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ivity characterize the influence that neuronal populations exert over each other.
Additionally, some approaches, for example Dynamic Causal Modelling (DCM) and variants of Structural
Equation Modelling, describe how effective connectivity is modulated by experimental manipulations.
Mathematically, both are based on bilinear equations, where the bilinear term models the effect of
experimental manipulations on neuronal interactions. The bilinear framework, however, precludes an
important aspect of neuronal interactions that has been established with invasive electrophysiological
recording studies; i.e., how the connection between two neuronal units is enabled or gated by activity in
other units. These gating processes are critical for controlling the gain of neuronal populations and are
mediated through interactions between synaptic inputs (e.g. by means of voltage-sensitive ion channels).
They represent a key mechanism for various neurobiological processes, including top-down (e.g. attentional)
modulation, learning and neuromodulation.
This paper presents a nonlinear extension of DCM that models such processes (to second order) at the
neuronal population level. In this way, the modulation of network interactions can be assigned to an explicit
neuronal population. We present simulations and empirical results that demonstrate the validity and
usefulness of this model. Analyses of synthetic data showed that nonlinear and bilinear mechanisms can be
distinguished by our extended DCM. When applying the model to empirical fMRI data from a blocked
attention to motion paradigm, we found that attention-induced increases in V5 responses could be best
explained as a gating of the V1→V5 connection by activity in posterior parietal cortex. Furthermore, we
analysed fMRI data from an event-related binocular rivalry paradigm and found that interactions amongst
percept-selective visual areas were modulated by activity in the middle frontal gyrus. In both practical
examples, Bayesian model selection favoured the nonlinear models over corresponding bilinear ones.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Models of effective connectivity, i.e. the causal influences
that system elements exert over another, are essential for
studying the functional integration of neuronal populations
and for understanding themechanisms that underlie neuronal
dynamics (Friston, 2002a; Horwitz et al., 1999). In the past, a
variety of models have been proposed for inferring effective
connectivity from neuroimaging data, including regression-
based models like psycho-physiological interactions (PPI;
Friston et al., 1997), structural equation modelling (SEM;
r Neuroimaging, Institute of
are, London WC1N 3BG, UK.

han).
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McIntosh and Gonzalez-Lima 1994; Büchel and Friston 1997;
Bullmore et al., 2000), multivariate autoregressive models
(MAR; Harrison et al., 2003; Roebrock et al., 2005) and
dynamic causal modelling (DCM; Friston et al., 2003).

DCM is a general framework for inferring processes and
mechanisms at the neuronal level frommeasurements of brain
activity with different techniques, including fMRI (Friston
et al., 2003), EEG/MEG (David et al., 2006) and frequency
spectra based on localfield potentials (Moran et al., inpress). In
contrast to other models of effective connectivity, DCM does
not operate on the measured time-series directly. Instead, it
combines a model of the hidden neuronal dynamics with a
forward model that translates neuronal states into predicted
measurements. For fMRI, DCM is based on bilinear differential
equations describing neuronal population dynamics, which
are combined with a hemodynamic forward model. Since its
original description (Friston et al., 2003), a number of
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Fig. 1. This figure shows schematic examples of bilinear (A) and nonlinear (B) DCMs, which describe the dynamics of a neuronal state vector x. In both equations, the matrix A
represents the fixed (context-independent or endogenous) strength of connections between the modelled regions, the matrices B(i) represent the context-dependent modulation of
these connections, induced by the ith input ui, as an additive change, and the C matrix represents the influence of direct (exogenous) inputs to the system (e.g. sensory stimuli). The
new component in the nonlinear equations are the D(j) matrices, which encode how the n regions gate connections in the system. Specifically, any non-zero entry Dkl

(j) indicates that
the responses of region k to inputs from region l depend on activity in region j.

1 We do not consider long-term processes of synaptic plasticity, like long-term
potentiation (LTP), here. These processes, which require major structural remodelling
of the synapses and are thus slow, are difficult to observe in a single imaging session
and are therefore typically investigated by comparing estimates of effective
connectivity across sessions.
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methodological developments have improved and extended
DCM for fMRI, e.g. Bayesian model selection amongst alter-
native DCMs (Penny et al., 2004a), precise sampling from
predicted responses (Kiebel et al., 2007), additional states at the
neuronal level (Marreiros et al., 2008) and a refined hemody-
namicmodel (Stephan et al., 2007a). In this paper, we describe a
novel DCM for fMRI that enables one to model a class of
nonlinear neuronal processes, which are important for a variety
of cognitive processes, including learning and attention.

Effective connectivity is inherently context-dependent and
dynamic: there is a lot of evidence that the functional coupling
amongst neuronal populations changes as a function of
processing demands (for reviews, seeMcIntosh 2000; Stephan
2004). Therefore, models of effective connectivity are typically
used to infer whether the functional coupling is modulated by
experimental manipulations; e.g. task demands (Mechelli
et al., 2003; McIntosh et al., 1994; Sonty et al., 2007; Stephan
et al., 2007b), stimulus properties (Fairhall and Ishai 2007;
Haynes et al., 2005), learning (Büchel et al., 1999; McIntosh
et al., 1998), drugs (Honey et al., 2003) or TMS (Lee et al.,
2003). As discussed by Penny et al. (2004b), to characterize
context-dependent changes in coupling, early models of
effective connectivity divided the data into condition-specific
subsets and applied separate linear models to each subset;
later developments used bilinear equations, allowing known
input functions (which represent the experimentally con-
trolled context variable) to change connection strengths (see
Fig. 1).

The bilinear model has two important limitations. First, the
neuronal origin of the modulatory influence is not specified.
Second, it may not be the most appropriate framework for
modelling fast changes in effective connectivity, which are
mediated by nonlinear effects at the level of single neurons.
These mechanisms are instances of “short-term synaptic
plasticity” (STP), an umbrella term for a range of processes
which alter synaptic strengths with time constants in the
range of milliseconds to minutes; e.g. NMDA-controlled rapid
trafficking of AMPA receptors (Malinow and Malenka 2002),
synaptic depression/facilitation (Zucker and Regehr 2002) or
“early LTP” (Frey and Morris 1998)1. All these processes are
driven by the history of prior synaptic activity and are thus
nonlinear (Zucker and Regehr 2002).

A particularly interesting mechanism, which relies on STP
is “neuronal gain control” (Freeman 1979). This is a general
and fundamental mechanism for a large range of processes,
including eye and limb movements, spatial perception and,
perhapsmost significantly, attention (Salinas and Their, 2000).
Neuronal gain, i.e. the response of a given neuron N1 to
presynaptic input from a second neuron N2, depends on the
history of inputs that N1 receives from other neurons, e.g. a
third neuron N3. Such a nonlinear modulation or “gating” of
theN2→N1 connection byN3 has been shown tohave the same
mathematical form across a large number of experiments
(e.g. Chance et al., 2002; McAdams and Maunsell 1999a,b;
Larkum et al., 2004; for review, see Salinas and Sejnowski
2001): the change in the gain of N1 results from a multi-
plicative interaction among the synaptic inputs from N2 and
N3, i.e. a second-order nonlinear effect. Biophysically, neuronal
gain control can arise through various mechanisms that
mediate interactions among synaptic inputs, occurring close
in time but not necessarily in the samedendritic compartment.
These neurophysiological mechanisms are described in more
detail in the Discussion.

Critically, the bilinear framework precludes a representa-
tion, at the neuronal level, of themechanisms described above.
As stated in the original DCM paper (Friston et al., 2003), in
order to model processes like neuronal gain control and
synaptic plasticity properly, one needs “to go beyond bilinear
approximations to allow for interactions among the states.



651K.E. Stephan et al. / NeuroImage 42 (2008) 649–662
This is important when trying to model modulatory or
nonlinear connections such as those mediated by backward
afferents that terminate predominantly in the supragranular
layers and possibly on NMDA receptors.”

One might wonder, however, whether these nonlinearities
can be neglected inmodels of fMRI data, due to the fact that (i)
fMRI records the responses of large neuronal populations,
whose ensemble activity can often be well characterised by
linear approximations (despite the highly nonlinear behaviour
of individual neurons; Deco et al., submitted), and that (ii) the
hemodynamic transfer function, which has low-pass filtering
properties, may destroy most or all of the nonlinearities (that
occur over short periods of time). Therefore, an important
question is whether nonlinear and bilinear modulatory
processes can be distinguished reliably in fMRI data and, if
so, how much can be gained in practice by using nonlinear, as
opposed to bilinear, models of effective connectivity. In this
technical paper, which establishes the nonlinear framework
for DCM, we perform analyses of both synthetic and empirical
data to address these questions. First, we use synthetic data
and Bayesian model selection (BMS) to demonstrate that
nonlinear and bilinear mechanisms of generating fMRI data
can be reliably distinguished, even at reasonably high levels of
observation noise. Second, we apply both nonlinear and
bilinear DCMs to two empirical fMRI studies. Theses studies
look at attention and binocular rivalry; processes for which
nonlinear mechanisms have been proposed on the basis of
Fig. 2. The right panel shows synthetic neuronal and BOLD time-series that were generated u
(blue) is driven by irregularly spaced random events (delta-functions). Activity in x2 (green) is
on activity in a third population, x3 (red), which receives a connection from x2 but also recei
easily: responses of x2 to x1 become negligible when x3 activity is low. Conversely, x2 resp
(shaded areas in right panel). Strengths of connections are indicated by symbols (−: negativ
electrophysiological recordings. Using BMS, we demonstrate
that, in both cases, nonlinear DCMs are superior to corre-
sponding bilinear DCMs.

Methods

Bilinear Dynamic Causal Modelling (DCM)

DCM for fMRI is based on an input-state-output model of
deterministic neuronal dynamics in a system of n interacting
brain regions. In this model, neuronal population activity of
each region is represented by a single state variable and is
perturbed by experimentally controlled (and therefore known)
inputs u. DCM models the temporal change of the neuronal
state vector x around the system's resting state (i.e., x0=0,
u0=0), using a bilinear Taylor series approximation to any
nonlinear function f(x,u) that governs the dynamics of the
system:

f x;uð Þ ¼ dx
dt

≈f 0;0ð Þ þ ∂f
∂x

xþ ∂f
∂u

uþ ∂2f
∂x∂u

xu
ð1Þ

Importantly, this series is truncated to include only a
second-order (bilinear) term describing interactions between
neuronal states and inputs. Given m known inputs, one can
parameterise this equation with A=∂f /∂x|u=0, B(i) =∂2f / ∂x∂ui,
sing the nonlinear DCM shown on the left. In this model, neuronal population activity x1
driven through a connection from x1; critically, the strength of this connection depends
ves a direct input from a box-car input. The effect of nonlinear modulation can be seen
onds vigorously to x1 inputs when the x1→x2 connection is gated by high x3 activity
e; +: weakly positive; +++: strongly positive).



2 Note that negative values of the hemodynamic states would be physically
meaningless; e.g. there is no such thing as a negative blood volume.
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and C=∂f/∂u|x=0 to obtain a form that lends itself to a direct
neurophysiological interpretation:

f x; uð Þ ¼ dx
dt

¼ Aþ ∑m
i¼1 uiB

ið Þ
� �

xþ Cu ð2Þ

In this bilinear differential equation, the matrix A represents
the fixed (context-independent or endogenous) strength of
connections between the modelled regions, and the matrices B
(i) represent the modulation of these connections (e.g. due to
learning, attention, etc.) induced by the ith input ui as an
additive change. Finally, theCmatrix represents the influence of
direct (exogenous) inputs to the system (e.g. sensory stimuli).

Nonlinear DCM

Tomodel nonlinear interactions amongst the n states of the
system, one can extend the Taylor series in Eq.(1) to be second
order in the states, i.e.

f x;uð Þ ¼ dx
dt

≈f 0; 0ð Þ þ ∂f
∂x

xþ ∂f
∂u

uþ ∂2f
∂x∂u

xuþ ∂2f
∂x2

x2

2

ð3Þ

Setting D jð Þ ¼ 1
2
∂2f
∂x2j

ju¼0 1≤ j≤nð Þmakes Eq.(3) equivalent to:

f x; uð Þ ¼ dx
dt

¼ Aþ ∑m
i¼1 uiB

ið Þ þ ∑n
j¼1 xjD

jð Þ
� �

xþ Cu ð4Þ

Here, the D(j) matrices encode which of the n regions gate
which connections in the system. Specifically, any non-zero
entry Dkl

(j) indicates that responses of region k to inputs from
region l depend on activity in region j. Fig. 1 schematically
juxtaposes bilinear and nonlinear DCMs, and Fig. 2 shows a
simple example of a nonlinear DCM, illustrating the sort of
dynamics, both at the neuronal and hemodynamic level this
sort of model exhibits.

To explain regional BOLD responses, DCM for fMRI
combines the models of neuronal dynamics described above
with a hemodynamic model. This model, which was originally
described by Buxton et al. (1998) and extended by Friston et al.
(2000), comprises a set of differential equations linking
changes in neuronal population activity to changes in
vasodilatation, blood flow, blood volume v and deoxyhemo-
globin content q; the predicted BOLD signal is a nonlinear
function of the last two state variables. In this work, we use
the most recent formulation of this hemodynamic model as
described in Stephan et al. (2007a).

Together, the neuronal and hemodynamic state equations
yield a deterministic forward model with hidden states. For
any given combination of parameters θtA, B, C, D… and
inputs u, the measured BOLD response y is modelled as the
predicted BOLD signal h(u,θ) plus a linear mixture of con-
founds Xβ (e.g. signal drift) and Gaussian observation error e:

y ¼ h u; θð Þ þ Xβ þ e ð5Þ

Parameter estimation and stability

In DCM, parameter estimation employs a Bayesian scheme,
with empirical priors for the hemodynamic parameters and
zero-mean shrinkage priors for the coupling parameters (see
Friston, 2002a,b and Friston et al., 2003 for details). The
Gaussian observation error in Eq.(5) is modelled as a linear
combination of covariance components Q controlled by
hyperparameters λ, i.e., e~N(0,Σexp(λi)Qi). Briefly, the poster-
ior moments of the parameters are updated iteratively
using variational Bayes under a fixed-form Laplace approx-
imation, q(θ), to the conditional density p(θ|y); similarly for
p(λ|y). These updates are achieved through gradient ascent
on a free-energy bound on the log evidence, F≤p(y|m), for any
model m, specified by a priori constraints on which connec-
tions exist (see below and Friston et al., 2007). Two aspects are
particularly important. First, the use of informed priors
condition the objective function by suppressing local minima
that are far away from the prior mean and facilitates
identification of its global maximum by gradient ascent
schemes. Second, once the estimation scheme moves into a
domain of parameter space in which dynamics become
unstable, i.e. runaway excitation, the value of the objective
functionwill necessarily decrease. The gradient ascent in DCM,
however, rejects any updates that decrease the objective
function: in this case, the algorithmwill return to the previous
estimate and reduce its step-size, using temporal regularisa-
tion (see Friston et al., 2007 for details); this regularisation
scheme is similar to (but more robust than) a Levenberg–
Marquardt algorithm. This is repeated until the update yields
parameter estimates in a stable domain of parameter space
and the objective function starts to increase again. This ensures
that one obtains parameter estimates for which the modelled
system dynamics are stable.

Integration of the nonlinear state equations

Even though stability is guaranteed, there may be parts of
parameter space for which evaluation of the state equations
during integration encounters numerical problems. For exam-
ple, some of the state equations in the hemodynamic model
contain roots (see Appendix A); for negative values of
hemodynamic states like blood volume and deoxyhemoglobin
content2, evaluating these roots will result in complex
numbers. In order to prevent such cases, it is useful to trans-
form the hemodynamic states into log space; this guarantees
that they will always have positive values and places formal
constraints on the support of these non-negative states. This
transformation is described in Appendix A.

In the original bilinear DCM for fMRI, the state equations
are integrated using a computationally efficient integration
scheme based on the matrix exponential of the system's
Jacobian, J(x)=∂f /∂x (for details, see Friston, 2002b; Friston et
al., 2003). This scheme exploits the sparse structure of the
known input functions, making an evaluation of the Jacobian
necessary only when inputs change. In contrast, the nonlinear
model proposed in this paper requires the Jacobian to be
evaluated at each time step. This is because the second-order
terms in Eq.(3) render the Jacobian a function of the states,
which are changing continuously. For integrating nonlinear
differential equations, it is standard to use numerical integra-
tion procedures based on local schemes with an update
interval τ that is typically five to ten times smaller than the
characteristic time-constant of the system (Wilson, 1999).
Given that the characteristic time-constant in our system is
determined by the self-connections, implementing decay of
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induced activity with an a priori time constant of 1s, all
analyses in this paper are based on an update interval of
τ=200 ms.3 In this paper, we used the local linearisation
approach proposed by Ozaki (Ozaki, 1992; see also Friston
et al., 2007 for an independent derivation within a Variational
Bayes framework). Ozaki (1992) showed that this approach to
integrating nonlinear differential equations is superior to
other methods like Euler or Runge–Kutta schemes, in terms of
both numerical stability and mathematical consistency
between the time-continuous differential equation and its
discrete approximation. The local linearisation approach has
been used successfully in various nonlinear system identifica-
tion settings (e.g. Jimenez and Ozaki 2003; Riera et al., 2004;
Friston et al., 2007; Valdes et al., 1999). This method evaluates
the nonlinear state equation f(x,u) (c.f. Eq.(3)) explicitly and
uses the system's Jacobian J, which is re-evaluated at every
time step τ, to give the update:

x t þ τð Þ ¼ x tð Þ þ exp J x tð Þð Þτð Þ−I½ � J x tð Þð Þ−1f x tð Þ;u tð Þð Þ ð6Þ
This corresponds to a nonlinear or generalised convolution

of the inputs and is used to form the prediction h(u,θ) in Eq.(5)
above.

Bayesian model selection (BMS)

In this paper, we use BMS to compare nonlinear and
bilinear DCMs that are applied to both synthetic and empirical
fMRI data. A decision about which of several competing
models is optimal cannot be based only on the relative fit to
the data but also needs to consider differences in model
complexity; i.e., the number of free parameters and the
functional form of the generative model (Pitt and Myung,
2002). Penalizing for model complexity is important because
as complexity increases, model fit increases monotonically,
but at some point the model will start fitting noise that is
specific to the particular data (i.e., “over-fitting”). Models that
are too complex are less generalisable across multiple
realizations of the same underlying generative process.
Therefore, under the condition that all models are equally
likely a priori, the question “what is the optimal model?” can
be reformulated as “what is themodel that represents the best
balance between fit and complexity?” This is the model that
maximizes the model evidence:

p yjmð Þ ¼ ∫p yjθ;mð Þp θjmð Þdθ ð7Þ
Here, the integration subsumes the number and condi-

tional dependencies among free parameters as well as the
functional form f(x,u,θ) of the generative model. Unfortu-
nately, this integral cannot usually be solved analytically,
therefore approximations must be used (Penny et al., 2004a;
Friston et al., 2007). In this study, we use the variational free-
energy, F. As detailed elsewhere (Stephan et al., in prepara-
tion), this has the advantage over other approximations that
its complexity term not only accounts properly for the
effective degrees of freedom of the model but also for
posterior covariance (or dependency) among the parameters.
This is important when comparing models whose likelihood
3 We also evaluated the behaviour of the integration scheme for τ=50 ms and
τ=100 ms in several analyses and found negligible differences to the results obtained
with τ=200 ms.
functions have different functional forms (e.g. nonlinear vs.
bilinear). F is a lower bound on the log model evidence such
that

F ¼ ln p yjmð Þ−KL q θð Þ;p θjy;mð Þ½ � ð8Þ
Here, KL denotes the Kulback–Leibler divergence (Kullback

and Leibler 1951) between an approximating posterior density
q(θ) and the true posterior, p(θ|y,m). F is the free-energy
bound on the log evidence above and serves as the objective
function for inversion. After convergence of the estimation,
the divergence is minimised and F≈ ln p(y|m). An equivalent
decomposition of F is in terms of accuracy and complexity:

F ¼ hlog p yjθ;mð Þiq−KL q θð Þ;p θð Þ½ � ð9Þ
where p(θ) and q(θ) represent the prior and approximate
posterior densities, respectively. This demonstrates that F
embodies the two opposing requirements of a good model:
that it explains the data accurately (i.e., its log likelihood is
high) and is as simply as possible (i.e., uses a minimal number
of parameters whose posterior densities deviate minimally
from their prior; see Penny et al., 2007; Stephan et al., 2007a).

Finally, to quantify the relative goodness of two models mi

and mj, one can either report the differences in their log
evidences or their Bayes factor (BF):

BFij ¼
p yjmið Þ
p yjmj
� � ≈ exp Fi−Fj

� � ð10Þ

Synthetic data

We assessed the sensitivity of our nonlinear model using
simulated data with known properties. In particular, we were
interested in assessing its ability to distinguish nonlinear from
bilinear processes. For this purpose, we generated synthetic
fMRI data, using a three-area model based on either nonlinear
(Fig. 3A) or bilinear state equations (Fig. 3B), and adding
observation noise such that the resulting time-series had
either a high or low signal-to-noise ratio (SNR=5 or 2,
respectively)4. We then used both nonlinear and bilinear
models to estimate the parameters from each noisy data set.
This resulted in four sets of fitted models, under which the
models used to generate the data and to estimate the
parameters were identical (i.e., nonlinear models fitted to
time-series generated from nonlinear models and bilinear
models fitted to time-series generated from bilinear models)
and another four sets of fitted models in which they were not
(i.e., bilinear models fitted to time-series generated from
nonlinear models and nonlinear models fitted to time-series
generated from bilinear models). Each set of models com-
prised 20 synthetic BOLD time-series for each of the three
areas; overall, 160 models were fitted and evaluated. Notably,
all numerical procedures, including the integration schemes,
were identical for generation and inversion of all models.

The nonlinear model is shown in Fig. 3A. An irregular
sequence of 25 delta-functions or events (randomly located
4 Here, SNR=2 means that the standard deviation of the added observation noise
equals half the standard deviation of the noise-free BOLD signal. It should be noted
that the time-series entering a DCM are typically low in noise since they result from a
singular value decomposition of the time-series across neighbouring voxels (c.f. Friston
et al. 2003).



Fig. 3. The nonlinear (A) and bilinear (B) DCM used for the generation of synthetic data. As in Fig. 2, the first input (u1) comprises an irregular sequence of random events (delta-
functions), whereas the second input (u2) corresponds to a box-car function. Strengths of connections are annotated as in Fig. 2.
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within a 100 s time window) served as driving input u1 to
region x1 and a box-car function (two blocks with 25s
duration) as driving input u2 to region x3. The output from
x3 modulated the strength of the x1→x2 connection. We
sampled the resulting BOLD time-series with a sampling
frequency of 1 Hz over a period of 100 s and added Gaussian
observation noise as described above. The bilinear model
(Fig. 3B) was identical in terms of connectivity structure and
inputs, except that the nonlinear modulation of the x1→x2
connectionwas omitted and replaced by a bilinearmodulation
of the same connection by input u2. As a consequence, the
modulatory processes represented by nonlinear and bilinear
models were qualitatively similar, and both models contained
the same number of free parameters; the key difference was
the modulation of a connection by an exogenous input
(bilinear) or a hidden neuronal state (nonlinear).

With this factorial simulation set-up, we asked two
questions. First, can nonlinear and bilinear mechanisms
underlying the modulation of connectivity be differentiated
reliably on the basis of BOLD time series? This question was
addressed by Bayesian model selection, comparing the
evidence for the correct generativemodel against the evidence
for the incorrect one. Second, how well are the true values of
the modulatory parameters estimated in the presence of
noise? We assessed this by checking if the true parameter
values fell within the 95% confidence interval based on the
sample density of the maximum a posteriori (MAP) parameter
estimates over the 20 realisations. This is a quite severe test,
because the true value could easily lie within the 95% posterior
confidence interval of each realisation but the mode of the
posterior density (the MAP estimate) might be systematically
smaller than the true value (due to the effects of shrinkage
priors).

Analyses of empirical fMRI data

Attention to visual motion

To demonstrate the face validity of our nonlinear DCM, we
analysed a single-subject fMRI dataset from an experiment on
attention to visualmotion (Büchel et al.,1998). These data have
been used in previous analyses of effective connectivity
(Büchel and Friston 1997; Friston and Büchel 2000; Friston
et al., 2003; Harrison et al., 2003; Marreiros et al., 2008; Penny
et al., 2004a,b); a full description of the experimental paradigm
can be found in Büchel and Friston (1997). Both this study, and
the study below, had local ethics approval and participants
gave informed consent. Briefly, subjects were studied with an
fMRI block design under four different conditions: fixating
centrally (F), passively viewing stationary dots (S), passively
viewing radially moving dots (N) and attending to radially
moving dots (A), trying to detect putative velocity changes that
actually never occurred, thus keeping physical stimulation
identical. Echo planar imaging data were acquired at 2 Tesla
using a Siemens Magnetom Vision whole body MRI system
(TE=40 ms, TR=3.22 s, matrix size=64×64×32, voxel size
3×3×3 mm). Omitting dummy conditions (to allow for
magnetic saturation effects) and concatenating the data across
four sessions, the dataset comprises 360whole-brain volumes.
As in Friston et al. (2003), the conventional SPM analysis
included three regressors: “photic” (conditions S+N+A),
“motion” (conditions N+A), and “attention” (condition A).
Regional time-series representing primary visual cortex (V1),
motion-sensitive area V5 and posterior parietal cortex (PPC)
were extracted by computing the principal eigenvariates from
all voxels within spheres of 8 mm radius. These spheres were
centred on localmaxima of suitable contrasts in a conventional
SPM analysis (V1: photic; V5: motion, masked inclusively by
attention; PPC: attention).

We inverted a series of three-area DCMs representing
either bilinear or nonlinear mechanisms and compared these
models using Bayesian model selection. Each of these models
encoded a specific mechanism for the attention-induced
increase in V5 response that was observed in the SPM analysis
(see Fig. 6 for a summary of all models). We then used
Bayesian model selection to investigate whether there was
sufficient information in the measured fMRI data to enable
reliable differentiation between bilinear and nonlinear mod-
els of attentional modulation. Additionally, we performed a
posterior density analysis of themodulatory parameters in the
optimal model to quantify our certainty that an attention-
induced increase in V5 activity was mediated by modulation
of afferent connections to V5.

Binocular rivalry

To illustrate the use of nonlinear DCMs in a different
empirical setting, we analysed a binocular rivalry fMRI data
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set. This experiment was a 2×2×2 factorial generalisation of
the binocular rivalry experiment by Tong et al. (1998), the
three factors being percept (face vs. house), rivalry (binocular
rivalry vs. non-rivalry), and motion (rocking vs. stationary
stimuli). Specifically, subjects wore red-blue dichromatic
glasses and viewed a red house and blue face (or vice versa)
in 30 s blocks, separated by 16 s fixation intervals. In each
block the stimuli were presented on a TFT-screen, viewed via a
mirror, either in a superimposed fashion (inducing binocular
rivalry) or in a sequential (non-rivalling) manner. During
rivalry blocks, subjects were asked to indicate by button press
when they experienced a transition from a face to a house
percept or vice versa. In each non-rivalry block, the stimuli
were presented sequentially with the timings as reported in a
previous rivalry block (i.e. replay); again subject reported
perceptual transitions, which were yoked to the rivalry blocks.
As motion is known to influence the duration of stable
percepts during binocular rivalry, our third experimental
factor concerned the use of stationary and rocking stimuli. The
latter stimuli were rocked continuously between extremes of
72° from the vertical meridian (1 cycle per second). In the
analysis presented in this methodological paper, however, we
entirely focus on the rivalry × percept interaction and ignore
any effects of motion.

Echo planar imaging data were acquired using a 3 Tesla
Philips Achieva whole body MRI scanner (TE=30 ms, TR=
2.014 s, matrix size 112×100×26, zero-filled to 128×128×26,
voxel size 1.875×1.875×4.5 mm3) in four sessions. Omitting
Fig. 4. This figure summarises the results of the Bayesian model comparisons between corr
models (shown by Fig. 3), under two levels of noise. The first twoplots (A, B) contain the result
for data with high signal-to-noise (SNR=5). Plots A and C show the log evidence differences b
generated by a nonlinear model. Conversely, plots B and D show the log evidence differences
horizontal lines indicate a log evidence difference of ≈1.1, corresponding to a Bayes factor of ≈3
Raftery 1995). The solid horizontal lines denote a log evidence difference of 3, corresponding t
for one model over another (Kass and Raftery 1995). It can be seen that in the majority of ca
dummy scans (to allow for magnetic saturation effects) and
concatenating the data across four sessions, this dataset
comprises 1136 whole-brain volumes. Here, we report DCM
results from a 22 year old female subject. A complete analysis of
the group data will be reported in a future paper.

Data were realigned to the first image, co-registered and
normalized to the MNI template in SPM5. Conventional SPM
analysis used a general linear model with regressors for each
of the eight conditions in the factorial design, using two basis
functions per regressor (a canonical hemodynamic response
function and its temporal derivative to account for slice-
timing errors). Regions of interest were identified using the
appropriate contrasts from our factorial design and included
the parahippocampal place area (PPA), the fusiform face area
(FFA) and the middle frontal gyrus (MFG). The DCMs we
considered allowed for full reciprocal connectivity among all
three regions with modulation of the lateral connections
between the PPA and FFA. As above, these were based on
experimental (exogenous) inputs (bilinear) or top-down
effects form MFG (nonlinear).

Results

Simulated data

As described above, we assessed the sensitivity of our
nonlinear model to the difference between bilinear and
nonlinear effects, using simulated datawith knownproperties.
ect and incorrect models applied to synthetic data generated by nonlinear and bilinear
s for datawith low signal-to-noise (SNR=2), and the last two plots (C, D) show the results
etween the nonlinear (NL) model and the bilinear (BL) model for 20 synthetic data sets
between the BL model and the NL model for data generated by a BL model. The dashed
which is classically regarded as “positive” evidence for onemodel over another (Kass and
o a Bayes factor of ≈20which is conventionally considered to represent “strong” evidence
ses the correct model is identified as superior with at least positive evidence.
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We ran four sets of simulations, i.e. for each combination of
SNR and model type. This resulted in 160 synthetic datasets to
which we fitted both the correct model type (which had been
used to generate the data) and the incorrect model type. The
results are summarized in Figs. 4 and 5: Amongst all model
comparisons, there were only five cases in which there was
higher evidence for the wrong model (Fig. 4), and in each of
these cases the superiority of the wrong model was marginal,
not even reaching the conventional threshold for “positive”
evidence, i.e. BF≥3 (Kass and Raftery, 1995). In contrast,
positive evidence for the correctmodelwas obtained for 13 out
of 20 comparisons in the worst case (nonlinear model, low
SNR; Fig. 4A) and for 20 out of 20 comparisons in the best case
(bilinear model, high SNR; Fig. 4D). Moreover, the overall
(pooled) evidence for the correct model was very strong in all
four sets of simulations: group Bayes factors (GBF) ranged
between 1014 and 1075 in favour of the correct model, and
average Bayes factors (ABF; the geometricmean of GBF) ranged
between 5.6 and 6170 in favour of the correct model (Fig. 4;
note that for scaling reasons this figure shows the log-
transformed Bayes factors, i.e. the relative log evidence
between models). Altogether, these results demonstrate that,
under the levels of SNR used in this analysis, bilinear and
nonlinear mechanisms underlying modulation of connection
strengths can be differentiated.

Second, for moderate noise levels (SNR=5), the 95%
confidence intervals for both the nonlinear (D) and bilinear
Fig. 5. This figure plots the results of our analysis how well the true values of nonlinear and
this by checking if the true parameter values fell within the 95% confidence interval based o
synthetic data sets. The four plots in this figure show the MAP estimates of modulatory par
row) to synthetic data generated by the same type of model. The left column contains the re
results for high signal-to-noise data (SNR=5). The true values of the modulatory parameters
dotted lines indicated the averageMAP estimates across data sets. In the low SNR case the tru
the 95% confidence interval of the respective estimates (nonlinear: 0.806±0.063; bilinear: 0.
the effect of the zero-mean shrinkage priors in DCM and has been observed in previous simu
nonlinear and bilinear modulatory parameters fell within the 95% confidence interval of th
(B) modulatory parameters contained the true values, thus
demonstrating the robustness of our estimates (Fig. 5). For
high noise levels (SNR=2), however, we observed a significant
deviation of both nonlinear and bilinear modulatory para-
meter estimates from their true values, generally shrinking
towards their prior expectation of zero (pb0.05). This result is
due to the shrinkage priors on the modulatory parameters,
p(dij)∼N(0,1), whose influence on the posterior estimates
increases with signal noise. The same shrinkage effect has
been observed in previous simulation studies of bilinear DCMs
(Kiebel et al., 2007). This means that for noisy data, as
expected, inversion of both nonlinear and bilinear DCMs will
yield conservative estimates of modulatory parameters.

Empirical data

Attention to motion

Next, we applied ourmodel to a single-subject data set from
a blocked fMRI study of attention to visual motion (Büchel and
Friston, 1997). We inverted and compared four different
models (see Fig. 6), each of which embodied a different
explanation for the empirical finding that V5 responses
increased during attention tomotion, compared to unattended
motion. Again all numerical procedures, including the integra-
tion scheme (Eq.(6)), were identical for the inversion of all
models, nonlinear and bilinear. Our first model, M1, allowed
bilinear modulatory parameters can be estimated in the presence of noise. We assessed
n the sample density of the maximum a posteriori (MAP) parameter estimates over 20
ameters, obtained from fitting nonlinear models (upper row) or bilinear models (lower
sults for data with low signal-to-noise (SNR=2), whereas the right column contains the
are indicated by the dashed lines (nonlinear models: D=1; bilinear models: B=0.3). The
e values of both the nonlinear and bilinearmodulatory parameters were not contained in
261±0.022). This overly conservative estimation of the modulatory parameters is due to
lations (Kiebel et al., 2007). In contrast, in the high SNR case the true values of both the
e respective estimates (nonlinear: 0.957±0.072; bilinear: 0.286±0.016).



Fig. 6. Summary of the model comparison results for the attention to motion data set. For reasons of clarity, we do not display a bilinear modulation of the V1→V5 connection by
motion, which is present in every model. The best model was a nonlinear one (model M4), in which attention-driven activity in posterior parietal cortex (PPC) was allowed to
modulate the V1→V5 connection. BF = Bayes factor.
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for a bilinear attentional modulation of the backward connec-
tion from the posterior parietal cortex (PPC) to V5. Comparing
this model to a second bilinear model, M2, in which attention
modulated the forward connection from V1 to V5, we found
positive evidence in favour of M2 (BF=2966). This replicated
previous results, based on a different integration scheme for
the state equations, which showed that modulation of the
forward connection results in a better model than modulation
of the backward connection (Penny et al., 2004b; Marreiros
et al., 2008,). The next step was to augment this model such
that attention also exerted a driving influence on PPC directly,
in addition to its modulatory effect on the V1→V5 connection.
This extended (but still bilinear) model M3, inwhich attention
both exerted stimulus-dependent and stimulus-independent
effects on PPC, proved to be better than M2 (BF=12). The
Fig. 7. (A) Maximum a posteriori estimates of all parameters in the optimal model for the atte
density of the estimate for the nonlinear modulation parameter for the V1→V5 connection. G
true parameter value is larger than zero or, in other words, that there is an increase in gain
critical question was now whether the attentional enhance-
ment of V5 activity could be better explained by a nonlinear
mechanism, for example, by allowing PPC activity tomodulate
the V1→V5 connection. This nonlinear model, M4, assumed a
direct effect of attention on PPC whose activity then increased
the gain of the V1→V5 connection. Thismodelwas found to be
superior to all previousmodels; comparing it to the previously
best model M3 resulted in a Bayes factor of 23 in favour of M4
(see Fig. 6). Analysis of the posterior density under M4
indicated that nonlinear gating of the V1→V5 connection by
attention could be inferred with 99.1% confidence (see Fig. 7).
Notably, the fixed V1→V5 connection strength was fairly low
(A21=0.12), suggesting that top-down, nonlinear PPC-depen-
dent modulation was quantitatively essential to explain V5
responses. Fig. 8 shows the observed and fitted time-series of
ntion to motion data (model M4, see Fig. 6). PPC=posterior parietal cortex. (B) Posterior
iven the mean and variance of this posterior density, we have 99.1% confidence that the
of V5 responses to V1 inputs that is mediated by PPC activity.



Fig. 8. Fit of the nonlinear model to the attention to motion data (model M4, see Figs. 4 and 5). Dotted lines represent the observed data, solid lines the responses predicted by the
nonlinear DCM. The increase in the gain of V5 responses to V1 inputs during attention is clearly visible.
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all areas and highlights the attentional gating effect on V5
activity, such that V5 activity was higher when subjects
attended the moving stimuli.

Binocular rivalry

As a second demonstration of nonlinear DCMs, we present
an analysis of a single-subject fMRI data set acquired during an
event-related binocular rivalry paradigm. Binocular rivalry
arises when two different stimuli are projected separately to
Fig. 9. (A) The structure of the nonlinear DCM fitted to the binocular rivalry data, along with t
FFA and PPA are negative in both directions; i.e. FFA and PPA mutually inhibited each othe
competition between the face and house stimuli. This competitive interaction between FFA
showed higher activity during rivalry vs. non-rivalry conditions. (B) Our confidence about t
the two eyes; the subject then experiences a single percept at a
time, and this percept fluctuates between the two competing
stimuli with a time constant in the order of a few seconds.
While there is no clear consensus about the mechanisms that
underlie this phenomenon, it has been suggested that
binocular rivalry (i) depends on nonlinear mechanisms and
(ii) may arise from modulation of connections amongst
neuronal representations of the competing stimuli by feedback
connections from higher areas (see Blake and Logothetis,
2002).
hemaximum a posteriori estimates of all parameters. The intrinsic connections between
r. This may be seen as an expression, at the neurophysiological level, of the perceptual
and PPA is modulated nonlinearly by activity in the middle frontal gyrus (MFG), which
he presence of this nonlinear modulation is very high (99.9%), for both connections.



Fig. 10. Fit of the nonlinear model in Fig. 9A to the binocular rivalry data. Dotted lines represent the observed data, solid lines the responses predicted by the nonlinear DCM. The
upper panel shows the entire time series. The lower panel zooms in on the first half of the data (dotted box). One can see that the functional coupling between FFA (blue) and PPA
(green) depends on the activity level in MFG (red): when MFG activity is high during binocular rivalry blocks (BR; short black arrows), FFA and PPA are strongly coupled and their
responses are difficult to disambiguate. In contrast, when MFG activity is low, during non-rivalry blocks (nBR; long grey arrows), FFA and PPA are less coupled, and their activities
evolve more independently.
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We acquired fMRI data during a factorial paradigm in
which face and house stimuli were presented either during
binocular rivalry or during a matched non-rivalry (i.e. replay)
condition. For the subject studied here, the conventional SPM
analysis showed a rivalry×percept interaction in both the
right fusiform face area (FFA) and the right parahippocampal
place area (PPA): in FFA, the face vs. house contrast was higher
during non-rivalry than during rivalry; conversely, in PPA the
house vs. face contrast was higher during non-rivalry than
during rivalry (both pb0.05, small-volume corrected)5. Addi-
tionally, testing for a main effect of rivalry, we replicated
previous findings (Lumer et al., 1998) that several prefrontal
regions, including the right middle frontal gyrus (MFG),
showed higher activity during rivalry than during non-rivalry
conditions.

These SPM results motivated a nonlinear DCM in which the
connections between face- and house-selective regions (i.e. FFA
and PPA) were modulated by the activity in a source that was
sensitive to the degree of rivalry in the visual input (i.e. MFG).
5 This result is in contradiction to the findings by Tong et al. (1998) who reported
that activity in FFA and PPA did not differ between rivalry and non-rivalry conditions.
This discrepancy might arise due to various reasons. For example, Tong et al. (1998)
used a separate localiser scan whereas our design embedded the localiser contrast into
a fully factorial design. See Friston et al. (2006) andSaxe et al. (2006) for a discussion on
the differences between these two approaches.
The structure of the resulting DCM (along with the MAP
estimates for all parameters) is shown in Fig. 9A. First, the fixed
(intrinsic) connection strengths between FFA and PPA are
negative in both directions, i.e. FFA and PPA exert a mutual
negative influence on each other, when the system is not
perturbed by inputs (i.e. during fixation); this could be regarded
as a “tonic” or “baseline” reciprocal inhibition. Much more
important, however, is that during the presentation of visual
stimuli this competitive interaction between FFA and PPA is
modulated by activity in the middle frontal gyrus (MFG), which
showedhigher activity during rivalry vs. non-rivalry conditions.
As shown in Fig. 9B, our confidence about the presence of this
nonlinearmodulation is very high (99.9%) for both connections.
All parameter estimates are shown in Fig. 9A; they provide a
straightforward mechanistic explanation for the rivalry ×
percept interaction that was found in both FFA and PPA in the
SPM analysis. According to themodel, activity levels in theMFG
determine the magnitude of the face vs. house activity
differences in FFA and PPA by controlling the influence that
face-elicited activations and house-elicited deactivations of FFA
have on PPA (and vice versa). For example, the positive MAP
estimate (2.43) for the nonlinear modulation of the FFA→PPA
connection byMFGactivity (see Fig. 9A)means that during face-
perception under rivalry conditions (which elicit positive
activity in the FFA and MFG, respectively) there is a positive
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influence of FFA on PPA, overriding the “baseline” inhibition.
This means that during binocular rivalry FFA and PPA become
more tightly coupled which destroys their stimulus selectivity:
their activity becomes very similar, regardless of whether a face
or a house is being perceived. In contrast, deactivation of MFG
during non-rivalry conditions decreases the influence that FFA
has on PPA during house perception; therefore responses in FFA
and PPA become less coupled and their relative selectivity for
face and house percepts is restored. This dynamic coupling and
uncoupling, leading to less selectivity of FFA and PPA during
rivalry and higher selectivity during non-rivalry, is clearly
visible in Fig.10whichplots theobservedandfitted responses of
all three areas. Here, the short black arrows indicate blockswith
binocular rivalry (when FFA and PPA show very similar time
courses) and the long grey arrows denote non-rivalry blocks
(when FFA and PPA activities evolve more independently).
These changes in effective connectivity over time, which are
controlled by the activity level in MFG, provide a mechanistic
explanation for the rivalry×percept interaction identifiedby the
SPM analysis, where regional selectivity for faces and houses,
respectively, was found to be more pronounced during non-
rivalry than rivalry.

Finally, we compared this nonlinear DCM to similar bilinear
models. First, we constructed a bilinear model that was
capable of expressing the same range of modulatory effects as
the nonlinear model, i.e. both the FFA→PPA and PPA→FFA
connections were allowed to vary during both rivalry and
non-rivalry conditions. Bayesian model comparison showed
that this bilinear model, which had twomore parameters than
the nonlinear one, was an inferior model: the Bayes factor in
favour of the nonlinear model was larger than 1018. In another
bilinear model we removed the driving inputs into MFG and
introduced rivalry effects solely through modulation of the
connections between FFA and PPA in order to give it the same
number of parameters as the nonlinear model. This bilinear
model performed evenworse; here, the Bayes factor in favour
of the nonlinear model was larger than 1032.

Discussion

The nonlinear DCM presented in this paper enables one to
model activity-dependent gating of connections or, equiva-
lently, changes in the gain of interacting neuronal populations.
This is a critical mechanism in various neurobiological
processes, including top-down modulation (e.g. by attention),
learning and effects exerted by neuromodulatory transmitters.

Biophysically, neuronal gain control can arise through
various mechanisms of short-term synaptic plasticity (STP)
that result from interactions among synaptic inputs arriving
close in time, but not necessarily at the same dendritic
compartment. For example, two major mechanisms are
known to induce very fast changes in connection strengths,
without inducing lasting structural alterations of synapses. The
first one is nonlinear dendritic integration of inputs due to
voltage-dependent ion channels, e.g. non-inactivating den-
dritic sodium conductances (Schwindt and Crill, 1995). The
second mechanism is synaptic depression/facilitation (Abbott
et al., 2002; Abbott and Regehr, 2004). Other mechanisms,
although not relying on lasting structural synaptic changes, are
likely to induce them; e.g. activation of dendritic calcium
conductances by back-propagating action potentials (Larkum
et al., 2004) and amplification of neuronal responses by
activation of NMDA conductances (Fox et al., 1990). Finally,
gain control is also affected strongly by various neuromodu-
latory transmitters that are known to regulate synaptic
plasticity (Gu 2002; Katz 2003), including noradrenalin (Ego-
Stengel et al., 2002), serotonin (Hurley and Pollak, 2001) and
acetylcholine (De Bruyn et al., 1986).

A few previous studies of effective connectivity have
modelled changes in connection strength as a function of
activity in a different region (Friston et al., 1995; Büchel and
Friston, 1997: Friston et al., 1997; Friston and Büchel, 2000).
However, all of these studies differed in two crucial points to
the approach presented here. First, they operated directly on
the measured BOLD time-series and could not disambiguate
whether nonlinearities arose from neuronal or from hemody-
namic causes. In contrast, the present model distinguishes
between nonlinearities in the BOLD signal that are due to
neuronal and hemodynamic processes, respectively (c.f. Friston
et al., 2003; Stephan et al., 2007a). A partial exception is the
approach suggested by Gitelman et al. (2003), which can be
used to compute interaction termsused inpsycho-physiological
and physio-physiological interaction analyses of fMRI data. In
this approach, a deconvolution procedure is applied to BOLD
data prior to Hadamard multiplication. However, neither the
deconvolution procedure nor the regression-based model of
effective connectivity in this approach affords the same
flexibility and realism as combining nonlinear neuronal state
equations with a hemodynamic forward model as presented in
this article. A second critical difference is that all previous
models were essentially variants of the general linear model
and thus remained linear in theparameters; nonlinearitieswere
onlyaccounted for by including regressorsorpredictor variables
that resulted from multiplication of two time-series.

Since its introduction a few years ago (Friston et al., 2003),
DCMhas already enjoyedwidespread application to fMRI data,
resulting in more than thirty published studies to date. We
expect that nonlinear DCMs will further extend the practical
applications of DCM. As exemplified by the two examples in
this paper, nonlinear mechanisms can, at least sometimes,
better explain empirically measured fMRI responses than
linear ones. We would like to emphasise though that neither
example in this methodological paper is meant to provide an
exhaustive treatment of questions on neuronal gain modula-
tion during attention or on nonlinear mechanisms during
binocular rivalry. These examples are only meant to lend face
validity to our approach and provide anecdotal illustrations of
the sort of insights that can be gained with nonlinear DCMs.
Similarly, the hierarchical sequence of comparisons we
employed for the attention to motion dataset is very useful
for that particular analysis but does not necessarily represent a
blueprint for other DCM analyses; instead, the exact model
comparison strategy should always be tailored to the specific
questions entailed by the model space examined.

A particularly exciting prospect is that nonlinear DCMs
provide a good starting point for directly embedding compu-
tational models (e.g. of learning processes) into physiological
models (c.f. Stephan, 2004). This is addressed by ongoingwork
in our group, with a focus on how neuromodulatory trans-
mitters shape synaptic plasticity during learning.
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Software note
The MATLAB code implementing the method described in

this paper will be made freely available as part of the open-
source softwarepackageSPM(http://www.fil.ion.ucl.ac.uk/spm)
upon acceptance of this paper.

Appendix A. Log-transformation of hemodynamic state
equations

Classically, the hemodynamic model in DCM consists of the
following differential equations in which x is the neuronal
state vector, κ is the rate constant of vasodilatory signal decay,
γ is the rate constant of flow-induced feedback regulation, τ is
the mean transit time of venous blood, α is the resistance of
the venous balloon, and E0 is the resting oxygen extraction
fraction (see Friston et al., 2000; Stephan et al., 2007a for
details):

Changes in vasodilatory signalling s:
ds
dt

¼ x−κs−γ f−1ð Þ
ðA1Þ
Changes in blood flow f :
df
dt

¼ s ðA2Þ

Changes in venous blood volume v: τ
dv
dt

¼ f−v1=α ðA3Þ

Changes in deoxyhemoglobin content q: τ
dq
dt

¼ f
1− 1−E0ð Þ1=f

E0
−v1=α

q
v

ðA4Þ

To ensure positive values of the hemodynamic states and
thus numerical stability of the parameter optimization
scheme (see main text), we convert these equations, such
that all hemodynamic states z={s,f,v,q} are in log space by
applying the chain rule after a change of variables, z~=ln z.
That is, for any given state variable z with the state equation
dz
dt ¼ F zð Þ:

fz ¼ ln zfz ¼ exp fzð ÞZ
dfz
dt

¼ d ln zð Þ
dz

dz
dt

¼ F zð Þ
z

ðA5Þ

This means that z(t)=exp(z~(t)) is always positive, ensuring
a proper support for these non-negative states and numerical
stability when evaluating the state equations during para-
meter estimation. Applied to the four hemodynamic state
equations in DCM (Eqs. (A1 to A4)), this transformation gives:

dfs
dt

¼ x−κs−γ f−1ð Þ
s

ðA6Þ

d
f
f

dt
¼ s

f
ðA7Þ
dfv
dt

¼ f−v1=α

τv
ðA8Þ

dfq
dt

¼ f 1− 1−E0ð Þ1=f
E0

−v1=α q
v

τq
ðA9Þ

It is important to note that this log-transformation does not
affect the model parameters, only the hemodynamic states
(which must have positive values due to their physical nature;
e.g. there is no such thing as a negative blood volume). This is
because it is only the optimisation scheme that operates on
the log-transformed states. In contrast, when evaluating the
BOLD output equation (c.f. Stephan et al., 2007a), the log-
hemodynamic states are exponentiated. In other words, after
each step of the optimisation scheme, we use z(t) to compute
the predicted BOLD signal at time t, not z~(t).
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