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Hemodynamic correlates of EEG: A heuristic
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In this note we describe a heuristic, starting with a dimensional analysis,

which relates hemodynamic changes to the spectral profile of ongoing

EEG activity. In brief, this analysis suggests that Factivation_, as indexed

by increases in hemodynamic signals, should be associated with a loss of

power in lower EEG frequencies, relative to higher frequencies. The fact

that activation is expressed in terms of frequency (i.e., per second) is

consistent with a dimensional analysis in the sense that activations reflect

the rate of energy dissipation (per second). In this heuristic, activation

causes an acceleration of temporal dynamics leading to (i) increased

energy dissipation; (ii) decreased effective membrane time constants;

(iii) increased effective coupling among neuronal ensembles; and (iv) a

shift in the EEG spectral profile to higher frequencies. These predictions

are consistent with empirical observations of how changes in the EEG

spectrum are expressed hemodynamically. Furthermore, the heuristic

provides a simple measure of neuronal activation based on spectral

analyses of EEG.
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Introduction

It is now generally accepted that the integration of fMRI and

electromagnetic measures of brain activity has an important role in

characterizing evoked brain responses (Goldman et al., 2002; Laufs

et al., 2003a,b; Martinez-Montes et al., 2004; Salek-Haddadi et al.,

2003). The possibility of integrating these two measures in humans

is supported by the results of the study of Logothetis et al. (2001). In

this study the authors demonstrated that within the macaque

monkey visual cortex intracortical recordings of the local field

potential (LFP) and the BOLD signal were linearly correlated.

Approaches to integration can be classified into three schemes:

integration through prediction; integration through constraints; and

integration through fusion. These are depicted schematically in Fig.

1. Integration through prediction (Fig. 1 dotted line) uses temporally

resolved EEG signal as a predictor of changes in concurrently

recorded fMRI. The ensuing region-specific hemodynamic corre-

lates can then be characterized with high spatial resolution with
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conventional imaging methodology (Lovblad et al., 1999; Lemieux

et al., 2001; Czisch et al., 2004). Several studies of this type

(Goldman et al., 2002; Laufs et al., 2003a,b; Martinez-Montes et al.,

2004) have focussed on correlating modulations in ongoing

oscillatory activity measured by EEG with the hemodynamic

signal. They have demonstrated that modulations in alpha rhythms

(oscillations at ¨10 Hz) are negatively correlated with modulations

in the BOLD signal—i.e., an increase in alpha power is associated

with a decrease in the BOLD signal. Studies employing integration

through constraints (Fig. 1 dashed line) have used the spatial

resolution of focal fMRI activations to constrain equivalent dipole

or distributed estimates of EEG or MEG sources (Dale et al., 2000;

Phillips et al., 2002). However, neither of these schemes can be

considered as true integration of multimodal data in the sense that

there is no common temporal forward model that links the

underlying neuronal dynamics of interest to measured hemody-

namic and electrical responses (Fig. 1, solid black lines).

The characterization of the relationship between the electro-

physiology of neuronal systems and their slower hemodynamics in

terms of their respective forward models is therefore crucial from a

number of perspectives: Not only for forward models of electrical

and hemodynamic data, but also for the utility of spatial priors,

derived from fMRI, in the inverse EEG/MEG source reconstruc-

tion problem, and for the disambiguation of induced, relative to

evoked, brain responses using both modalities.

In this note, we describe perhaps the simplest of all models, so

simple that we call it a heuristic, which helps to explain some

empirical observations of EEG/fMRI integration using a dimen-

sional analysis and a biophysical model. In brief, this heuristic

suggests that a shift in the spectral mass from low to high

frequencies will be associated with increases in fMRI measures.
Theory

Dimensional analysis

Given the tenable assumption that hemodynamics reflect the

energetics of underlying neuronal changes (Jueptner and Weiller,

1995; Shulman and Rothman, 1998; Hoge et al., 1999; Magistretti et

al., 1999; Magistretti and Pellerin, 1999; Shin, 2000), we assume

here that the BOLD signal b, at any point in time, is proportional to
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Fig. 1. Schematic showing the approaches to EEG/fMRI integration. (i)

Integration through prediction. (ii) Integration through constraints. (iii)

Integration through fusion with forward models.
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the rate of energy dissipation, induced by transmembrane currents.

Note that we are not assuming here that the increase in blood flow,

which is the major contributor to the BOLD signal, is a direct

consequence of the rate of energy dissipation, but rather that these

two measures are proportional (see Hoge et al., 1999). Although

recent work has suggested that the neurovascular coupling is driven

by glutamate release (see Lauritzen, 2001; Attwell and Iadecola,

2002), in practice the measures of glutamate release, BOLD, and

energy usage are correlated and therefore the assumption here that

the BOLD signal is proportional to the rate of energy dissipation is

valid. This dissipation is expressed in terms of Joules per second and

corresponds to the product of transmembrane potential (v, Joules per

Coulomb) and transmembrane current (i, Coulombs per second).

b”bmT i� ð1Þ
Where the expectation is over time and m = [m1,. . .mk]

T

corresponds to a [large] column vector of potentials for each neuro-

nal compartment k within a voxel, similarly for i. Clearly, Eq. (1) will

not be true instantaneously because it may take some time for the

energy cost to be expressed in terms of increased oxygen delivery,

extraction, and perfusion. However, over a suitable time scale, of

order seconds, Eq. (1) will be approximately correct. Assuming a

single-compartment model, currents are related to changes in mem-

brane potential though their capacitance c, which we will assume is

constant (see Dayan and Abbot, 2001, p. 156). By convention, the

membrane current is defined as positive when positive ions leave the

neuron and negative when positive ions enter the neuron.

i ¼ � cṁm ð2Þ

then

b”cbmT ṁm� ð3Þ
A neuronal model

To relate changes in membrane potential to the BOLD signal

we need to adopt some model of a neuronal system and how it

activates. A simple integrate and fire model of autonomous

neuronal dynamics can be expressed in the form

ṁmk ¼ � mk=sk þ uk

¼ fk mð Þ ð4Þ
for the kth compartment or unit. We have assumed here that

synaptic currents are caused by some nonlinear function of the

depolarization status of all units in the population: i.e., uk = gk (m).
For a system of this form we can approximate the dynamics of

perturbations with the first-order system.

ṁm tð Þ ¼ � Jm

J ¼ Bf

Bm
ð5Þ

The Jacobian J summarizes the functional or causal architecture

of the neuronal system. The leading diagonal elements of J

correspond to self-inhibition and play the role of effective

membrane rates or conductances. In the absence of influences

from any other units the kth potential will decay exponentially to

the equilibrium or resting potential m = 0.

ṁmk ¼ � Jkkmk ð6Þ
It can be seen that Jkk = 1/sk has units of per second and is the

inverse of the effective membrane time constant. In fact, in most

biophysical models of neuronal dynamics, this Frate_ is usually

considered as the ratio of the membrane’s conductance to its

capacitance. Conductivity will reflect the configuration of various

ion channels and the ongoing post-synaptic receptor occupancy. In

a similar way, the off-diagonal elements of the Jacobian character-

ize the effective connectivity or intrinsic coupling among units,

where Jkj = flfk /flmj = flṁk /flmj. Effective connectivity is simply the

influence one neuronal system exerts over another. It is interesting

to note that plausible neuronal models of ensemble dynamics

suggest a tight coupling between average spiking rate and

decreases in effective membrane time constants (e.g., Chawla et

al., 2000). However, as we will see below, we do not need to

consider spikes to close the link between BOLD and frequency

profiles of ongoing EEG or MEG dynamics.

From Eqs. (3) and (5) we have

b”c <mT Jm>

”ctr J <mmT>Þ
�

”ctr JCov mf gð Þ ð7Þ

This means that the metabolic response is proportional to the

trace of the product of the Jacobian (i.e., effective connectivity) and

the temporal covariance of the transmembrane potentials.

Modeling activations

At this point we have to consider how Factivation_ is mediated.

In other words, how the dynamics over an extended period of time

could change. If we treat the units within any voxel as an

autonomous system then any extrinsic influence must be mediated

by changes in the Jacobian; e.g., changes in conductance or

coupling among neurons induced by afferent input. The attending

changes in potential are secondary to these changes in the

functional architecture of the system and may, or may not, change

their covariances Cov{m}. According to Eq. (7), a metabolic cost is

induced through changes in J, even in the absence of changes in

the covariance. To link BOLD and EEG responses we need to

model the underlying changes in the Jacobian that generate them.

This is accomplished in a parsimonious way by introducing an

activation variable, a, that changes J. Here a is a parameter that



Fig. 2. Schematic showing the effect of activation on the spectral profile.
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changes the effective connectivity (i.e., synaptic efficacies) and,

implicitly, the dynamics of neuronal activity. In this model

different modes of brain activity are associated with the Jacobian.

J að Þ ¼ J 0ð Þ þ aBJ=Ba ð8Þ

We will assume that flJ/fla = J(0). In other words, the change in

intrinsic coupling (including self-inhibition), induced by activation,

is proportional to the coupling in the Fresting_ state when a = 0.

The motivations for this assumption include the following:

& Its simplicity.

& Guaranteed stability, in the sense that if J(0) has no unstable

modes (positive eigenvalues) then neither will J(a). For

example, it ensures that activation does not violate the Fno-
strong-loops hypothesis_ (Crick and Koch, 1998).

& It ensures the intrinsic balance between inhibitory and

excitatory influences that underpins Fcortical gain control_
(Abbot et al., 1997).

& It models the increases in membrane conductance associated

with short-term increases in synaptic efficacy.

Effect of neuronal activation on BOLD

These considerations suggest that the coupling Jkj among

neurons (positive and negative) will scale in a similar way and that

these changes will be reflected in changes to effective membrane

time constants Jkk. Under this model for activation the effect of a is

to accelerate the dynamics and increase the system’s energy

dissipation. This acceleration can be seen most easily by

considering the responses to perturbations around m0 under J =

J(0) and J̃ = J(a) = (1 + a) J

m tð Þ ¼ e�J tm0

m̃m tð Þ ¼ e�J̃J tm0 ¼ m 1þ að Þtð Þ ð9Þ

In other words, the perturbation under J(a) at time t is exactly

the same as that under J(0) at (1 + a)t. This acceleration will only

make dynamics faster; it will not change their form. Consequently

there will be no change in the covariation of membrane potentials

and the impact on the fMRI responses is mediated by, and only by

changes in J.

b̃b

b
”

tr J̃JCov mf g
� �

tr JCov mf gð Þ ¼ 1þ að Þ ð10Þ

In other words, the activation, a, is proportional to the relative

increase in metabolic demands. This is intuitive from the

perspective of fMRI but what does an activation look like in

terms of the EEG?

Effect of neuronal activation on EEG

From the point of view of the fast temporal activity reflected in

the EEG, activation will cause an acceleration of the dynamics,

leading to a Frougher_ looking signal with loss of lower

frequencies, relative to higher frequencies. A simple way to

measure this effect is in terms of the roughness r, which is the

normalized variance of the first temporal derivative of the EEG.

From the theory of stationary processes (Cox and Miller, 1965),

this is mathematically the same as the negative curvature of the
EEGs autocorrelation function evaluated at zero lag. Thus, for an

EEG signal, e:

r ¼ Var ėeð Þ
Var eð Þ ¼ � q 0ð ÞW

Assuming e (measured at a single site) is a linear mixture of

potentials, i.e., e = lm, where l is a lead-field row vector, its

autocorrelation at lag h is:

q hð Þ ¼ <m tð ÞT lT lm t þ hð Þ> ð11Þ
From Eqs. (9) and (11) we have

q̃q hð Þ ¼ q 1þ að Þhð Þ

q̃q hð ÞW ¼ 1þ að Þ2q hð ÞW ð12Þ

It follows that the change in r is related to neuronal activation

by

r̃r

r
¼ q̃q 0ð ÞW

q 0ð ÞW ¼ 1þ að Þ2 ð13Þ

As the spectral density of a random process is defined

to be the Fourier transform of its autocorrelation function,

g(x) =

R
q(h)e�iwhdh, the equivalent relationship in the

frequency domain obtains from the Froughness_ expressed in
terms of spectral density g(x) is

r ¼

R
x2g xð ÞdxR
g xð Þdx

From Eq. (12) the equivalent of the activated case in terms of

the spectral density is:

g̃g xð Þ ¼ g 1þ að Þxð Þ
1þ að Þ ð14Þ

Here, the effect of activation is to shift the spectral profile

toward higher frequencies with a reduction in amplitude (see

Fig. 2). The activation can be expressed in terms of the

Fnormalized_ spectral density.

r̃r

r
¼

R
x2p̃p xð ÞdxR
x2p xð Þdx

¼ 1þ að Þ2

p xð Þ ¼ g xð ÞR
g xð Þdx

ð15Þ

p(x) could be treated as an empirical estimate of probability,

rendering roughness equivalent to the expected or mean square
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frequency. Gathering together the above equalities, we can express

relative values of fMRI and spectral measures in terms of each

other.

b̃b

b

�� 2

” 1þ að Þ2”

R
x2p̃p xð ÞdxR
x2p xð Þdx

ð16Þ

Summary

Eq. (14) means that as neuronal activation increases, there is a

concomitant increase in BOLD signal and a shift in the spectral

profile to higher frequencies. High-frequency dynamics are

associated with small effective membrane time constants and high

[leaky] transmembrane conductances. The ensuing currents and

fast changes in potential incur an energy cost to which the BOLD

signal is sensitive. Such high-frequency dynamics have also been

shown to be dependent upon the firing patterns of inhibitory

interneurons (Traub et al., 1996; Whittington and Traub, 2003).

The conjoint effect of inhibitory and excitatory synaptic input is to

open ion channels, rendering the post-synaptic membrane leaky

with high rate constants. The effect is captured in the model by the

scaling of the leading diagonal elements of the Jacobian. This

suggests that the changes in the temporal dynamics to which the

BOLD signal is sensitive are mediated by changes in the firing

patterns of both excitatory and inhibitory subpopulations.

Critically however, the predicted BOLD signal is a function of

the frequency profile as opposed to any particular frequency. For

example, an increase in alpha (low frequency), without a change in

total power, would reduce the mean square frequency and suggest

de-activation. Conversely an increase in gamma (high frequency)

would increase the mean square frequency and speak to activation

(see Fig. 3).

In brief, activation corresponds to a decrease in low frequencies

relative to high frequencies or, conversely, an increase in high

frequencies relative to low frequencies. We have deliberately used
Fig. 3. Schematic showing the effect of de-activation on mean square

frequency.
the term Factivation_ here because it fits comfortably with the

notion of EEG activation that is typically associated with a loss of

low frequencies and the expression of an irregular de-synchronized

trace, comprising high frequencies. It will also be noted that

activation is synonymous with de-synchronization (i.e., a loss of

alpha frequencies). However, the use of F[de-]synchronization_ in
an event-related sense is a little unfortunate, as discussed below.
Discussion

The above heuristic was based on a generative model of how

neuronal dynamics activate. The heuristic was partly inspired by the

results of EEG-fMRI integration in the study of epilepsy. In this

field, increased slow wave activity has been shown to be associated

with decreased BOLD (Archer et al., 2003) while spikes and wave

discharges (with high-frequency components) have been shown to

cause BOLD activations (Krakow et al., 2001; Hamandi et al.,

2004). The model outlined here ties together expected changes in

BOLD and EEG measures and makes a clear prediction about the

relationship between the different frequency components of

ongoing EEG or MEG activity and the expected BOLD response.

According to the model any modulations in the degree of low-

frequency relative to the high-frequency components in the EEG

signal will be inversely correlated with the BOLD signal. This is

largely in agreement with the empirical data available. It is now

generally accepted that modulations in the on-going alpha rhythm,

8–12 Hz, when the eyes are shut, are inversely correlated with the

BOLD signal at voxels within the parietal, parieto-occipital, and

frontal cortices (Goldman et al., 2002; Laufs et al., 2003a,b;

Moosmann et al., 2003; Martinez-Montes et al., 2004). Further-

more, during low-frequency visual entrainment, using a periodic

checkerboard stimulus, the BOLD signal is reduced compared to an

aperiodic stimulus (Parkes et al., 2004). The model presented here

also predicts that a shift in the frequency profile of the EEG to high-

frequency components should be correlated with an increase in the

BOLD signal. Although there is a much smaller literature on high-

frequency EEG-BOLD correlations, what has been published is

broadly in agreement with this prediction. Laufs et al. (2003b)

report predominantly positive correlations between the BOLD

signal and the EEG power in the 17- to 23-Hz and the 24- to 30-Hz

band width and Parkes et al. (2004) demonstrate that an aperiodic

checkerboard stimulus induces a greater BOLD signal than a low-

frequency periodic stimulus.

However, there are a number of observations that are not

captured by the model. Firstly, the model does not address very slow

changes in potentials, <0.1 Hz, that are unlikely to contribute to the

event-related response. As such it does not capture the very slow

modulations in LFP that have previously been shown to be related to

the BOLD response (Leopold et al., 2003). Secondly, and most

notably, it does not explain the positive correlation of the BOLD

signal with alpha oscillations in the thalamus (Goldman et al., 2002;

Martinez-Montes et al., 2004). This discrepancy could reflect the

unique neuronal dynamics of the thalamus. Thalamic neurons are

characterized by complex intrinsic firing properties, which may

range from the genesis of high-frequency bursts of action potential to

tonic firing (Steriade et al., 1993). However, it could also reflect the

fact that the model is based on several assumptions that are wrong:

& The first assumption is that the dynamics of transmembrane

potentials conform to an autonomous ordinary differential
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equation. The shortcomings of this assumption are that there is

no opportunity for deterministic noise. However, this is a fairly

mild restriction in relation to the autonomy, which precludes

extrinsic input. This enforces afferent inputs outside the voxel

or source to exert their influence vicariously though changes in

the systems parameters, encoded by the Jacobian. This can be

seen as a limitation, given the driving nature of [forward]

extrinsic connections in sensory cortex, but does fit comfortably

with other perspectives on functional integration in the brain

(see below).

& The use of an autonomous ODE precludes hidden states that

mediate changes in conductance and limits the model to a

simple integrate- and fire-like summary of neuronal behavior. A

more general form for Eq. (2) would require.

ṁm ¼ fm m; xð Þ

ẋx ¼ fx m; xð Þ ð17Þ

where, other hidden states x might correspond to conductances

and channel gating terms as in more detailed biophysical models

of neurons (Dayan andAbbot, 2001). The only argument that can

be offered in defense of Eq. (2) is that it may be sufficient to

capture important behaviors by appeal to neuronal mass and

mean field approximations.

& The activation is modeled effectively by a scaling of the

Jacobian. Functionally, this is a severe assumption because it

precludes the selective enabling of particular connections. The

consequence of this assumption is that any neuronal system can

vary its rate or speed of computation, but can only do one thing.

In reality, a better approximation would be bilinear with a

multidimensional activation denoted by the vector a = [a1, . . .]

J̃J ¼ J þAakBk

Bk ¼
BJ

Bak
ð18Þ

However, this model is too unconstrained to make any generic

comments, without assuming a particular form for the bilinear

terms Bk.

There are other shortcomings that could be invoked and that

would have to be considered if the model failed to predict BOLD-

EEG relationships. Having briefly deconstructed the model it is

worth noting that it highlights some conceptual issues that might be

useful. These include:

& First, it re-frames the notion of Factivation_ in dynamic terms,

suggesting that activation is not simply an excess of spikes, or

greater power in any particular EEG frequency band. Activation

may correspond to an acceleration of dynamics, subserving

more rapid computations. This sort of activation can manifest

with no overall change in power but a change in the frequencies

at which power is expressed. Because more rapid or dissipative

dynamics are energetically more expensive, it may be that they

are reserved for Ffunctionally_ adaptive or necessary neuronal

processing.

& Second, under the generative model of activation, a speeding up

of the dynamics corresponds to a decrease in the width of the

cross-correlation functions between all pairs of units in the

population. (At the macroscopic level of EEG recordings,
considered here, the synchronization between pairs of units, as

measured by the cross-correlation function, is captured in the

width of the autocorrelation of the EEG signal, because the

EEG signal is a measure of synchronous neural activity). This

width is a ubiquitous measure of synchronization that tran-

scends any frequency-specific changes in coherence. In short,

activation as measured by fMRI is caused, in this model, by

increased synchronization and, implicitly, a change in the

temporal structure of neuronal dynamics.

& Third, our analysis suggests that the underlying Factivation_
status of neuronal systems is not expressed in any single

frequency but is exhibited across the spectral profile. This has

implications for use of classical terms like Fevent-related de-

synchronization_. If one only considered modulations in

spectral density at one frequency, as in the classical use of

the term de-synchronization, one would conclude that the

effect of activation was a de-synchronization of low-frequency

components. According to the heuristic, however, the effect of

activation is a shift in the entire spectral profile to higher

frequencies with a concomitant attenuation in amplitude of all

frequencies. This general conclusion does not preclude the

selective expression of certain frequencies during specific

cognitive operations (e.g., increases in theta oscillations during

mental arithmetic; e.g., Mizuhara et al., 2004). However, the

heuristic suggests that the context in which these frequencies

are expressed is an important determinant of the BOLD

response. In other words, it is not the absolute power of any

frequency but the profile which determines expected metabolic

cost.

& Fourth, as introduced above, one of the assumptions treats

neuronal systems as autonomous, such that the evolution of

their states is determined in an autonomous fashion. This

translates into the assumption that the pre-synaptic influence

of intrinsic connections completely overshadows extrinsic

inputs. This may seem an odd assumption. However, it is

the basis of nonlinear coupling in the brain and may represent,

quantitatively, a much more important form of integration than

simple linear coupling. We have addressed this issue both

empirically and theoretically in Friston (2000). In brief, if

extrinsic inputs affect the excitability of neurons, as apposed

to simply driving a response, the coupling can be understood

in terms of changes in the system parameters, namely the

Jacobian. This means the response to input will be nonlinear.

Quantitative analyses (a simple form of bi-coherence analysis)

of MEG data suggest this form of nonlinear coupling can

account for much more variation in power than linear

coupling, i.e., coherence (Friston, 2000).
Conclusion

The integration of EEG and fMRI data is likely to play an

important role in our understanding of brain function. Through

such multimodal fusion it should be possible to harness the

temporal resolution of EEG and the spatial resolution of fMRI in

characterizing neural activity. The majority of the studies integrat-

ing EEG and fMRI to date have focussed on directly correlating the

two measures, after first transforming the data so that they are on

the same temporal scale (usually by convolution of the EEG time

series with a canonical hemodynamic response function). This
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approach has proved successful in demonstrating that multimodal

fusion is feasible and that regionally specific dependencies

between the two measures exist. However, this approach to

characterizing the relationship between the EEG and the fMRI is

limited as it does not characterize the integration in terms of the

underlying neuronal activity. We will only be able to fully harness

the benefits of EEG/fMRI integration by understanding the

relationship between the underlying neuronal activity and the

BOLD and EEG signals through their respective forward models.

Although the current heuristic falls a long way short of this, it can

explain the nature of some of the previously reported correlations

between EEG and fMRI by considering the integration in terms of

the underlying neuronal dynamics.

We have proposed a simple model that relates BOLD changes

to the relative spectral density of an EEG trace and the roughness

of the EEG time series. Neuronal activation affects the relative

contribution of high and low EEG frequencies. This model

accommodates the observations that BOLD signal correlates

negatively with the expression of alpha power and positively with

the expression of higher frequencies. This model would be simple

to test empirically using concurrent EEG and fMRI recordings and

a time frequency analysis of the ensuing source reconstructed EEG

data. It rests on classical Maxwellian arguments and a simple

model of activation. Clearly, many of the assumptions are not

correct in detail, but the overall picture afforded may provide a new

perspective on some important issues in neuroimaging.
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