state-space model with m hidden states has an AR(p) formulation,
where m = 2p (Nalatore et al., 2007). When the number of effective
states increases to infinity, the associated infinite-order AR process
cannot be approximated with a finite-order autoregressive process.

One remedy for systems that show critical behaviour is to abandon
thefinite-order autoregressive formulation and consider nonparametric
estimates of Granger causality based on spectral matrix factorisation
(Nedungadi et al., 2009). Fig. 7 takes a closer look at the effect of increas-
ing intrinsic gain and compares the performance of autoregressive and
Wilson–Burg spectral causality measures. As one might predict, the
Wilson–Burg estimates finesse the problem of unstable modes and may
therefore be preferable in the characterisation of neuronal timeseries.
Heuristically, the Wilson–Burg estimates can do this because they have
more degrees of freedom to model (minimum phase) linear dependen-
cies. In other words, minimum phase filters require more numbers to
specify them than the number of coefficients available to AR models of
the order used. Clearly, this latitude introduces a potential trade-off in
terms of overfitting; however, in this setting Wilson–Burg procedures
provide better estimates of the true (expected) Granger causality
(green lines in Fig. 7).



Fig. 8. This figure uses the same format as in the previous figure; however here, we have increased the amplitude ofmeasurement noise (from a log amplitude−8 to−2). Thismeasurement
noise had channel-specific and shared components at a log ratio of one (i.e., a ratio of about 2.72). At nontrivial levels of noise (with a log-amplitude of about−4) the expected Granger
causality fails for both parametric and nonparametric measures. The predominant failure is a spurious reduction in the forward spectral causality and the emergence of low-frequency
backward spectral causalitywith nonparametricmeasures. The inset on the upper right shows the impact of noise on the coherence between the two channels at low (solid) and high (dotted)
levels of noise.
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Measurement noise

The failure of Granger causality in the context of measurement noise
is slightly more problematic. This failure is almost self-evident from the
relationship between themodulation transfer function and the directed
transfer function. From Table 1:

g ωð Þ ¼ K ωð Þ � gv ωð Þ � K ωð Þ† þ gw ωð Þ∝S ωð Þ � Σz � S ωð Þ†: 4

This expression says that the observed spectral density can be
decomposed into measurement noise and shared variance mediated
by (neuronal) fluctuations. It is the latter that underlies spectral
measures of directed functional connectivity — and not the former.
We therefore require the directed transfer functions to be proportional
to the modulation transfer functions

K ωð Þ � gv ωð Þ � K ωð Þ†∝S ωð Þ � Σz � S ωð Þ†: 5

In this case, the (off-diagonal terms of the) normalised directed
transfer functions report the shared variance. This constraint portends
some good news and some bad news: the good news is that there is
no requirement that the spectral power of the innovations has to be
the same for all frequencies (this iswhy the covariance of the innovations
Σz ∝ gz(ω) is used as a proxy for their spectral density in Table 1 — and
why some equalities are proportionalities). This means that normalised
spectral measures – like directed transfer functions and Granger
causality – do not have to assume the innovations are white. In other
words, they can cope with serially correlated innovations gz(ω) of the
sort we have used for the underlying fluctuations gv(ω).

The bad news is that for the proportionality above to hold the
measurement noise has to be negligible (or proportional to the shared
component). This is a simple but fundamental observation, which
means that Granger causality can become an unreliable measure in
the presence of substantial measurement noise. This problem was
identified nearly half a century ago (Newbold, 1978) and has recently
started to attract serious attention: see (Nalatore et al., 2007) for a
comprehensive deconstruction of the problem in the context of
autoregressive formulations. See also Solo (2007) who consider the
effects of measurement noise under AR models and conclude that
“state space or vector ARMA models are needed instead.”

In brief, we can summarise the situation as follows: the spectral
causality we seek is mediated by the modulation transfer functions.
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These modulation transfer functions can be approximated by directed
transfer functions when measurement noise can be ignored. In this case,
the fluctuations and innovations become the same. Furthermore, if we
make the simplifying assumption that the spectral profile of the fluctua-
tions (and implicitly the innovations) is the same for all sources,we can re-
place their cross spectral density with their covariance. This can be
expressed formally to recover the conventional expression for spectral
Granger causality:

Gij ωð Þ ¼ − ln 1− gvjj ωð Þ−
gvij ωð Þ
��� ���2
gvii ωð Þ

0B@
1CA Kij ωð Þ
��� ���2
Kii ωð Þ

0B@
1CA

¼ − ln 1− gzjj ωð Þ−
gzij ωð Þ
��� ���2
gzii ωð Þ

0B@
1CA Sij ωð Þ
��� ���2
Sii ωð Þ

0B@
1CA when gw ωð Þ ¼ 0 : ∀ω

¼ − ln 1− Σzjj−
Σ2
zij

Σzii

 !
Sij ωð Þ
��� ���2
gii ωð Þ

0B@
1CA whengw ωð Þ ¼ 0 and gv ωð Þ∝Σz : ∀ω:
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Fig. 9. This figure reports the results of a Granger causality analysis that finesses the measurem
dynamic causalmodelling: Left panel: these plots show theobserved (full lines) and predicted (d
In most regimes, the fit is almost perfect; however, there are some small prediction errors arou
corresponds to the spectra, while the last portion is the (real) cross-covariance function. Both o
this shows the results of Granger causality measures based upon DCM using the format of Fig
(dotted line). The solid blue line is the normalised modulation transfer function based on th
Crucially, the Granger causality among the sources (red line) correctly reports the absence of a
with the naive Granger causality (green line) based on observed responses with measuremen
that are not present.
Fig. 8 shows what happens when measurement noise cannot be
ignored by increasing its log-amplitude from trivial values (of −8) to
the level of the fluctuations. Here, we increased both the power of the
measurement noise that was shared and unique to each channel
(where the shared componentwas smaller than the unique component
by a log-amplitude of one). This simulates a range of signal-to-noise
ratios from almost negligible to very high levels. This can be seen in
the inset of Fig. 8, which shows the coherence between the two
channels for the eight noise levels considered. For the first four levels,
nearly all the coherence is mediated by neuronal fluctuations; whereas
at the last level of measurement, noise dominates the coherence
(through the shared component).

The effect of noise, as one might intuit, starts to emerge when
the noise is no longer trivial in relation to signal — here at about a
log-amplitude of −4. At this point, the Granger causal measures
of forward connectivity start to fall and nontrivial backward
connectivity emerges. Interestingly, in the nonparametric case,
the spurious spectral coupling is in the same (low-frequency)
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f these data features are used to improve the convergence of model inversion. Right panel:
. 4. In this instance, the modulation transfer function is a maximum a posteriori estimate
e true parameter values and can be regarded as the true Granger causality (see Eq. (6)).
ny backward coupling and is almost identical to the true Granger causality. Contrast this
t noise. Here, the backward Granger causality attains nontrivial levels at low frequencies
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ranges for both forward and backward connections. One might
suppose that this is a reflection of the symmetrical cross spectral
density induced by noise.

It should be emphasised that the levels of noise that impact on
spectral causality measures are large in relation to typical electro-
physiological recordings, especially LFP recordings. In typical data
analysis situations, one should be able to diagnose recordings with
high levels of shared measurement noise using measures that are
sensitive to non-causal shared variance (e.g., volume conduction),
like imaginary coherence and the weighted phase-locking index
(Nolte et al., 2004; Vinck et al., 2012). In these situations, it is
well-known that Granger causal analysis can be confounded
(Nalatore et al., 2007). In the next section, we explore how DCM
can mitigate this problem.

In summary, the naive application of Granger causality to measured
data is unreliable unless themeasurements are relatively noiseless. This
observation speaks to the fundamental difference between approaches
that try to characterise dependencies among observations and
approaches that acknowledge observations are generated by hidden
states, such as dynamic causal modelling. Does this mean that spectral
Granger causality should be abandoned in the setting of noisy measure-
ments? Not necessarily. In the final section, we consider how valid
Granger causality estimates can be recovered from dynamic causal
modelling.

Dynamic causal modelling of Granger causality

In the previous section, we saw that nonparametric Granger
causality finesses the problems associated with characterising
biological timeseries generated by coupled and delayed dynamics
with unstable (slow) modes of behaviour. However, nonparametric
Granger causality fails in the presence of measurement noise. Here,
we provide a proof of principle that the problem of measurement
noise can be dissolved by computing the Granger causality based
upon themodulation transfer functions estimated by dynamic causal
modelling (see Eq. (6)).

Put simply, using an explicit model of (realistic) fluctuations and
measurement noise, one can estimate the Granger causality that
would have been seen in the absence of noise. This is illustrated in
Fig. 9, where we have inverted a model of the generative process
using standard (variational Laplace) procedures (Friston et al.,
2007) to estimate the effective connectivity parameters. These
parameters provide the modulation transfer functions — and the
corresponding Granger causality measures that properly reflect the
spectral structure of forward influences and the absence of backward
connectivity. In this example, we fitted the expected cross spectra in
channel space using the (known) form of the neural mass model
with (unknown) parameters and the usual priors for this model
(provided in Table 2).

For those people not familiar with dynamic causal modelling,
DCM is a Bayesian model comparison and inversion framework for
state-space models formulated in continuous time. It uses standard
variational Bayesian procedures to fit timeseries or cross spectra –

under model complexity constraints – to provide maximum a
posteriori estimates of the underlying (effective connectivity)
model parameters. See Friston et al. (2012) for more details in this
particular setting. This iterative procedure usually converges within
about 32 iterations, producing the sort of fits shown in the left panels
of Fig. 9. In short, DCM solves the inverse problem of recovering
plausible parameters (of both neuronal dynamics and noise) that
explain observed cross spectra.

In summary, provided that one can solve the inverse problem
posed by dynamic causal modelling, one can recover veridical
Granger causality measures in the spectral domain. Crucially, this
requires accurate models of the underlying generative process.
From the point of view of dynamic causal modelling, these measures
provide an intuitive and quantitative report of the directed
frequency-specific influences mediated by effective connectivity.
Specifically, they are the normalised modulation transfer functions
(as opposed to the normalised directed transfer functions). From
the point of view of spectral Granger causality, DCM has just been
used to place constraints on the parametric form of the underlying
dynamics, which enable observed power to be partitioned into signal
(generated by hidden states) and noise.

Conclusion

In conclusion, we have shown that naïve Granger causality is not
appropriate for noisy measurements of coupled dynamical systems
with delays. Having said this, it is fairly straightforward to compute
Granger causality measures of directed functional connectivity from
estimates of directed effective connectivity — as provided by dynamic
causal modelling. In their analysis of measurement noise, Nalatore
et al. (2007) proposed a solution based upon a linear state-space
model and Bayesian model inversion (an expectation maximisation
scheme based upon Kalman smoothing). The same approach – to
estimating measurement noise by modelling dependencies with linear
state-space models – appears to have been proposed independently
by Sommerlade et al. (2012). Although this approach may fail when
the process generating data exhibits critical dynamics, it nicely
highlights the need to explicitly model hidden states generating
observed data— such that covariance induced by fluctuations in hidden
states can be separated from covariance due tomeasurement noise; see
also Robinson et al. (2004). In short, a failure to model hidden states
may produce false inferences when naïvely applying spectral Granger
causality to observed data.

This conclusion shifts the problem from worrying about the
shortcomings of Granger causality to worrying about the problems
posed by dynamic causal modelling. These problems should not be
underemphasised (Daunizeau et al., 2011): in the illustration above,
we used a dynamic causal model that had the same form as the process
generating noisy observations. Clearly, this model will not be known in
real world applications. This means that the DCMhas to be optimised in
relation to the data at hand — using Bayesian model comparison or
averaging (Penny et al., 2004). This speaks to an open issue in DCM;
namely, how to score and invert alternative models of observed data
in an accurate and efficient fashion. In one sense, this problem is the
focus of nearly all current work on dynamic causal modelling and – al-
though much progress has been made – dynamic causal modelling is
still in its infancy. This model optimisation speaks to the continuous
process of perfecting the underlying model of neuronal dynamics as
more information about neuronal circuits becomes available. This is at
the heart of a Bayesian approach to data modelling: placing knowledge
in themodel to providemore informed constraints and better estimates
of causal interactions.

We have distinguished between estimates of Granger spectral
causality based upon autoregressive processes and spectral
factorisation as parametric and nonparametric respectively
(Dhamala et al., 2008). For some people, this is contentious because
both rest upon models of statistical dependencies that have implicit
parameters. For example, the autoregression coefficients in
autoregressive models or the minimum phase filters produced by
spectral factorisation. In this sense, both are parametric. Conversely,
unlike dynamic causal modelling, neither parametric nor nonpara-
metric Granger causality are equipped with parameterised models
of how dependencies are generated. In this sense, they are both
nonparametric. The slightly unfortunate use of parametric and
nonparametric could be finessed by explicit reference to the underlying
model of dependencies; e.g., autoregressive or minimum phase (as
suggested by our reviewers).

It is well-known that long-range temporal autocorrelations are
problematic for Granger causality. Non-invertible (even if causal)
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filtering can induce such autocorrelations; as will long-memory
processes (e.g. power–law autocorrelation decay found in
fractionally-integrated autoregressive processes). Granger causality
is not well-defined for such processes because they do not satisfy
prerequisite spectral conditions (Geweke, 1982). We have consid-
ered this issue in terms of dynamical instability in the vicinity of
transcritical bifurcations — when the system's principal Lyapunov
exponent (real eigenvalue) approaches zero from below. In spectral
theory, this instability can be characterised in terms of the spectral
radius; which is the largest (supremum) over a system's spectrum
of absolute eigenvalues. A recent discussion of these issues can be
found in Barnett and Seth (2014).

The focus of this technical note has been rather pragmatic: it has
focused on the technical issue of estimating Granger causality in the
presence of measurement noise and long range correlations. Fur-
thermore, we have restricted our treatment to spectral measures of
Granger causality. One might ask why measure Granger causality
with dynamic causal modelling if one has already estimated the
causal influences (effective connectivity and associated transfer
functions) en route. In the setting of effective and functional connec-
tivity, Granger causality has been cast as a measure of directed func-
tional connectivity (Friston et al., 2013). Given that functional
connectivity is a measure of statistical dependencies or mutual infor-
mation, this means that Granger causality measures the directed
mutual information between the present state (of a target) and the
past state (of a source). Formally, directed mutual information corre-
sponds to transfer entropy (Lindner et al., 2011). This is important
because there is equivalence between Granger causality and transfer
entropy (Barnett et al., 2009), which therefore allows one to quantify
directed information transfer in terms of Granger causal estimates.
This suggests that it is possible to relate causal influences (effective
connections) to their information theoretic consequences in a
quantitative sense.

Finally, we have not addressed how to assess the significance of
Granger causality. Generally, this would proceed using some form
of nonparametric inference based upon (surrogate) data in which
directed temporal dependencies are destroyed. Although our focus
has been on estimation, as opposed to inference, it is worth noting
that – from the perspective of DCM – inference rests on comparing
the evidence for models generating Granger causality metrics. In
other words, one would first select the DCM with the highest
model evidence, after which Granger causal measures would be
used to characterise directed functional connectivity in a quantita-
tive fashion.
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Appendix A

This appendix describes the integration of delay differential equa-
tions using a high order Taylor expansion in generalised coordinates
of motion. This scheme was used to generate the simulated timeseries
and their expected cross spectra shown in Fig. 3 — and to evaluate the
Jacobian and associated transfer functions that determine the expected
Granger causality in subsequent analyses. The Jacobian depends sensi-
tively on delays as described below.

Consider the problem of integrating (solving) the set of delay differ-
ential equations where τij is the (asymmetric) delay from state j to i

ẋi tð Þ ¼
X

j
f i x j t−τij

� �� �
: A:1

Using a local linear approximation and Taylor's theorem, we have
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X
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:

A:2

This can be expressed more compactly in matrix form using J=∇xf
(evaluated at the current state or fixed point) and the Hadamard
product ×:

ẋ¼ Jxþ J � −τð Þð Þẋþ 1
2

J � −τð Þ � −τð Þð Þxþ… A:3

If we now assume the existence of a (first-order) approximation of
Eq. (A.3) with the formẋ≈Qx, then substitution into Eq. (A.3) gives

ẋ≈Jxþ J � −τð Þð ÞQxþ 1
2

J � −τð Þ � −τð Þð ÞQ2xþ… A:4

This means that the (approximate) Jacobian we seek is the solution
to the matrix polynomial:

Q ¼ J þ J � −τð Þð ÞQ þ 1
2

J � −τð Þ � −τð Þð ÞQ2 þ… A:5

This polynomial can be solved reasonably efficiently using the
Robbins Monro algorithm as follows (using a suitably large N that en-
sures convergence of the Taylor expansion).

Qiþ1 ¼ 1
2
Qi þ

1
2

XN
n¼0

1
n!

J � −τð Þ � −τð Þ �…� −τð Þð ÞQn
i : A:6

The algorithm can be initialised with the solution to the first-order
approximation to Eq. (A.5) (this approximation is used directly for
simpler neural mass models):

Qo ¼ J− J � τð ÞQo

¼ I þ J � τð Þ−1 J:
A:7

This scheme appears to give good approximations when checked
numerically.

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/


Variable Description

x(t) Hidden states of a state-space or dynamic causal model
y(t) Observed measurements or response variable
f(x, θ) Nonlinear equations of motion or flow
g(x, θ) Nonlinear observation or measurement equation
v(t) Random fluctuations in the motion of hidden states
w(t) Randommeasurement noise
z(t) Innovations of an autoregressive model
Σv(τ, θ) Covariance function of fluctuations
Σw(τ, θ) Covariance function of noise
Σz ∝ ψ(0) ⋅ ψ(0)* Covariance matrix of innovations
∇xf Jacobian or gradient of flow with respect to hidden states
k(τ) First order (Volterra) kernel function of lag
Σ(τ) Covariance function of measurements
C Covariance matrix of measurementseΣ Lagged covariance matrix of measurements
Y(ω) = S(ω) ⋅ Z(ω) Fourier transform of measurements
S(ω) Directed transfer function from innovations to measurements
K(ω) = F[k(τ)] Modulation transfer function from fluctuations to measurements
A(ω) = F[a] Discrete Fourier transform of autoregression coefficients
Z(ω) = F[z(t)] Fourier transform of innovations
g(ω) = F[Σ(τ)] Spectral density of measurements
gv(ω) = F[Σv(τ)] Spectral density of fluctuations
gw(ω) = F[Σw(τ)] Spectral density of noise
Ψ(ω) = F[ψ(τ)] Minimum phase spectral factors of measurements
ψ(τ) First-order (causal) kernels associated with spectral factors

Glossary of variables: this glossary provides a brief description of the variables used in Table 1 and the main text.

808 K.J. Friston et al. / NeuroImage 101 (2014) 796–808
References

Barnett, L., Seth, A., 2014. The MVGC multivariate Granger causality toolbox: a new
approach to Granger-causal inference. J. Neurosci. Methods 223, 50–68.

Barnett, L., Barrett, A., Seth, A., 2009. Granger causality and transfer entropy are equivalent
for Gaussian variables. Phys. Rev. Lett. 103 (23), 238701.

Bastos, A.M., Usrey,W.M., Adams, R.A., Mangun, G.R., Fries, P., Friston, K.J., 2012. Canonical
microcircuits for predictive coding. Neuron 76 (4), 695–711.

Boly, M., Garrido, M.I., Gosseries, O., Bruno, M.A., Boveroux, P., Schnakers, C., Massimini,
M., Litvak, V., Laureys, S., Friston, K., 2011. Preserved feedforward but impaired
top–down processes in the vegetative state. Science 332 (6031), 858–862.

Bosman, C.A., Schoffelen, J.-M., Brunet, N., Oostenveld, R., Bastos, A.M., Womelsdorf, T.,
Rubehn, B., Stieglitz, T., De Weerd, P., Fries, P., 2012. Attentional Stimulus Selection
through Selective Synchronization between Monkey Visual Areas. Neuron. 75,
875–888.

Brown, H.R., Friston, K.J., 2012. Dynamic causal modelling of precision and synaptic gain
in visual perception — an EEG study. Neuroimage 63 (1), 223–231.

Buffalo, E.A., Fries, P., Landman, R., Buschman, T.J., Desimone, R., 2011. Laminar differences
in gamma and alpha coherence in the ventral stream. Proc. Natl. Acad. Sci. 108,
11262.

Bullmore, E., Long, C., Suckling, J., Fadili, J., Calvert, G., Zelaya, F., Carpenter, T.A., Brammer,
M., 2001. Colored noise and computational inference in neurophysiological (fMRI)
time series analysis: resampling methods in time and wavelet domains. Hum. Brain
Mapp. 12 (2), 61–78.

Daunizeau, J., David, O., Stephan, K.E., 2011. Dynamic causalmodelling: a critical review of
the biophysical and statistical foundations. Neuroimage 58 (2), 312–322.

David, O., Kiebel, S., Harrison, L., Mattout, J., Kilner, J.M., Friston, K.J., 2006. Dynamic causal
modeling of evoked responses in EEG and MEG. Neuroimage 30, 1255–1272.

Dhamala, M., Rangarajan, G., Ding, M., 2008. Analyzing information flow in brain
networks with nonparametric Granger causality. Neuroimage 41 (2), 354–362.

Driver, R.D., 1977. Ordinary and Delay Differential Equations. Springer Verlag, New York.
Fomel, S., Sava, P., James Rickett, J., Claerbout, J.F., 2003. TheWilson–Burgmethod of spec-

tral factorization with application to helical filtering. Geophys. Prospect. 51, 409–420.
Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J., Penny, W., 2007. Variational free

energy and the Laplace approximation. Neuroimage 34 (1), 220–234.
Friston, K.J., Bastos, A., Litvak, V., Stephan, E.K., Fries, P., Moran, R.J., 2012. DCM for

complex-valued data: cross-spectra, coherence and phase-delays. Neuroimage 59
(1), 439–455.

Friston, K., Moran, R., Seth, A.K., 2013. Analysing connectivity with Granger causality and
dynamic causal modelling. Curr. Opin. Neurobiol. 23 (2), 172–178.

Geweke, J., 1982. Measurement of linear dependence and feedback between multiple
time series. J. Am. Stat. Assoc. 77, 304–313.

Granger, C.W.J., 1969. Investigating causal relations by econometric models and cross-
spectral method. Econometrica 37, 424–438.
Jirsa, V.K., Ding, M., 2004. Will a large complex system with time delays be stable? Phys.
Rev. Lett. 93 (7), 070602.

Kiebel, S.J., Garrido, M.I., Friston, K.J., 2007. Dynamic causal modelling of evoked
responses: the role of intrinsic connections. Neuroimage 36 (2), 332–345.

Lindner, M., Vicente, R., Priesemann, V., Wibral, M., 2011. TRENTOOL: a Matlab open
source toolbox to analyse information flow in time series data with transfer entropy.
BMC Neurosci. 12, 119.

Maier, A., Adams, G.K., Aura, C., Leopold, D.A., 2010. Distinct superficial and deep laminar
domains of activity in the visual cortex during rest and stimulation. Front. Syst.
Neurosci. 4, 31. http://dx.doi.org/10.3389/fnsys.2010.00031.

Moran, R.J., Stephan, K.E., Kiebel, S.J., Rombach, N., OConnor,W.T., Murphy, K.J., Reilly, R.B.,
Friston, K.J., 2008. Bayesian estimation of synaptic physiology from the spectral
responses of neural masses. Neuroimage 42 (1), 272–284.

Nalatore, H., Ding, M., Rangarajan, G., 2007. Mitigating the effects of measurement noise
on Granger causality. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 75 (3 Pt 1),
031123.

Nedungadi, A.G., Rangarajan, G., Jain, N., Ding, M., 2009. Analyzing multiple spike trains
with nonparametric Granger causality. J. Comput. Neurosci. 27 (1), 55–64.

Newbold, P., 1978. Feedback induced by measurement errors. Int. Econ. Rev. 19, 787–791.
Nolte, G., Holroyd, T., Carver, F., Coppola, R., Hallett, M., 2004. Localizing brain interactions

from rhythmic EEG/MEG data. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2, 998–1001.
Penny, W.D., Stephan, K.E., Mechelli, A., Friston, K.J., 2004. Comparing dynamic causal

models. Neuroimage 22 (3), 1157–1172.
Robinson, P.A., Rennie, C.J., Rowe, D.L., OConnor, S.C., 2004. Estimation of multiscale neu-

rophysiologic parameters by electroencephalographic means. Hum. Brain Mapp. 23
(1), 53–72.

Roopun, A.K., Middleton, S.J., Cunningham,M.O., LeBeau, F.E., Bibbig, A.,Whittington, M.A.,
Traub, R.D., 2006. A beta2-frequency (20–30 Hz) oscillation in nonsynaptic networks
of somatosensory cortex. Proceedings of the National Academy of Sciences 103,
15646.

Shin, C.W., Kim, S., 2006. Self-organized criticality and scale-free properties in emergent func-
tional neural networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 74 (4 Pt 2), 45101.

Solo, V., 2007. On causality I: sampling and noise. Proc. 46th IEEE Conference on Decision
and Control, New Orleans.

Sommerlade, L., Thiel, M., Platt, B., Plano, A., Riedel, G., Grebogi, C., Timmer, J., Schelter, B.,
2012. Inference of Granger causal time-dependent influences in noisy multivariate
time series. J. Neurosci. Methods 203 (1), 173–185.

Stam, C.J., de Bruin, E.A., 2004. Scale-free dynamics of global functional connectivity in the
human brain. Hum. Brain Mapp. 22 (2), 97–109.

Vinck, M., Battaglia, F.P., Womelsdorf, T., Pennartz, C., 2012. Improvedmeasures of phase-
coupling between spikes and the Local Field Potential. J. Comput. Neurosci. 33 (1),
53–75 (Aug).

http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0005
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0005
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0120
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0120
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0010
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0010
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0015
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0015
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf9000
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf9000
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf9000
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0020
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0020
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf9100
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf9100
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf9100
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0025
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0025
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0025
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0030
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0030
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0035
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0035
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0040
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0040
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0045
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0050
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0050
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0055
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0055
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0125
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0125
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0125
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0060
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0060
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0065
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0065
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0070
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0070
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0130
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0130
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0075
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0075
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0135
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0135
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0135
http://dx.doi.org/10.3389/fnsys.2010.00031
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0080
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0080
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0140
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0140
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0140
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0085
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0085
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0090
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf9110
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf9110
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0095
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0095
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0100
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0100
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0100
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf9540
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf9540
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf9540
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0145
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0145
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0150
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0150
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0110
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0110
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0115
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf0115
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf9700
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf9700
http://refhub.elsevier.com/S1053-8119(14)00539-4/rf9700

	Granger causality revisited
	Introduction
	Models and measures of causality in dynamic systems
	The effects of dynamical instability and measurement noise
	Dynamical instability
	Measurement noise

	Dynamic causal modelling of Granger causality
	Conclusion
	Acknowledgments
	Appendix A
	References


