
Chapter 9
Policies and Priors

Karl Friston

Abstract This chapter considers addiction from a purely theoretical point of view.
It tries to substantiate the idea that addictive behaviour is a natural consequence
of abnormal perceptual learning. In short, addictive behaviours emerge when be-
haviour confounds its own acquisition. Specifically, we consider what would hap-
pen if behaviour interfered with the neurotransmitter systems responsible for op-
timising the conditional certainty or precision of inferences about causal structure
in the world. We will pursue this within a rather abstract framework provided by
free-energy formulations of action and perception. Although this treatment does
not touch upon many of the neurobiological or psychosocial issues in addiction
research, it provides a principled framework within which to understand exchanges
with the environment and how they can be disturbed. Our focus will be on behaviour
as active inference and the key role of prior expectations. These priors play the role
of policies in reinforcement learning and place crucial constraints on perceptual in-
ference and subsequent action. A dynamical treatment of these policies suggests a
fundamental distinction between fixed-point policies that lead to a single attractive
state and itinerant policies that support wandering behavioural orbits among sets of
attractive states. Itinerant policies may provide a useful metaphor for many forms
of behaviour and, in particular, addiction. Under these sorts of policies, neuromodu-
latory (e.g., dopaminergic) perturbations can lead to false inference and consequent
learning, which produce addictive and preservative behaviour.

9.1 Introduction

This chapter provides a somewhat theoretical account of behaviour and how ad-
diction can be seen in terms of aberrant perception. Its contribution is not to
provide a detailed model of addictive behaviour (see Ahmed et al. 2009 for a
nice review of current models) but rather to describe a principled framework
that places existing ideas in a larger context. This exercise highlights the archi-
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tecture of adaptive behaviour, in relation to perception, and the ways in which
things can go wrong. Its main conclusion is that addictive behaviour may be an
unfortunate and rather unique consequence of a pathological coupling between
behaviour (e.g., drug taking) and the perceptual learning (e.g., abnormal mod-
ulation of synaptic plasticity) that supports behaviour (cf., Alcaro et al. 2007;
Zack and Poulos 2009). This coupling can be particularly disruptive because learn-
ing is fundamental for making predictions about exchanges with the world and these
predictions prescribe behaviour. In what follows, we will spend some time devel-
oping a normative framework for perception and action, with a special emphasis
on behavioural policies as prior expectations about how the world unfolds. Having
established the basic structure of the problem faced by adaptive agents, we will con-
sider how pathologies of learning manifest behaviourally and show that addictive
behaviour is almost impossible to avoid, unless perceptual inference and learning
are optimal

This chapter comprises three sections. In Sect 9.2, we review a free-energy prin-
ciple for the brain. In Sect. 9.3, we focus on a key element of this formulation;
namely, prior expectations that reflect innate or epigenetic constraints. In Sect. 9.4,
we use the policies from Sect. 9.3 to illustrate failures in learning and behaviour
using simulations.

9.2 The Free-Energy Formulation

This section considers the fundaments of normal behaviour using a free-energy ac-
count of action and perception (Friston et al. 2006). Its agenda is to establish an
intimate relationship between action and perception and to sketch their neurobio-
logical substrates. In brief, we will see that an imperative for all adaptive (biolog-
ical) agents is to resist a natural tendency to disorder (Evans 2003) by minimising
the surprise (unexpectedness) of sensory exchanges with the world. This imperative
can be captured succinctly by requiring agents to minimise their free-energy, where
free-energy is an upper bound on surprise. When one unpacks this mathematically,
minimisation of surprise entails two things. First, it requires an optimisation of per-
ceptual representations of sensory input of the sort implied by the Bayesian brain
hypothesis. Second, it requires an active sampling of the sensorium to select sensory
inputs that are predicted and predictable. These two facets of free-energy minimi-
sation correspond to perception and action respectively. Basically, we will see that
perceptual predictions enslave action to ensure they come true. We will start with a
heuristic overview of the free-energy principle and then reprise the basic ideas more
formally. By the end of this section we will have expressed perceptual inference,
learning and action in terms of ordinary differential equations that describe putative
neuronal dynamics underlying active inference. These dynamics can be regarded as
a form of evidence accumulation, because free-energy is a bound approximation to
log model-evidence. The ensuing scheme rests on internal models of the world used
by agents to make predictions. In the subsequent section, we will look at the basic
forms that these models can take and the prior expectations about state-transitions
(i.e., policies) they entail.
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9.2.1 Free-Energy and Self-organisation: Overview

Free-energy is a quantity from information theory that bounds the evidence for a
model of data (Feynman 1972; Hinton and van Camp 1993; MacKay 1995). Here,
the data are sensory inputs and the model is encoded by the brain. More precisely,
free-energy is greater than the negative log-evidence or ‘surprise’ inherent in sen-
sory data, given a model of how they were generated. Critically, unlike surprise
itself, free-energy can be evaluated because it is a function of sensory data and brain
states. In fact, under simplifying assumptions (see below), it is just the amount of
prediction error.

The motivation for the free-energy principle is simple but fundamental. It rests
upon the fact that self-organising biological agents resist a tendency to disorder and
therefore minimise the entropy of their sensory states. Under ergodic assumptions,
minimising entropy corresponds to suppressing surprise over time. In brief, for a
well-defined agent to exist it must occupy a limited repertoire of states (e.g., a fish
in water). This means the equilibrium density of an ensemble of agents, describing
the probability of finding an agent in a particular state, must have low entropy:
A distribution with low entropy just means a small number of states are occupied
most of the time. Because entropy is the long-term average of surprise, agents must
avoid surprising states (e.g., a fish out of water). But there is a problem; agents
cannot evaluate surprise directly because this would require access to all the hidden
states in the world causing sensory input. However, an agent can avoid surprising
exchanges with the world if it minimises its free-energy, because free-energy is
always bigger than surprise.

Mathematically, the difference between free-energy and surprise is the diver-
gence between a probabilistic representation (recognition density) encoded by the
agent and the true conditional distribution of causes of sensory input. This en-
ables the brain to reduce free-energy by changing its representation, which makes
the recognition density an approximate conditional density. This corresponds to
Bayesian inference on unknown states of the world causing sensory data (Knill
and Pouget 2004; Kersten et al. 2004). In short, the free-energy principle subsumes
the Bayesian brain hypothesis; or the notion that the brain is an inference machine
(von Helmholtz 1866; MacKay 1956; Neisser 1967; Gregory 1968, 1980; Ballard
et al. 1983; Dayan et al. 1995; Lee and Mumford 2003; Friston 2005). In other
words, biological agents must engage in some form of Bayesian perception to avoid
surprises. However, perception is only half the story; it makes free-energy a good
proxy for surprise but it does not change the sensations themselves or their sur-
prise.

To reduce surprise, we have to change sensory input. This is where the free-
energy principle comes into its own: it says that action should also minimise free-
energy (Friston et al. 2009, 2010). We are open systems in exchange with the envi-
ronment; the environment acts on us to produce sensory impressions and we act on
the environment to change its states. This exchange rests upon sensory and effector
organs (like photoreceptors and oculomotor muscles). If we change the environment
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or our relationship to it, sensory input changes. Therefore, action can reduce free-
energy (i.e., prediction errors) by changing sensory input, while perception reduces
free-energy by changing predictions. In short, we sample the world to ensure our
predictions become a self-fulfilling prophecy and that surprises are avoided. In this
view, perception enables action by providing veridical predictions (more formally,
by making the free-energy a tight bound on surprise) that guide active sampling of
the sensorium. This is active inference.

In summary, (i) agents resist a natural tendency to disorder by minimising a
free-energy bound on surprise; (ii) this entails acting on the environment to avoid
surprises, which (iii) rests on making Bayesian inferences about the world. In this
view, the Bayesian brain is mandated by the free-energy principle. Free-energy is
not used to finesse perception, perceptual inference is necessary to minimise free-
energy. This provides a principled explanation for action and perception that serve
jointly to suppress surprise or prediction error; but it does not explain how the brain
does this or how it encodes the representations that are optimised. In what follows,
we look more formally at what minimising free-energy means for the brain.

9.2.2 Free-Energy and Self-Organisation: Active Inference
from Basic Principles

Our objective is to minimise the average uncertainty (entropy) about generalised
sensory states s̃ = s ⊕ s′ ⊕ s′′ . . . ∈ S, sampled by a brain or model or the world m

(⊕ means concatenation). Generalised states comprise the state itself, its velocity,
acceleration, jerk, etc. The average uncertainty is

H(S|m) = −
∫

p
(
s̃|m)

lnp
(
s̃|m)

ds̃ (9.1)

Under ergodic assumptions, this is proportional to the long-term average of surprise,
also known as negative log-evidence −lnp(s̃(t)|m)

H(S|m) ∝ −
∫ T

0
dt lnp

(
s̃(t)|m)

(9.2)

It can be seen that sensory entropy accumulates negative log-evidence over time.
Minimising sensory entropy therefore corresponds to maximising the accumulated
log-evidence for an agent’s model of the world. Although sensory entropy cannot
be minimised directly, we can induce an upper bound S(s̃, q) ≥ H(S) that can be
evaluated using a recognition density q(t) := q(ϑ) on the generalised causes (i.e.,
environmental states and parameters) of sensory signals. We will see later that these
causes comprise time-varying states u(t) ⊂ ϑ and slowly varying parameters ϕ(t) ⊂
ϑ . This bound is the path-integral of free-energy F(t), which is created by simply
adding a non-negative function of the recognition density to surprise:

S =
∫

dtF(t)
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F(t) = DKL
(
q(ϑ)‖p(

ϑ |s̃,m)) − lnp
(
s̃(a)|m)

= DKL
(
q(ϑ)‖p(ϑ |m)

) − 〈
lnp

(
s̃(a)|ϑ,m

)〉
q

= 〈
lnq(ϑ)

〉
q

− 〈
lnp

(
s̃(a),ϑ |m)〉

q
(9.3)

This non-negative function is a Kullback-Leibler divergence DKL(q(ϑ)‖p(ϑ |s̃,m)),
which is only zero when q(ϑ) = p(ϑ |s̃,m) is the true conditional density. This
means that minimising free-energy, by optimising q(ϑ), makes the recognition den-
sity an approximate conditional density on sensory causes. The free-energy can be
evaluated easily because it is a function of q(ϑ) and a generative model p(s̃, u|m)

entailed by m. One can see this by rewriting the last equality in Eq. (9.3) in terms
of H(t), the neg-entropy of q(t) and an energy L(t) expected under q(t).

F(t) = 〈
L(t)

〉
q

−H(t)

L(t) = − lnp
(
s̃(a),ϑ |m)

H(t) = −〈
lnq(ϑ)

〉
q

(9.4)

In physics, L(t) is called Gibb’s energy and reports the joint surprise about sen-
sations and their causes. If we assume that the recognition density q(ϑ) = N (μ,C)

is Gaussian (the Laplace assumption), then we can express free-energy in terms of
the mean and covariance of the recognition density

F = L(μ) + 1

2
tr(CLμμ) − 1

2
ln |C| − n

2
ln 2πe (9.5)

Where n = dim(μ). Here and throughout, subscripts denote derivatives. We can now
minimise free-energy with respect to the conditional precision P = C−1 (inverse
covariance) by solving ∂ΣF = 0 ⇒ δΣS = 0 to give

FΣ = 1

2
Lμμ − 1

2
P = 0 ⇒P = Lμμ (9.6)

This allows one to simplify the expression for free-energy by eliminating C to give

F = L(μ) + 1

2
ln |Lμμ| − n

2
ln 2π (9.7)

Crucially, Eq. (9.7) shows that free-energy is a function of the conditional mean,
which means all we have worry about is optimising the means or (approximate)
conditional expectations. Their optimal values are the solution to the following dif-
ferential equations. For the generalised states ũ(t) ⊂ ϑ

μ̇(u) = μ′(u) −Fu

μ̇′(u) = μ′′(u) −Fu′

... (9.8)

�
˙̃μ(u) = Dμ̃(u) −Fũ
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Where D is a derivative matrix operator with identity matrices above the lead-
ing diagonal, such that Dũ = [u′, u′′, . . .]T. Here and throughout, we assume
all gradients are evaluated at the mean; here ũ = μ̃(u). The stationary solution
of Eq. (9.8), in a frame of reference that moves with the generalised motion of
the mean, minimises free-energy and its path integral. This can be seen by noting
˙̃μ(u) − Dμ̃(u) = 0 ⇒ Fũ = 0 ⇒ δũS = 0. This ensures that when free-energy is

minimised the mean of the motion is the motion of the mean: i.e., ˙̃μ(u) = Dμ̃(u).
For slowly varying parameters ϕ(t) ⊂ ϑ , we can use the a formally related scheme,
which ensures their motion disappears

μ̇(ϕ) = μ′(ϕ)

μ̇′(ϕ) = −Fϕ − κμ′(ϕ)
(9.9)

Here, the solution ˙̃μ(ϕ) = 0 minimises free-energy, under constraint that the motion
of the expected parameters is small: i.e., μ′(ϕ) → 0. One can see this by noting that
when μ̇(ϕ) = μ̇′(ϕ) = 0 ⇒ Fϕ = 0 ⇒ δϕS = 0. Equations (9.8) and (9.9) prescribe
recognition dynamics for the expected states and parameters respectively. The dy-
namics for states can be thought of as a gradient descent in a frame of reference that
moves with the expected motion of the world (cf., a moving target). Conversely,
the dynamics for the parameters can be thought of as a gradient descent that resists
transient fluctuations with the damping term Fϕ′ = κμ′(ϕ) (see Appendix A for a
perspective from conventional decent schemes). It is this damping that instantiates
prior knowledge that fluctuations in the parameters are small. These recognition dy-
namics minimise free-energy with respect to the conditional expectations underlying
perception but what about action?

9.2.2.1 Action and Perception

The second equality in Eq. (9.3) equality shows that free-energy can also be sup-
pressed by action, through its effects on hidden states and ensuing sensory signals.
The key term here is the accuracy term, 〈lnp(s̃(a)|ϑ,m)〉q which, under Gaussian
assumptions, this is just the amount of prediction error. This means action should
change the motion of sensory states so that they conform to conditional expectations.
This minimises surprise, provided perception makes free-energy a tight bound on
surprise. In short, the free-energy principle prescribes optimal perception and action

μ(t)∗ = arg min
μ

F(s̃(a),μ)

a(t)∗ = arg min
a

F(s̃(a),μ)
(9.10)

Action reduces to sampling input that is expected under the recognition density (i.e.,
sampling selectively what one expects to experience). In other words, agents must
necessarily (if implicitly) make inferences about the causes of their sensory signals
and sample signals that are consistent with those inferences. In summary, the free-
energy principle requires the internal states of an agent and its action to suppress
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free-energy. This corresponds to optimising a probabilistic model of how sensations
are caused, so that the resulting predictions can guide active sampling of sensory
data. The requisite interplay between action and perception (i.e., active inference)
ensures the agent’s sensory states have low entropy. This recapitulates the notion
that “perception and behaviour can interact synergistically, via the environment” to
optimise behaviour (Verschure et al. 2003). Active inference is an example of self-
referenced learning (Maturana and Varela 1980; Porr and Wörgötter 2003) in which
“the actions of the learner influence its own learning without any valuation process”
(Porr and Wörgötter 2003).

9.2.2.2 Summary

In conclusion, we have derived recognition dynamics for expected states (in gen-
eralised coordinates of motion) and parameters, which cause sensory samples. The
solution to these equations minimise free-energy and therefore minimise a bound
on sensory surprise or (negative) log-evidence. Optimisation of the expected states
and parameters corresponds to perceptual inference and learning respectively. The
precise form of the recognition dynamics depends on the energy L = − lnp(s̃,ϑ |m)

associated with a particular generative model. In what follows, we consider dynamic
models of the world.

9.2.3 Dynamic Generative Models

We now look at hierarchal dynamic models (discussed in Friston 2008) and assume
that any sensory data can be modelled with a special case of these models. Consider
the state-space model

s = f (v)(x, v, θ) + ω(v) : ω(v) ∼ N
(
0,Σ(v)(x, v, γ )

)
ẋ = f (x)(x, v, θ) + ω(x) : ω(x) ∼ N

(
0,Σ(x)(x, v, γ )

) (9.11)

The nonlinear functions f (u) : u = v, x represent a sensory mapping and equations
of motion respectively and are parameterised by θ ⊂ ϕ. The states v ⊂ u are re-
ferred to as sources or causes, while hidden states x ⊂ u meditate the influence of
the causes on sensory data and endow the system with memory. We assume the
random fluctuations ω(u) ∈ Ω are analytic, such that the covariance of ω̃(u) is well
defined. This model allows for state-dependent changes in the amplitude of random
fluctuations, which speaks to a key distinction between the effect of states on first
and second-order sensory dynamics. These effects are meditated by the vector and
matrix functions f (u) ∈ �dim(u) and Σ(u) ∈ �dim(u)×dim(u) respectively, which are
parameterised by first and second-order parameters θ , γ ⊂ ϕ. Under local linearity
assumptions, the generalised motion of the sensory response and hidden states can
be expressed compactly as
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s̃ = f̃ (v) + ω̃(v)

Dx̃ = f̃ (x) + ω̃(x)
(9.12)

Where the generalised predictions are

f̃ (u) =

⎡
⎢⎢⎢⎣

f (u) = f (u)

f ′ (u) = f
(u)
x x′ + f

(u)
v v′

f ′′ (u) = f
(u)
x x′′ + f

(u)
v v′′

...

⎤
⎥⎥⎥⎦ (9.13)

Equation (9.12) means that Gaussian assumptions about the random fluctuations
specify a generative model in terms of a likelihood and empirical priors on the mo-
tion of hidden states

p
(
s̃|x̃, ṽ, θ,m

) = N
(
f̃ (v), Σ̃(v)

)
p
(
Dx̃|x, ṽ, θ,m

) = N
(
f̃ (x), Σ̃(x)

) (9.14)

These probability densities are encoded by their covariances Σ̃(u) or precisions
Π̃(u) := Π̃(u)(x, v, γ ) with precision parameters γ ⊂ ϕ that control the amplitude
and smoothness of the random fluctuations. Generally, the covariances factorise;
Σ̃(u) = V (u) ⊗ Σ(u) into a covariance proper and a matrix of correlations V (u)

among generalised fluctuations that encodes their smoothness. Given this generative
model, we can now write down the energy as a function of the conditional means,
which has a simple quadratic form (ignoring constants)

L = 1

2
ε̃(v)T Π̃(v)ε̃(v) − 1

2
ln

∣∣Π̃(v)
∣∣

+ 1

2
ε̃(x)T Π̃(x)ε̃(x) − 1

2
ln

∣∣Π̃(x)
∣∣

+ 1

2
ε̃(ϕ)T Π̃(ϕ)ε̃(ϕ) − 1

2
ln

∣∣Π̃(ϕ)
∣∣

ε̃(v) = s̃ − f̃ (v)

ε̃(x) = Dμ̃(x) − f̃ (x)

ε̃(ϕ) = μ̃(ϕ) − η̃(ϕ)

(9.15)

Here, the auxiliary variables ε̃(j) : j = v, x,ϕ are prediction errors for sensory
data, the motion of hidden states and parameters respectively. The predictions for
the states are f̃ (u)(μ) and the predictions for the parameters are the prior ex-
pectations η̃(ϕ). Equation (9.16) assumes flat priors on the states and that priors
p(ϕ|m) = N (η̃(ϕ), Σ̃(ϕ)) on the parameters are Gaussian, where κ is the precision
on the motion of the parameter (see Eq. (9.9)).

9.2.3.1 Perceptual Inference and Predictive Coding

Usually, these models are cast in hierarchical form to make certain conditional in-
dependences explicit. Hierarchical forms may look more complicated but they are
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simpler than the general form above. They are useful because they provide an em-
pirical Bayesian perspective on inference and learning that may be exploited by the
brain. Hierarchical dynamic models have the following form

s = f (1,v)
(
x(1), v(1), θ

) + ω(1,v)

ẋ(1) = f (1,x)
(
x(1), v(1), θ

) + ω(1,x)

...

v(i−1) = f (i,v)
(
x(i), v(i), θ

) + ω(i,v)

ẋ(i) = f (i,x)
(
x(i), v(i), θ

) + ω(i,x)

...

(9.16)

The random terms ω(i,u) are conditionally independent and enter each level of the
hierarchy. They play the role of observation error or noise at the first level and induce
random fluctuations in the states at higher levels. The causes v = v(1) ⊕ v(2) ⊕
· · · link levels, whereas the hidden states x = x(1) ⊕ x(2) ⊕ · · · link dynamics over
time. In hierarchical form, the output of one level acts as an input to the next. This
input can enter nonlinearly to produce quite complicated generalised convolutions
with deep (hierarchical) structure. If we substitute Eq. (9.16) into the recognition
dynamics of Eq. (9.8) (ignoring the derivatives of curvatures and state-dependent
noise), we get the following hierarchical message passing scheme

˙̃μ(i,v) = Dμ̃(i,v) + f̃
(i,v)T

ṽ
ξ (i,v) + f̃

(i,x)T

ṽ
ξ (i,x) − ξ (i+1,v)

˙̃μ(i,x) = Dμ̃(i,x) + f̃
(i,v)T

x̃
ξ (i,v) + f̃

(i,x)T

x̃
ξ (i,x) −DT ξ (i,x)

ξ (i,v) = Π̃(i,v)ε̃(i,v)

ξ (i,x) = Π̃(i,x)ε̃(i,x)

ε̃(i,v) = μ̃(i−1,v) − f̃ (i,v)

ε̃(i,x) = Dμ̃(i,x) − f̃ (i,x)

(9.17)

In neural network terms, Eq. (9.17) suggests that error-units receive messages from
the states in the same level and the level above. Conversely, state-units are driven by
error-units in the same level and the level below, were f̃

(i,u)
w : u = v, x are the for-

ward connection strengths to the state unit representing w ∈ ṽ, x̃. Critically, recog-
nition requires only the (precision-weighted) prediction error from the lower level
ξ (i,v) and the level in question, ξ (i,x) and ξ (i+1,v) (see Fig. 9.1 and Mumford 1992).
These constitute bottom-up and lateral messages that drive conditional expectations
μ̃(i,u) towards a better prediction, which reduces the prediction error in the level be-
low. These top-down and lateral predictions correspond to f̃ (i,u). This is the essence
of recurrent message passing between hierarchical levels to optimise free-energy or
suppress prediction error (see Friston 2008 for a more detailed discussion). This
scheme can be regarded as generalisation of linear predictive coding (Rao and Bal-
lard 1999).
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Fig. 9.1 Schematic detailing the neuronal architectures that could encode conditional expecta-
tions about the states and parameters of (three levels of) a hierarchical model of the world. This
schematic shows the speculative cells of origin of forward driving connections that convey pre-
diction error from a lower area to a higher area and nonlinear backward connections that are used
to construct predictions. These predictions try to explain input from lower areas by suppressing
prediction error. In this scheme, the sources of forward connections are superficial pyramidal cells
and the sources of backward connections are deep pyramidal cells. The differential equations relate
to the optimisation scheme detailed in the main text. The state-units and their efferents are in black
and the error-units in red; with causal states on the right and hidden states on the left. For sim-
plicity, we have assumed the output of each level is a function of, and only of, hidden states. This
induces a hierarchy over levels and, within each level, a hierarchical relationship between states,
where causes predict the motion of hidden states

Equation (9.17) shows that precision effectively sets the synaptic gain of error-
units to their top-down and lateral inputs. Therefore, changes in precision Π̃(i,u)

correspond to neuromodulation of error-units encoding precision-weighted predic-
tion error ξ (i,u). This translates as an optimisation of synaptic gain of principal
(superficial pyramidal) cells that elaborate prediction error (see Mumford 1992;
Friston 2008) and fits comfortably with (among other things) the modulatory effects
of dopaminergic and cholinergic neurotransmission. We will exploit this interpreta-
tion in the final section. We next consider learning.

9.2.3.2 Perceptual Learning and Associative Plasticity

Perceptual learning corresponds to optimising the first-order parameters θ ⊂ ϕ.
Equation (9.9) describes a process that is remarkably similar to models of associa-
tive plasticity based on correlated pre and post-synaptic activity. This can be seen
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most easily by assuming an explicit form for the generating functions; for example
(for a single parameter and ignoring high-order derivatives)

f
(i,x)
j = θx

(i)
k ⇒

μ̇(θ) = μ′(θ)

μ̇′(θ) = −μ̃
(i,x)T
k ξ

(i,x)
j − Π(θ)μ(θ) − κμ′(θ)

(9.18)

Here μ(θ) is the connection strength mediating the influence of the k-th hidden state
on the motion of the j -th, at hierarchical level i = 1,2, . . . . This strength changes
in proportion to a ‘synaptic tag’ μ′(θ) that accumulates in proportion to the product
of the k-th pre-synaptic input μ̃

(i,x)
k and post-synaptic response ξ

(i,x)
j of the j -th er-

ror unit (first term of Eq. (9.18)). The tag is auto-regulated by the synaptic strength
and decays with first-order kinetics (second and third terms respectively). Crucially,
this activity-dependent plasticity rests on (precise) prediction errors that are accu-
mulated by the ‘tag’. This highlights the fact that learning (optimising synaptic ef-
ficacy) depends on an optimal level of precision encoded by the synaptic gain of
error units. Similar equations can be derived for the optimisation of the gain or pre-
cision parameters γ ⊂ ϕ. However, in this work we will use fixed values and change
them to simulate pathology. We conclude this section by examining the dynamics
prescribing optimal action.

9.2.3.3 Action

Because action can only affect the free-energy through the sensory data, it can only
affect sensory prediction error. If we assume that action performs a gradient descent
on free-energy, it is prescribed by:

ȧ = −Fa

= −ε̃(v)T
a ξ (v)

ε̃(v)
a = f

(v)

x̃

∑
i

D−i
(
f

(x)

x̃

)i−1
f (x)

a

(9.19)

The partial derivative of the error with respect to action is the partial derivative of
the sensory samples with respect to action. In biologically plausible instances of
this scheme, this partial derivative would have to be computed on the basis of a
mapping from action to sensory consequences, which are usually quite simple; for
example, activating an intrafusal muscle fibre elicits stretch receptor activity in the
corresponding spindle (see Friston et al. 2010 for discussion).

9.2.3.4 Summary

In conclusion, we have established some simple dynamics for active inference that
implement recognition or perceptual inference, learning and behaviour. However,



248 K. Friston

we have said nothing about the form of models biological agents might call upon.
In the next section, we turn to some fundamental questions about the nature of gen-
erative models underlying active inference and, in particular, the role of f (x)(x, v, θ)

in furnishing formal priors on the motion of hidden states in the world.

9.3 Priors and Policies

In this section, we focus on the equations of motion that constitute an agent’s
generative model of its world. In the previous section, we saw that every agent
or phenotype can be regarded as a model of its environment (econiche and inter-
nal milieu). Mathematically, this model corresponds to the form of the equations
of motion describing hidden states. If these forms are subject to selective pres-
sure, we can regard evolution as optimising formal priors on the environmental
dynamics to which each phenotype is exposed. Because these dynamics describe
a flow through different states (i.e., state-transitions), they correspond to policies.
This section tries to establish the different sorts of priors or policies that might
have emerged at an evolutionary scale. It also tries to relate existing formulations
(such as optimal control theory, dynamic programming and reinforcement learn-
ing) to the dynamical framework that ensues. Briefly, we will see that there are
two fundamentally different sorts of policies one could entertain. The first class
of (fixed-point) policies can be derived from vector calculus and equilibrium ar-
guments about ensemble densities on the states agents occupy (Birkhoff 1931;
Moore 1966; McKelvey and Palfrey 1995; Haile et al. 2008; see Eldredge and Gould
1972 for an evolutionary take on equilibria). These equilibria arguments suggest
that the states that are most likely to be occupied (peaks of the ensemble den-
sity) require the local policy (flow) to have negative divergence. We will refer to
this as the divergence-constraint. Mathematically, divergence measures the rate at
which flow disperses or dispels a density at any particular point in state-space. This
somewhat abstract treatment (and in particular the divergence-constraint) leads to
putative policies that ensure attractive states are occupied with the greatest proba-
bility. Important examples of these value-based policies are considered in optimal
control (Bellman 1952; Sutton and Barto 1981; Todorov 2006) and reinforcement
learning (Rescorla and Wagner 1972; Watkins and Dayan 1992; Friston et al. 1994;
Montague et al. 1995; Daw and Doya 2006; Daw et al. 2006; Dayan and Daw 2008;
Niv and Schoenbaum 2008). This class of policies rests on assuming that all hid-
den states are equipped with a particular cost, which has the important implica-
tion that the optimal flow (prior or policy) has fixed-point attractors. These attract
states to low-cost invariant sets; more formally global random attractors A(ω), when
considering random fluctuations ω ∈ Ω on the states (Matheron 1975; Crauel and
Flandoli 1994; Crauel 1999). One of the main purposes of this section is to sug-
gest that although fixed-point policies may provide useful heuristics, they are not
necessarily optimal or indeed tenable in a general (dynamical) setting. This is be-
cause the external and internal milieu is changing constantly and does not sup-
port fixed-point attractors in the state-space of any phenotype. Put simply, any
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agent that aspires to a fixed state is doomed, both ethologically and physiologi-
cally. To accommodate this, we introduce the notion of itinerant policies, whose
implicit attractors are space filling and support wondering (possibly chaotic) tra-
jectories or orbits (e.g., Maturana and Varela 1980; Haken 1983; Freeman 1994;
Tsuda 2001; Tyukin et al. 2003; Tschacher and Haken 2007; Tyukin et al. 2009;
Rabinovich et al. 2008). Put simply, this means an agent will move through its state-
space, sampling different weakly attracting states (attractors in the Milnor sense;
Tyukin et al. 2009; Colliaux et al. 2009 or attractor ruins; Rabinovich et al. 2008;
Gros 2009) in an itinerant fashion.

The basic idea behind the construction of these itinerant policies (priors) rests
on the destruction or vitiation of (weakly) attracting sets. We will focus on attrac-
tors that destroy themselves (autovitiate), when they have been occupied too long or
other imperatives come into play. This sort of policy will be illustrated with a sim-
ple simulation of active inference that leads to exploration and exploitation, under
physiologically plausible constraints. The associated model (agent) will be used in
the next section to see what would happen if we confound its ability to infer and
learn optimally.

9.3.1 Set-up and Preliminaries

The distinction between fixed-point and itinerant policies arises from the follow-
ing distinction among different subsets of hidden states: x ⊇ {x(a), x(p), x(q)}. This
partition acknowledges the fact that, from the agent’s perspective, there are two
proper disjoint subsets of states. The first comprises those states that can be affected
by action x(a) ⊂ x; namely states that support the motion of effectors (e.g., mo-
tor plant) and causal (e.g., Newtonian) mechanics in the external milieu. We will
call these physical states. The other subset x(p) ⊂ x\x(a) represents states in the
internal milieu, which must be maintained within certain bounds (e.g., physiolog-
ical states that determine interoceptive signals; Davidson 1993). To help remem-
ber what these refer to, we will call them physiological states and represent the
bounds with an indicator or cost-function c(x(p)) = 0 : x(p) ∈ A(p) that is zero on
the interior of some bounded (attractive or low cost) set A(p) and one otherwise.
Note that the cost-function is defined only on the physiological states. Indeed, one
could define the physiological states as the domain of the cost-function. We will
use the notion of an indicator or cost-function extensively below for two reasons.
First, it is the sort of constraint that can be specified epigenetically and is there-
fore consistent with the evolutionary perspective above (cf., Traulsen et al. 2006;
Maynard Smith 1992). For example, it is not inconceivable that natural selection has
equipped us with indicator functions that register when (inferred) blood sugar falls
outside the normal 3.6 and 5.8 mM range. Second, utility, loss, or cost-functions
are an integral part of optimal control in reinforcement learning and optimal de-
cision (game) theory in economics (e.g., Shreve and Soner 1994; Camerer 2003;
Coricelli et al. 2007; Johnson et al. 2007). The remaining hidden states will be called
manifold-states x(q) = x\{x(a), x(p)} ⊂ x for reasons that will become clear later.
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Fig. 9.2 Schematic showing the partition of hidden states into physical states, physiological states,
and manifold-states. Physical states correspond, heuristically, to mechanics of the physical world,
such as the movement of the motor plant and physical objects. The physiological states pertain to
the internal milieu and exhibit kinetics that depend upon physical states. The manifold-states rep-
resent the remaining hidden states that govern causal dynamics in the sensorium. These affect (and
can be affected by) the physical states but are only affected by the physiological states through indi-
cator or cost-functions reporting whether the physiological states occupy a particular subset: A(p).
The stochastic differential equations describing each partition are a probabilistic summary of their
dynamics. The arrows represent conditional dependencies and the schematic can be regarded as a
Bayesian dependency graph

With this partition in place, we can now consider the conditional dependencies
among the subsets. We will assume that physiological states depend on and only on
themselves and physical states (e.g., changes in blood sugar after ingestion). The
physical states depend upon themselves and manifold-states that shape the mani-
fold that contains the flow of physical states (e.g., forces on manipulanda in the
immediate environment). Finally, the manifold-states per se can be influenced by
the physical states and physiological states, where the latter influence is mediated
by a cost-function. The partition into physical and physiological states means that
action cannot affect physiological states directly. This is important and respects the
constraints biological agents evolve under. For example, no amount of voluntary
(striatal) muscle activity can directly increase blood sugar, it can only do so vicar-
iously by changing physical states that affect physiology. We can summarise these
dependencies mathematically with the following equations of motion, which are
shown as a dependency graph in Fig. 9.2.
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f (x) =
⎡
⎣ f (a)(x(a), x(q))

f (q)(x(a), x(q), c)

f (p)(x(a), x(p))

⎤
⎦

c =
{

0 :x(p) ∈ A(p)

1 :x(p) /∈ A(p)

(9.20)

These equations of motion are part of the agent’s generative model and induce for-
mal priors on state-transitions (i.e., a policy). Our objective now is to find constraints
on their form that disclose the nature of implicit policies. Clearly, the only explicit
constraint we have is the indicator or cost-function on physiological states. This de-
fines the physiological states the agent expects to be in a priori. In what follows, we
will use this cost-function in two distinct ways. First, we will use it to define low-
cost attractors in state-space using equilibrium arguments. This requires a rather
abstract formulation of the problem, which ignores the distinction between phys-
ical and physiological states and leads to conventional (fixed-point) policies. We
then reinstate the partition and use indicator or cost-functions to engender flow in
the physical space that destroys costly fixed-points in the physiological space. This
leads to itinerant policies, which we will use to examine pathological policies in the
last section.

9.3.2 Fixed-Point Policies: The Equilibrium Perspective

In this subsection, we will consider policies as prior expectations on flow that lead
to low-cost equilibrium densities. This perspective provides a fundamental (diver-
gence) constraint on local flow that can be exploited directly (or is met implicitly)
in schemes based upon value; the path-integral of cost. However, to pursue this
analysis we need to make a rather severe and implausible assumption. Namely,
that we can ignore the conditional dependencies implicit in the partition above
and assume that all states can be treated equally. This means the policy reduces
to f := f (x)(x, v, θ). With this simplifying assumption, one can appeal to standard
results in vector calculus that describe the evolution of the probability density on the
states the agent could occupy as a function of time. This is the ensemble density of
the previous section. It can be regarded as either the probability distribution of an in-
finite number of copies of the agent, observed simultaneously. Alternatively, under
ergodic assumptions, this is the same as the probability that an agent will be found
in a particular state when observed at different times. This probability is also called
the sojourn time and reflects the relative amount of time each state is occupied.
The evolution of the ensemble density over time is described by the Fokker-Planck
equation

ṗ(x|m) : = Λp

= ∇ · (Γ ∇ − f )p

= ∇ · Γ ∇p − ∇ · (pf )

= ∇ · Γ ∇p − p∇ · f − f · ∇p (9.21)
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Here Γ is half the amplitude (variance) of random fluctuations on the states. At
equilibrium, ṗ(x̃|m) = 0 and

p(x|m) := p = ∇ · Γ ∇p − f · ∇p

∇ · f (9.22)

Notice that as the divergence ∇ · f increases, the sojourn time (i.e., the proportion
of time a state is occupied) falls. Crucially, at the peaks of the ensemble density, the
gradient is zero and its curvature is negative, which means the divergence must be
negative (from Eq. (9.22))

p > 0
∇p = 0

∇ · ∇p < 0

⎫⎬
⎭ ⇒ ∇ · f < 0 (9.23)

This divergence-constraint simply says that any policy or flow must have negative
divergence at (low cost) maxima of the equilibrium density. One can exploit this
constraint by ensuring that all costly fixed-points have positive divergence. Essen-
tially, this destroys any fixed-points in the environment by making them unstable.
These policies are easy to construct. For example, the following (Newtonian) policy
can be made to satisfy the divergence-constraint very simply by ensuring χ(c) ≤ 0,
where

f =
[

x′
−cϕx(x) + χ(c)x′

]
⇒ ∇ · f = χ(c) (9.24)

This flow (policy) describes the Newtonian motion of a unit mass in a potential
energy well ϕ(x, θ), where cost plays the role of negative dissipation or friction
(and vitiates fixed points in costly regions). Crucially, under this policy, divergence
is a function of, and only of, cost. This means the associated ensemble density can
only have maxima in regions, where χ(c) ≤ 0. Put simply, this ensures that agents
are expelled from high-cost regions of state-space and get ‘stuck’ in attractive (flat)
regions. We can illustrate this sort of policy by revisiting a benchmark problem in
optimal control:

9.3.2.1 The Mountain-Car Problem

The mountain-car problem can be envisaged as follows: one has to move a car from
the bottom of valley and keep it there. However, the car is too heavy to simply
drive up the hill. This means that the target can only be accessed by starting on
the opposite side of the valley to gain enough momentum to carry it up the other
side. This represents an interesting problem, when considered in the state-space of
position and velocity, x, x′ ∈ x̃; the agent has to move away from the target location
(x = 1) to attain its goal and execute a very circuitous movement (cf., avoiding
obstacles). This problem can be specified with the following equations
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g =
[

ẋ
ẋ′

]

f =
[

x′
−ϕx(x) − 1

4 x′ + σ(a)

]

ϕx =
{

2x + 1 :x ≤ 0
x2(1 + 5x2)−3/2 + x4/16 :x > 0

(9.25)

We have used bold to highlight the fact that the states and functions are the true
values generating sensory data (as distinct from any hidden states assumed by a
generative model of these data). Crucially, at x = 0 the force on the car cannot be
overcome by the agent, because a squashing function −1 ≤ σ(a) ≤ 1 is applied
to action to prevent it being greater than one. Divergence-based policies provide a
remarkably simple and effective solution to problems of this sort and can be imple-
mented under active inference using policies with the form of Eq. (9.24) (see Friston
et al. 2010 for more details). These policies are entailed by the agent’s generative
model of its sensory inputs. For example,

f (v) =
[

x

x′
]

f (x) =
[

x′
−cϕx(x) + χ(c)x′

]

ϕx = θ1(x − θ2)

χ = 1

4
− 32(1 − c)

c =
{

0 :|x − 1| ≤ �

1 :|x − 1| > �

(9.26)

Figure 9.3 shows how paradoxical but adaptive behaviour (e.g. moving away from
a target to ensure it is secured later) emerges from these simple priors on the motion
of hidden states. This example used � = 1

16 , θ1 ≈ 0.6 and θ2 ≈ −0.2. These sim-
ulations of active inference involve integrating the states in the environments (e.g.,
Eq. (9.25)) and the agent (Eqs. (9.17) and (9.19)) simultaneously as described in
Appendix B.

Clearly, the construction of policies that use divergence to vitiate costly fixed-
points rests on knowing the form of the policy. In principle, this is no problem,
because we are talking about the agent’s prior expectations or model of its envi-
ronment. At no point do we assume that any of the states in the generative model
actually exist. For example, the true landscape that exerts forces on a mountain car
(Eq. (9.25) and Fig. 9.3) is much more complicated than the agent’s model of this
landscape, which is a simple quadratic approximation (Eq. (9.26)). This highlights
the fact that our expectations about the world and its actual causal structure do not
have to be formally equivalent to support adaptive policies. However, it is clearly
important that there is a sufficient homology between modelled and experienced
causal structure, otherwise the agent will be perpetually surprised by ‘obstructions’
to its path. This begs the question as to whether there is any universal form of policy
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Fig. 9.3 This figure shows how paradoxical but adaptive behaviour (e.g., moving away from a
target to ensure it is secured later) emerges from simple priors on the (Newtonian) motion of
hidden states in the world. A: The upper panel shows the landscape or potential energy function
(with a minimum at position x = −0.5) that exerts forces on a mountain car. The car is shown at
the target position on the hill at x = 1, indicated by the cyan ball. The equations of motion of the
car are shown below the figure. Crucially, at x = 0 the agent cannot overcome the force on the car
because a squashing function −1 ≤ σ(a) ≤ 1 is applied to action to prevent it being greater than
one. This means that the agent can only access the target by starting halfway up the left hill to gain
enough momentum to carry it up the other side. B: The results of active inference under priors
that destabilise fixed-points outside the target domain. The priors are encoded in a cost-function
c(x) (lower left), which acts like negative friction. When ‘friction’ is negative the car expects to
go faster. The inferred hidden states (upper right: position in blue and velocity in green) show that
the car explores its landscape until it encounters the target. At this point, friction increases (i.e.,
cost decreases) dramatically to prevent the car from escaping the target (by falling down the hill).
The ensuing trajectory is shown in blue (upper left) in the phase-space of position and velocity.
The paler lines provide exemplar trajectories from other trials with different starting positions. In
the real world, friction is constant. However, the car ‘expects’ friction to change with its position,
enforcing exploration or exploitation. These expectations are fulfilled by action (lower right)

that would comply with the divergence-constraint. An example of a universal form
is afforded by policies based upon value.

9.3.2.2 Value-Based Policies

In what follows, we consider the key notion of value V (x) as a function of state-
space that reports the relative probability or sojourn time a state is occupied at equi-
librium. Let flow be decomposed into the gradient of value and an orthogonal com-
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ponent f = ∇V + ζ , such that ∇V · ζ = 0, where the value of a state is proportional
to its log-sojourn time or density at equilibrium

V = Γ lnp ⇒ p∇V = Γ ∇p

p := p(x|m) = exp(V/Γ )
(9.27)

Equation (9.27) implies (intuitively) that if ζ is orthogonal to value (log-density)
gradients, it must also be orthogonal to the density gradients per se: ∇V · ζ = 0 ⇒
∇p · ζ = 0. If we now substitute Eq. (9.27) into the Fokker-Planck equation (9.21)
and solve for the equilibrium density that satisfies Λp = 0, we obtain (using stan-
dard results from vector calculus)

Λp = ∇ · (p∇V ) − ∇ · (p∇V ) − ∇ · pζ = 0 ⇒
∇ · pζ = p∇ · ζ − ζ · ∇p = 0 ⇒ ∇ · ζ = 0

(9.28)

This means that the orthogonal flow ζ = ∇ × W is divergence-free and can be
expressed in terms of a vector-potential W(x). This is just an example of the
Helmholtz decomposition (also known as the fundamental theorem of vector cal-
culus). It means we can express any policy as the sum of irrotational (curl-free) ∇V

and solenoidal (divergence-free) ∇ × W components. If the two components are
orthogonal, then the scalar-potential V (x) defines the equilibrium density and its
attracting states; that is, the scalar-potential is value. This equivalence rests on the
orthogonality condition ∇V · ζ = 0, which we will call the curl-constraint. Under
this constraint, curl-free flow prescribed by value counters the change in the equilib-
rium density due to random fluctuations. Conversely, divergence-free flow follows
isoprobability contours and does not change the equilibrium density. Finally, it is
easy to show that value is a Lyapunov function for policies that conform to the
curl-constraint

f = ∇V + ζ : ∇V · ζ = 0

= ∇V + ∇ × W

V̇ (x(t)) = ∇V · f = ∇V · ∇V + ∇V · ζ = ∇V · ∇V ≥ 0

(9.29)

Lyapunov functions increase (or decrease) with time and are used to prove the sta-
bility of fixed-points in dynamical systems. This means every policy that satisfies
the curl-constraint increases its value as a function of time. The notion of a Lya-
punov function is introduced here, because of its relationship to value or attraction
in optimal control and decision (game) theory, respectively:

9.3.2.3 Optimal Control and Reinforcement Learning

In optimal control theory and its ethological variants (i.e., reinforcement learning),
adaptive behaviour is formulated in terms how agents navigate state-space to access
sparse rewards and avoid costly regimes. The aim is to find a (proximal) policy that
attains long-term (distal) rewards. In terms of the above, a policy f = ∇V + ζ is
specified via the scalar-potential or value V (x) also known as (negative) cost-to-go.
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In this sense, value is sometimes called a navigation function. The value-function
is chosen to minimise expected cost. More formally, the cost-to-go of a state is the
cost expected over future states. In the deterministic limit Γ → 0, this is just the
path integral of cost

V (x) = −
∫ ∞

t

dτc(x(τ )) ⇒
V̇ (x(t)) = c(x) = ∇V · f ≥ 0

(9.30)

This says that cost is the rate of increase in value (the Lyapunov function). Crucially,
Eq. (9.30) shows that the maxima of the equilibrium density can only exist where
cost is zero, at which point value stops increasing and the divergence-constraint is
satisfied

∇V (x) = 0 ⇒ c(x) = 0

∇ · ∇V (x) < 0 ⇒ ∇ · f < 0

∇ · f = ∇ · ∇V + ∇ · ζ
= ∇ · ∇V

(9.31)

Heuristically, we can regard value as guiding flow towards points where there is
no cost (i.e., no gradients). This means that, in principle, we have a way to pre-
scribe equilibria with maxima (attracting fixed-points) that are specified with a cost-
function. Equation (9.30) shows that the cost-function can be derived easily, given
the policy and implicit value-function. However, to specify a policy with cost, we
have to derive the value-function from the cost-function; that is, solve Eq. (9.30) for
value. This is the difficult problem optimal control and value-learning deal with:

In the deterministic limit, the equilibrium density becomes a point mass at the
maximum of the value function (see Eq. (9.27)). This is the fixed-point to which
all trajectories are attracted. Value-based policies represent universal solutions that
do not require any knowledge about the form of the equations of motion generat-
ing sensory contingencies. However, this is also their weakness, because we require
the solution of Eq. (9.30) under unknown constraints. This leads to the celebrated
Hamilton-Jacobi-Bellman equation in optimal control theory (Bellman 1952), for
which there is no general solution. However, there is a vast literature on approxi-
mate solutions based upon dynamic programming and stochastic iteration. Variants
of these schemes appear as temporal difference models (Sutton and Barto 1981) and
Q-learning (Watkins and Dayan 1992) in machine learning, and as heuristics in psy-
chological studies of reinforcement learning (Rescorla and Wagner 1972). Almost
invariably, these approximate solutions rest on updating explicit representations of
the value-function using a prediction error on cost (or reward). This is called a re-
ward prediction error, which we will return to in the discussion. We will not pursue
this enormous field here for one simple reason: fixed-point policies are not solu-
tions to real-world problems. This is because there are no valuable fixed-points in
dynamical systems: an organism can only occupy a fixed-point when it is frozen or
petrified (i.e., dead).

Furthermore, from a technical point of view, value-based (fixed-point) policies
are incomplete. This is because real-world (non-abstract) systems do not satisfy
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the curl-constraint: Although, the Helmholtz decomposition provides a universal
form for policies, with curl and divergence-free components, there is no fundamen-
tal lemma or requirement for these components to be orthogonal. This means the
scalar-potential is not necessarily a Lyapunov function (i.e., a value-function) or a
useful navigation function (see Eq. (9.29)). The interactions among states that vi-
olate the curl-constraint are implicit in the conditional dependencies in Eq. (9.20)
(for nonlinear equations of motion). In the next subsection, we relax the simpli-
fying assumptions necessary for the abstract formulations used in economics and
reinforcement learning and turn to itinerant policies.

9.3.3 Itinerant Policies

In this subsection, we look at functional forms for policies using the (non-abstract)
set up that distinguishes between physical, physiological and other hidden states.
Here, we consider attractive states that are not fixed-points but bounded sets that
arise from itinerant (wandering or searching) dynamics. This is sensible, given the
nature of the environment, and speaks to optimising space-filling attractors that en-
sure low cost equilibria.

The importance of itinerancy has been articulated many times in the past (see
Nara 2003), particularly from the perspective of computation and autonomy (see
van Leeuwen 2008; with a focus on Milnor attractors). It has also been considered
formally in relation to cognition (e.g., Gros 2009, with a focus on attractor relics,
ghosts or ruins) and implicitly in ethology (e.g., Panksepp et al. 1984). The etho-
logical perspective is useful here because it suggests that some species are equipped
with prior expectations that they will engage in exploratory or social play, For ex-
ample, ‘rough and tumble play’ may be a fundamental form of play comprising a
unique set of behaviours that can be distinguished from aggression and other child-
hood activities. Indeed, there is growing interest in understanding brain dynamics
per se in terms of itinerancy and metastability (e.g., Jirsa et al. 1994; Breakspear and
Stam 2005; Bressler and Tognoli 2006). Tani et al. (2004) consider itinerant dynam-
ics in terms of bifurcation parameters that generate multiple goal-directed actions
on the behavioural side, and optimisation of the same parameters when recognising
actions. They provide a series of elegant robotic simulations to show generalisation
by learning with this scheme. See also Herrmann et al. (1999) for interesting simu-
lations of itinerant exploration, using just prediction errors on sensory samples over
time.

We will see below that it is fairly easy to construct itinerant policies. Further-
more, they can have constant (negative) divergence at all points in state-space. This
means that their equilibria depend on the divergence-free component of flow (i.e.,
the component that is discounted by the curl-constraint in fixed-point policies). Al-
though there may not be a universal form for itinerant policies, the principles upon
which they are based may be universal.

One universal principle (which we exploit here) is the vitiation or destruction
of costly attractors. A key difference between general vitiative mechanisms and the
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divergence-based vitiation above is that the destruction of costly attractors can be
state and time-dependent. This idea appears in several guises and has found impor-
tant applications in a number of domains. For example, it is closely related to the
notion of autopoiesis and self-organisation in situated (embodied) cognition (Matu-
rana and Varela 1980). It is formally related to the destruction of gradients in syn-
ergetic treatments of intentionality (Tschacher and Haken 2007). Mathematically, it
is finding a powerful application to universal optimisation schemes (Tyukin et al.
2003) and, indeed, as models of perceptual categorisation (Tyukin et al. 2009). The
dynamical phenomena, upon which these schemes rest, involve an itinerant wan-
dering through state-space along heteroclinic channels (orbits connecting different
fixed-points). Crucially, these attracting sets are weak (Milnor) attractors or attractor
ruins that expel the state until it finds the next weak attractor or ruin. The result is a
sequence of transitions through state-space that, in some instances, can be stable and
repeating. The resulting stable heteroclinic channels have already been proposed as
a metaphor for neuronal dynamics and underlying cognitive processing (Rabinovich
et al. 2008). Furthermore, the notion of Milnor or ruined attractors underlies much
of the technical and cognitive literature on itinerant dynamics. For example, Tyukin
et al. (2009) can explain “a range of phenomena in biological vision, such as mental
rotation, visual search, and the presence of multiple time scales in adaptation” using
the concept of weakly attracting sets. It is this sort of policy we exploit in the final
part of this section.

9.3.3.1 Itinerant Control and Autovitiation

The basic idea is to construct a policy (equations of motion) in which costly states
in the physiological subspace change the manifold on which the physical states are
evolving. In principle, the only ergodic solution, under this sort of policy, is one in
which an attractor (manifold) in the physical subspace induces a low-cost attractor in
the physiological subspace. Clearly, this rests upon the existence of such solutions.
The mathematical treatment of the existence of these solutions is not necessarily
simple. Indeed, it is only recently that the conditions for the existence of stable
heteroclinic channels have been established (Rabinovich et al. 2008). Furthermore,
even the existence of weakly attracting (Milnor) sets presents some deep challenges
(see Tyukin et al. 2003). Generally, attractors are invariant sets that attract states
from their neighbourhood, known as a basin of attraction (like a pudding basin that
collects its contents at its base). Milnor attractors generalise this notion so that the
basin of attraction is not required to be in the neighbourhood of the attractor (like
a pudding basin or sieve ‘riddled’ with holes). This allows the states to escape the
attractor when subject to small random fluctuations (like shaking the pudding basin).
Attractor ruins result from changing the manifold to destroy an attractor but preserve
its characteristic ability to attract trajectories (like a basin with a hole at the base,
from which its contents can escape slowly). A key distinction between different
sorts of itinerancy is based on whether the manifold supporting itinerant flow is
fixed or changing. Milnor attractors and attractor ruins support itinerant dynamics
with Type I complexity (Friston 2000); that is, the manifold is invariant. Conversely,
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when dynamical systems are coupled to each other, the states of one system can
change the manifold (topology or shape of the pudding basin) of another, leading to
Type II complexity (Friston 2000). This sort of itinerancy rests on the construction
(autopoiesis) and destruction (autovitiation) of attractors in one subspace by changes
in the states of another. This is the mechanism we will pursue, given the partition
in Eq. (9.20).

We will forego further mathematical discussion and try to illustrate the basic
idea with a simple example. This example has been chosen because it embodies
autovitiation using intuitive constructs from neurobiology. Consider the following
policy

f (x) =
[

f (a)

f (q)

]

f (a) = f (a,k)
(
x(a)

) : k = arg max
i

x
(q)
i

f
(q)
i = h

(
x(a), x(q)

) : x(a) /∈ A(a)
i

f
(q)
i < h

(
x(a), x(q)

) : x(a) ∈ A(a)
i

(9.32)

This policy describes coupled nonlinear systems in physical x(a) and manifold-
subspaces x(q) = [x(q)

1 , . . . , x
(q)
K ]. Physical flow is ‘selected’ by the (k-th) manifold-

state with the highest value, where each alternative flow f (a,k)(x) has a unique
attractor A(a)

k . More formally, for all real t > T there exists a time T ∈ �+ for

which x(t)(a) ∈ A(a)
i , under f (a,i)(x) : i ∈ 1, . . . ,K . For each attractor there is a

corresponding manifold-state. These change according to some arbitrary function
h(x(a), x(q)). Crucially, all the manifold-states experience the same change unless
the physical-state occupies the attractor selected by the manifold-state. In this in-
stance, the manifold states decreases, relative to its competitors. The attractor is
vitiated when its manifold-state ceases to be the largest and another physical flow
supervenes. This is a simple and fairly universal scheme that ensures all the attrac-
tors are visited at some point. The key aspect of these schemes is that attractors are
destroyed when occupied.

There are clearly many ways that we could have constructed itinerant schemes to
illustrate this sort of policy. We elected to use competition among attractors in the
physical state-space for several reasons. First, dynamics of this sort can be cast in
the abstract form required for conventional value-based policies. This is because the
system will visit a discrete number of attractive states A(a)

i : i ∈ 1, . . . ,K with well
defined probabilities. This will be pursued in a later communication using model-
based reinforcement learning. Second, the, saltatory migration from one attractor
(pattern) to the next is a ubiquitous phenomenon in neuronal dynamics; manifest
as synfire chains (Abeles et al. 2004), reproducible patterns in neuronal avalanches
(Pasquale et al. 2008) and ‘loss-less’ saltatory transitions observed in local field po-
tentials (Thiagarajan et al. 2010). Functionally, the use of attractors with associated
basins of attraction, provides a generic way of ‘tiling’ any space and bears a formal
resemblance to classical receptive fields in vision or, indeed, place-cells in spatial
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navigation (O’Keefe and Dostrovsky 1971; Sheynikhovich et al. 2009; Robbe and
Buzsáki 2009). This means that itinerant policies may furnish a model of saccadic
eye movements during exploration of visual scenes (Chen and Zelinsky 2006) or
in the context of foraging and spatial exploration. In what follows, we will adopt
the second heuristic and associate the attractors A(a)

i with i ∈ 1, . . . ,K locations in
something like a Morris water-maze (Morris 1984). To emulate conditioned place-
preference (e.g., Seip et al. 2008), we have to augment the itinerant scheme above
(Eq. (9.32)) with physiological states that can moderate the vitiation of rewarding
attractors. For simplicity, we will deal with just four locations and two physiological
states.

9.3.3.2 The Generative Model

The particular policy we will focus on for the remainder of this paper is part of the
following generative model

s = f (v) + ω(v)

ẋ = f (x) + ω(x)

f (v) =
⎡
⎣ x(a)

x′(a)

x(p)

⎤
⎦

f (x) =

⎡
⎢⎢⎣

f (a)

f ′(a)

f (p)

f (q)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

x′(a)

8(αk − x(a)) − 4x′(a)

θT β(x(a)) − x(p)

θc(x(p)) − 4β(x(a)) − ∑
i x

(q)
i

⎤
⎥⎥⎦ ⇒ ∇ · f = −4 − 1 − K

βi =
{

0 :|αi − x(a)| ≥ �

1 :|αi − x(a)| < �
cj =

{
0 :x(p)

j ≥ τ

1 :x(p)
j < τ

i ∈ 1, . . . ,K, j ∈ 1, . . . , J, k = arg max
i

x
(q)
i

(9.33)

To complete the specification of this model, we will use the following values (unless
otherwise stated): A sensory log-precision of eight Π(v) = 8 ⇔ ω

(v)
i ∼ N(0, e−8),

a log-precision of four or six on the motion of hidden states: Π(a) = 4, Π(p) = 6,
Π(q) = 4, a spatial threshold of � = 1

8 and a physiological threshold of τ = 1
8 .

The sensory mapping f (v) means that the agent has access to its position and
velocity and (in this example) two physiological states x(p) = [x(p)

1 , x
(p)

2 ]T (e.g.,
blood sugar and osmolarity). The second line describes the policy in terms of for-
mal expectations about the generalised motion of hidden states: The agent assumes
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that it pulled to the location, αk under a degree of friction. This location is the point
attractor αk ⊆ A(a)

k associated with the highest manifold-state. This means we can

regard x
(q)
i as the attractiveness of its corresponding location. The manifold-states

are subject to three influences, the third is just a non-specific return to zero (medi-
ated by the sum over physiological states). The second mediates itinerancy by vitiat-
ing the attractiveness of fixed-points when the agent is in their neighbourhood; i.e.,
|αi −x(a)| < �. The first makes some locations progressively more attractive, when
the cost-function c(x(p)) reports that a physiological state has fallen below thresh-
old, τ = 1

8 . This cost-dependent attractiveness depends on parameters θij that en-
code an association between the j -th physiological-state and the i-th location. These
parameters also mediate an increase in the physiological-state—a reward—when the
location is occupied, as reported by the indicator function β(x(a)). In the absence of
any reward, the physiological states simply decay with first-order kinetics.

These dynamics mean that when a physiological state falls below threshold this
costly state is reported by a (vector) cost-function. This increases the attraction of
locations in proportion to a parameterised association between each location and
the costly physiological state (cf., Drive Reduction Theory; Hull 1943). The at-
tractiveness of the appropriate location increases until it supervenes over remaining
locations, at which point it draws the agent towards it. When the agent is sufficiently
close, the physiological state is replenished and the agent is rewarded. This construc-
tion of interdependent physical, physiological and manifold dynamics ensures that
no physiological state will remain below threshold for long. The ensuing physio-
logical homeostasis depends on physiological imperatives vitiating (non-rewarding)
physical attractors. In the absence of any cost (i.e., all physiological states are above
some lower bound) all locations will compete with each other, until they are all
visited in turn. This is a simple example of a system that shows cost-dependent
heteroclinic channels which, in ethological terms includes both exploration and ex-
ploitation (e.g., Nowak and Sigmund 1993). Note that the divergence of this policy
is a negative constant (see Eq. (9.33)). This means that the self-organising dynamics
conform to the divergence constraint but are mediated by changes in divergence-free
flow.

9.3.3.3 The Generative Process

Hitherto, we have described the policy as if it were a description of a real environ-
ment. However, the policy is just the agent’s fantasy about an unknown environment.
Crucially, this model is can be much more structured than the environment in which
the agent is immersed. The actual generative process we will use can be written as
follows.

f(v) =
⎡
⎣ x(a)

x′(a)

x(p)

⎤
⎦

f(x) =
⎡
⎣ x′(a)

a − 2x(a) − 4x′(a)

θβ(x(a)) − x(p)

⎤
⎦

(9.34)
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Where ω
(u)
i ∼ N(0, e−16) : u = v, x. Here, the only forces acting upon the agent

are those that it generates itself with action. In other words, although the agent has
a concept of fixed-points to which it is variously attracted, the environment per se
has no such attractors (other than a fixed-point at x = 0). However, a number of the
locations do deliver rewards. The mapping between these locations and the rewards
is encoded by the (unknown) parameters θ ij ∈ {0,1}. These play the same role as
the parameters of the agent’s generative model. If the true parameters and those
used by the agent are the same, then the agent will happily navigate its environment
alternately visiting rewarding locations to replenish its physiology (e.g., eating and
drinking at different locations). However, to achieve this it has to learn the correct
parameters. Crucially, this learning is purely perceptual and driven by the prediction
errors established by conditional expectations about physiological rewards at every
location. This is a key attribute of the current scheme and highlights the critical
role of perceptual learning (parameter optimisation) in acquiring and maintaining
appropriate policies (cf., conditioned place-preference in animal studies; Seip et al.
2008). We will return to this in the last section.

In summary, we have described an itinerant policy in terms of a generative model
that prescribes the motion of physical and physiological states and how they cou-
ple to each other. Under active inference, this policy will enslave action to fulfil
implicit prior expectations, under the constraints afforded by the real generative
process in the environment. To illustrate this, we integrated the differential equa-
tions describing active inference from the first section, using the generative process
and model above (Eqs. (9.33) and (9.34)). In this example, we used the correct
mapping between rewards and locations (θij = θ ij ) such that the first location (up-
per right) replenished the first physiological state and the second location (lower
left) replenished the second physiological state. The resulting behaviour is shown
in Fig. 9.4. The upper left panel shows the predicted sensory input and its associ-
ated prediction errors (dotted red lines). This sensory input corresponds to the po-
sition and motion of the agent in two dimensions and the two physiological states.
The underlying conditional expectations of these hidden states, which include the
manifold-states, are shown on the upper right. The corresponding physical trajec-
tory is shown on the lower left superimposed on the four attractor locations (cyan
circles). This trajectory was driven purely by active inference, with the action con-
trolling forces in two dimensions (shown in the lower right panel). The trajectory
here shows that the two rewarding locations (upper right and lower left) are visited
most frequently, with occasional excursions to the remaining two locations. The
numbers by each location represent the percentage of time spent within � = 1

8 of
the location.

Figure 9.5 provides a more detailed description of the conditional expectations
about the physiological and manifold (internal) states in the upper panel and the
true physiological states in the lower panels. The upper panel shows the expected
physiological states (solid lines) and the manifold-states (broken lines). The key
thing to take from these time courses is the recurrent build-up and self-destruction of
manifold-states, as each attracting fixed-point is visited and consequently rendered
less attractive. Crucially, the attractors delivering rewards become more attractive
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Fig. 9.4 Conditional expectations and behaviour under an itinerant policy. The upper right panel
shows the conditional expectations of hidden states, while the upper left panel shows the corre-
sponding predictions of sensory input (solid lines) and prediction errors (dotted red lines). Action
tries to suppress these prediction errors and is shown on the lower right. These action variables
exert forces in two orthogonal directions to produce the movements shown on the lower left. The
ensuing path is shown as a continuous blue line, where each dot represents a single time bin in the
simulations. The cyan circles represent the four attractors used in this itinerant policy. It can be
seen that most of the time is spent at the two locations that supply physiological rewards: 23% for
the first (upper right) and 30% for the second (lower left)

after the physiological state falls below some threshold (red dotted line in all panels).
This ensures that the physiological states are lower bounded as seen in the lower
left panel. This shows the first (blue) and second (green) levels of the physiological
variable as a function of time. It can be seen that whenever the level falls below
threshold, the values are replenished rapidly by a visit to the appropriate attractor.
The same data are shown on the lower right. Here the two physiological states have
been plotted against each other to show how they are always (jointly) above or near
threshold.

These simulations were integrated as described in Appendix B and (Friston et
al. 2010) using log-precisions of eight and four on the sensory input and motion of
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Fig. 9.5 This figure provides a more detailed description of the conditional expectations of the
physiological (and manifold) states in the upper panel and the true physiological states in the
lower panels. The upper panel shows the expected physiological states (solid lines) and the mani-
fold-states (broken lines). The key thing to take from these dynamics is the recurrent build up and
autovitiation of manifold-states, as each attracting fixed-point is visited and consequently rendered
unattractive. Crucially, the attractors delivering rewards become more attractive after the physi-
ological state falls below some threshold (red dotted lines in all panels). This ensures that the
physiological states are lower bounded, as shown in the lower left panel. This shows the levels
of first (blue) and second (green) physiological variables as functions of time. It can be seen that
whenever the level falls below threshold, the values are rapidly replenished by a visit to the ap-
propriate attractor. The same data are shown on the lower right. Here, the two physiological states
have been plotted against each other to show how they are always (jointly) above or near threshold

physical states, respectively. These values are crucial for implementing any policy,
as we will see in the next section, where we use low and high precisions to simulate
pathological behaviour.
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9.3.4 Summary

This section has focused on plausible forms for the motion of hidden states in gen-
erative models of the world. These forms correspond to formal priors or policies,
which themselves have been optimised (by evolution in a biological setting). We
have introduced the distinction between fixed-point and itinerant policies. Fixed-
point policies (from optimal control theory and reinforcement learning) can be elab-
orated using an equilibrium perspective on abstract models of state-space, under
constraints on divergence-free flow (the curl-constraint). When this constraint is
satisfied, the scalar-potential guiding flow becomes a Lyapunov function and the
(log of the) equilibrium density; that is, value. Conversely, itinerant policies are
called for when one partitions hidden states into those that can be controlled di-
rectly and those which cannot. Both fixed-point and itinerant policies must conform
to a divergence-constraint, in that the flow at low-cost points of the equilibrium den-
sity must have negative divergence. Furthermore, both sorts of policies rest upon the
destruction or vitiation of costly fixed-points (either directly by making divergence
or value depend on cost or indirectly using cost-dependent autovitiation). The no-
tion of vitiating attractors to create itinerant dynamics along heteroclinic channels
can be exploited in itinerant policies using fairly simple schemes. We have seen an
example of one such scheme that will be used in the next section to study some of
its key modes of failure.

If you have got this far through the arguments then you must either be very inter-
ested, or an editor (or both). Furthermore, you may be thinking “this is all plausible
but its just common sense dressed up in the rhetoric of dynamical systems”. In one
sense this is true; however, it is worth reflecting on what has been achieved: We now
have a model of exploratory behaviour and conditioned place-preference that is de-
tailed to the level of forces, friction and physiology, using neurobiologically tenable
computations. Furthermore, at no point did we need to invoke any (abstract) rein-
forcement learning scheme: the only learning required is conventional associative
plasticity that is an integral part of perception. In the final section, we will use this
model to see how abnormal perceptual inference and learning can have profound
effects on behaviour.

9.4 Pathological Policies

In this section, we provide some simple case studies, using simulations to show how
behaviour breaks down when perception is suboptimal. Specifically, we will look at
the effect of changing the precision of random fluctuations on the hidden states. This
may seem a rather arbitrary target for simulated lesions; however, there are some
key reasons for starting here. Up until now, we have treated the precisions as known
quantities. In more general treatments they are optimised using update or recogni-
tion schemes that are not dissimilar to those used for perceptual learning (see Fris-
ton 2008). This optimisation of the precisions corresponds to optimising uncertainty
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about prediction errors and the consequent predictions. As noted in the first section,
precision may be encoded in the post-synaptic gain of prediction error units. The
most likely candidates for these prediction error units are the principal (superficial
pyramidal) cells originating forward connections in the cortex (see Friston 2008). In
the present context, an important determinant of post-synaptic gain is classical neu-
romodulation. For example, changes in post-synaptic sensitivity due to the effect
of dopaminergic or cholinergic neurotransmission on slow conductances following
depolarisation. This premise is important in terms of clinical neuroscience because
the vast majority of neuropsychiatric disorders are associated with abnormalities in
neuromodulatory neurotransmission at one level or another (e.g., Liss and Roeper
2008; Goto et al. 2010). Indeed, the very fact that most psychotropic treatments
target these systems testifies to this fact. Furthermore, the drugs most commonly
associated with addictive behaviour affect dopaminergic and related classical neu-
romodulatory systems:

The mesocorticolimbic dopamine (DA) system comprises DA producing cells in
the ventral tegmental area (VTA) of the midbrain and projects to forebrain struc-
tures including the nucleus accumbens (NAcc), medial prefrontal cortex (mPFC)
and amygdala. It is generally thought that this system evolved to mediate be-
haviours essential for survival (Kelley and Berridge 2002; Panksepp et al. 2002)
and that it plays an essential role in mediating biological incentives. Acute exposure
to all drugs of abuse directly or indirectly increases DA neurotransmission in the
NAcc and repeated drug exposure results in enduring changes in mesocorticolim-
bic brain regions (Berke and Hyman 2000; Henry and White 1995; Nestler 2005;
Pierce and Kalivas 1997). These drugs include psychostimulants (e.g., cocaine,
amphetamine and its derivatives methamphetamine and methlyenedioxy metham-
phetamine), opiates (e.g., heroin and morphine) and other common drugs of abuse
(e.g., alcohol and nicotine). Psychostimulants act directly on dopaminergic termi-
nals in the NAcc (Khoshbouei et al. 2003), while opiates act indirectly by inhibiting
GABAergic neurons in the VTA with disinhibition of DA neurons.

In what follows, we will repeat the simulations of the previous section but using
suboptimal low and high levels of precision on the motion of hidden states. This
produces two characteristic failures of behaviour and learning that map, roughly,
onto the psychomotor poverty and bradykinesia associated with Parkinson’s disease
on the one hand and stereotyped perseverative behaviours that are reminiscent of
addiction on the other. We first consider the affect of reducing precision.

9.4.1 Simulating Parkinsonism

In the first simulations, we will look at the effects of reducing precision on the mo-
tion of hidden states. This can be seen as a crude model of neurodegeneration in
ascending dopaminergic systems, which would reduce synaptic gain and precision
Π̃(i,u) in Eq. (9.17). To simulate this reduction, we repeated the foraging simulations
above, using progressively lower levels of precision on the motion of physical states:
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Π(a) ∈ 4,2,0. The results of these simulations are shown in Fig. 9.6, in terms of the
trajectories in physical subspace (left panels) and the physiological subspace (right
panels). It is immediately obvious that the accuracy and speed of locomotion is im-
paired, with a progressive failure to hit the targets and pronounced over-shooting.
The physiological sequelae of this impaired behaviour are shown in terms of a pro-
gressive failure to keep the physiological states above threshold. Indeed, in the lower
right panel, the physiological states are sometimes close to zero.

The reason for this loss of control is simple. Action is driven by sensory predic-
tion errors (see Eq. (9.19)). These prediction errors depend upon precise predictions.
If the precision or certainty about the inferred motion of hidden states falls, more
weight is placed on sensory evidence. Heuristically, a low precision on the empirical
priors afforded by the motion of hidden states means that conditional predictions are
based upon sensory evidence. Because action tries to reduce prediction errors it now
depends more on what is sensed, as opposed to what is predicted. In the absence of
precise predictions, the agent will simply stop moving. We can see the beginnings
of this motor poverty in Fig. 9.6 (lower panels), where the forces exerted by action
are attenuated, resulting in trajectories with a much lower curvature. If we continued
reducing the level of precision (cf., dopamine), the agent would ultimately become
akinetic. We have illustrated this behaviour in a variety of simulations previously,
for example, the same behaviour can be elicited using the mountain car example in
Fig. 9.3, as shown in Friston et al. (2010).

Figure 9.7 shows the action and underlying sensory prediction errors associated
with the trajectories in Fig. 9.6. The action (in both directions) is shown as a function
of time in the left panels. The right panels show the corresponding prediction error
on the four physical states (position and velocity in two directions). The key thing to
take from these results is the progressive reduction in the amplitude of action due to
an underlying fall in the amplitude of sensory prediction errors. This leads to smaller
forces on the physical motion of the agent and the bradykinesia seen in Fig. 9.6. The
progressive reduction in sensory prediction errors reflects a loss of confidence (pre-
cision) in top-down prior expectations about movement, which would normally sub-
tend itinerant behaviour. This example is used to highlight the key role of precision,
especially the precision of predictions about the motion of hidden states. If these
predictions become less precise, they have less influence, relative to sensory infor-
mation and consequently exert less influence over action. In this view, pathologies
that involve a loss of neuromodulation can be regarded as subverting the potency of
empirical prior expectations that maintain adaptive behaviour.

9.4.1.1 Summary

In summary, we have seen how perceptual synthesis plays a crucial role in provid-
ing predictions that action can fulfil. However, if these predictions are under confi-
dent, they will fail to elicit sufficient sensory prediction errors to engage behaviour.
A key mechanism, by which conditional confidence can be undermined, is false in-
ference about the amplitude of random fluctuations on hidden states. This leads to
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Fig. 9.6 This figure shows the (true) trajectories and resulting physiological states (using the same
format as Figs. 9.4 and 9.5) for different levels of precision on the motion of physical states (i.e.,
position and velocity). The top row shows normal behaviour elicited with a log-precision of four.
The remaining two rows show progressive pathology in behaviour, when using log-precisions of
two and zero, respectively. The left panels show deterioration of the trajectories, with a generalised
slowing of movements and a loss of accuracy, when locating the target (attracting fixed-points).
This slowing is reflected in the number of times a target is visited. This is indicated in the right
panels by the dotted lines, which report the distance from the centre. In an extreme case (log-preci-
sion of zero), only one definite movement has been emitted in the 128 second simulated exposure.
These simulations are meant to reproduce the characteristic psychomotor slowing, bradykinesia
and loss of fine movement control associated with Parkinsonism due to neurodegeneration or psy-
cholytic therapy
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Fig. 9.7 This figure reports the action and underlying sensory prediction errors associated with
the trajectories in the previous figure. The action (in both directions) is shown as a function of time
in the left column, while the right column shows the corresponding prediction error on the four
physical states (position and velocity in two directions). The key thing to take from these results is
the progressive reduction in the amplitude of action due to an underlying fall in the amplitude of
sensory prediction errors. This leads to smaller forces on the physical motion of the agent and the
bradykinesia seen in the previous figure. The reduction in sensory prediction error reflects a loss of
confidence (precision) in top–down prior expectations about movements, which would normally
subtend itinerant activity
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the adoption of pathologically low precision on internal prediction errors that may
be associated with the failure of synaptic gain control associated with Parkinson-
ism (e.g., Zhao et al. 2001). In this context, impaired inference about proprioceptive
states translates into a failure of motor intention. This mechanism also sits com-
fortably with the role of substantia nigra-amygdala connections in surprise-induced
enhancement of attention in the perceptual domain: Lesion studies in rats (Lee et al.
2006) show that these connections are “critical to mechanisms by which the coding
of prediction error by midbrain dopamine neurons is translated into enhancement of
attention and learning modulated by the cholinergic system”. Furthermore, low dose
apomorphine, which is thought to inhibit DA release by activating pre-synaptic DA
autoreceptors, decreases the frequency of itinerant behaviours (e.g., Niesink and Van
Ree 1989). Interestingly, increasing precision has relatively little effect on percep-
tual inference and the attending behaviour; however, it can have a profound effect on
perceptual learning. We consider this in the next section, where we ask what would
happen if the precision or gain was too high? Here, the consequences are expressed
less in terms of locomotion but more in terms of deleterious effects on perceptual
learning that determines the organisation of behaviour.

9.4.2 Simulating Addiction

Hitherto, all our simulations have assumed the agent has learned the association
between the locations in its environment and the physiological rewards available.
These are encoded by the parameters θij ∈ ϕ in the generative model. In the final
simulations, we study how these associations can be acquired and the effects of
increasing precision (e.g., dopamine) on this learning.

9.4.2.1 Normal Learning

To study the effects of learning, we changed the reward contingencies by moving
the reward usually available at the second location (lower left) to the third location
(upper right). This presents an interesting problem under active inference, because
action fulfils expectations and the agent expects to be rewarded at the first and sec-
ond location. It must now undo this association to discover something unexpected,
while acting to fulfil its expectations. Itinerant policies meet this challenge easily
because, by their construction, they explore all putative reward locations in an itin-
erant fashion. In brief, the itinerant policy means the agent expects to visit most
states at some point and therefore its behaviour will follow suit. This ensures that
new associations between the physical and physiological dynamics are encountered
and remembered, through optimisation of the parameters encoded by connection
strengths (synaptic efficacy). An illustration of perceptual learning under an itiner-
ant policy is shown in Fig. 9.8. This summarises the results of perceptual learning
after 128 seconds of exploration, following a switch in the location of the second
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Fig. 9.8 This figure summarises the results of perceptual learning after 128 seconds of exploration,
following a switch in the location of the second reward. This location was switched from the lower
left to the upper left attractor. The upper panel shows the parameter expectations (grey bars) and
the 90% conditional confidence intervals (red lines). The eight parameters constitute the matrix
of coefficients θ that associate the two rewards with the four attracting locations. Before learning,
rewards were available at the first and second locations (corresponding to parameters one and
six). The switch of the location of the second reward corresponds to re-setting the sixth parameter
from one to zero θ22 → 0 with a complimentary increase in the seventh parameter from zero to
one θ23 → 1. The top panel shows that the true values are contained within the 90% confidence
intervals and a degree of ‘reversal learning’ has occurred (arrows above the parameters in dark
gray). The corresponding behaviour (before and after learning) is shown in the lower panels (left
and right respectively), using the same format as in previous figures. Before learning, the old and
new locations of the second reward were visited 30% and 9% of the time respectively. Conversely,
after learning this ratio reversed, such that the newly rewarded location is now visited 20% of the
time

reward. This can be regarded as a simulation of reversal learning, in the context
of conditioned place-preference (McDonald et al. 2002). The reward location was
switched from the lower left to the upper left. The upper panel shows the parameter
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expectations (grey bars) and the 90% conditional confidence intervals (red bars). It
should be noted that these confidence intervals (which are based upon the condi-
tional precisions in Eq. (9.6)), are not represented explicitly by the agent. However,
they provide a useful measure of the implicit certainty the agent has in its expec-
tations about causal structure in its world. The eight parameters correspond to the
matrix of coefficients θ ∈ ϕ that associate the two rewards with the four attracting
locations. Before learning, rewards were available at the first and second locations
(corresponding to parameters one and six). The switch of the location of the sec-
ond reward to the third location corresponds to a reduction in the sixth parameter
θ22 (from one to zero) and a complimentary increase in the seventh parameter θ23
(from zero to one). The top panel shows that the true values are contained within
the 90% confidence intervals and a degree of reversal learning has occurred. The
corresponding behaviour before and after learning is shown in the lower panels (left
and right, respectively). Before learning, the old and new locations of the second
reward were visited 30% and 9% of the time, respectively. After learning, this ra-
tio has reversed, such that the newly rewarded location is now visited 20% of the
time. Note that there is no imperative to spend all the time at a rewarding loca-
tion; just to emit a sufficient number of visits to ensure the physiological states
do not fall to very low levels (data not shown). This learning occurred with a log-
precision on the motion of the physiological states of four; Π(p) = 4. Next, we ex-
amine what happens with inappropriately high levels of precision on physiological
kinetics.

9.4.2.2 Pathological Learning

We repeated the above simulations but using a pathologically high level of precision
that can be thought of (roughly) as a hyper-dopaminergic state. The motivation for
this is based on the fact that most addictive behaviours involve taking drugs that
cross the blood/brain barrier and augment neuromodulatory transmission. For ex-
ample, acute exposure to psychostimulants increases extracellular DA levels in the
NAcc and this increase is significantly enhanced after repeated exposure; due to in-
creased activity of DA neurons and alterations in DA axon terminals (Pierce and
Kalivas 1997). Although a very simplistic interpretation of addiction, we can asso-
ciate increases in extracellular DA levels with an increase in precision. Intuitively
speaking, this means the agent becomes overly confident about its internal predic-
tions, in relation to the sensory evidence encountered. So what effect will this have
on learning?

Figure 9.9 reports the results of simulated learning under increasing levels of log-
precision on the motion (kinetics) of the physiological states. The left panels show
the corresponding behaviour using the same format as in previous figures. The right
panels show the conditional expectations and confidence following a 128 second
exposure to the environment, after the location of the second reward was switched.
The first row reproduces the results of Fig. 9.8 showing veridical, if incomplete,
reversal learning (a decrease in parameter six and an increase in parameter seven).
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Fig. 9.9 This figure reports the results of simulated learning under increasing levels of log-pre-
cision on the motion or dynamics of the two physiological states. The left column shows the cor-
responding trajectories using the same format as in previous figure. The right column shows the
conditional expectations and confidence intervals following 128 second exposure to the environ-
ment, after the location of the second reward had been switched. These use the same format as the
upper panel of the previous figure. The first row reproduces the results of Fig. 9.8 showing veridi-
cal, if incomplete, learning of the switched locations (a decrease in parameter six and an increase
in parameter seven). This reversal learning is partially (middle row) and completely (lower row)
blocked as log-precision increases from four to eight and from eight to twelve. The failure to learn
the change in the association between locations and rewards is reflected in the occupancy of the
corresponding locations. For example, the newly rewarding location (upper left) is visited on 20%,
13% and 8% of the time as precision increases and learning fails

This learning is partially (middle row) and completely (lower row) blocked as the
log-precision increases from four to eight and from eight to twelve. The failure to
learn the change in the association between locations and rewards is reflected in the
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occupancy of the corresponding locations. For example, the newly rewarding loca-
tion (upper left) is visited on 20%, 13% and 8% of the time, as precision increases
and learning fails. There is a concomitant retention of place-preference for the previ-
ously rewarded location (lower left). The reason for this failure of reversal learning
and consequent failure to adaptively update place-preference is reflected in the con-
ditional confidence intervals on the parameters. These reveal a progressive reduction
in conditional uncertainty (increase in conditional precision), which interferes with
learning. The mechanism of this interference is quite subtle but illuminating: Re-
call from Sect. 9.2 (Eq. (9.18)) that learning (associative plasticity) is driven by the
appropriate prediction error, here prediction errors about the motion or changes in
physiological states. These are extremely sensitive to the assumed precision about
fluctuations in these states as shown in the next figure:

Figure 9.10 shows the conditional expectations or predictions about the motion
of physiological states and their associated prediction errors (left and right columns,
respectively). The upper rows correspond to a roughly optimal log-precision of
four, while the middle and lower rows show the results for pathologically high log-
precisions (cf. hyper-dopaminergic states) of 8 and 12, respectively. The correspond-
ing increase in precision means that the conditional representations of changes in
physiological state (here the second physiological variable) are over confident and,
in extreme cases, a fantasy. This is shown in the left panels in terms of the con-
ditional expectations (solid lines) and the true changes (dotted lines). These are in
good agreement for appropriate levels of precision but not at high levels of preci-
sion (see lower row). When precision is very high, the agent expects to be rewarded
when it visits the old location. This expectation is so precise that it completely ig-
nores sensory evidence to the contrary. These false predictions are reflected in a
progressive fall in prediction error (see right column); such that, at high levels of
precision, there is no prediction error when there should be. For example, look at
the prediction error at around 20 seconds, when the second reward is elicited for
the first time. In summary, a high precision leads to over confident inference about
the states of the world and their motion, which subverts appropriate prediction er-
rors and their ability to drive associative plasticity. This leads to false expectations
about exteroceptive and interoceptive signals and a consequent failure of active in-
ference (behaviour). This example highlights the complicated but intuitive interplay
between perceptual inference, learning and action.

9.5 Discussion

In summary, we have seen how inappropriately high levels of precision in gener-
alised predictive coding schemes can lead to false, over confident, predictions that
do not properly reflect the true state of the world. This leads to an inappropriately
low expression of prediction errors signalled, presumably, by (superficial pyrami-
dal) principal cells in the cortex and a concomitant failure of associative plasticity
in their synaptic connections. This failure to learn causal contingencies or asso-
ciations in the environment results in maladaptive ‘place-preferences’ as reflected
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Fig. 9.10 This figure shows the conditional expectations or predictions about the motion of phys-
iological states and their associated prediction errors (left and right columns, respectively). The
upper rows correspond to a roughly optimal log-precision of four, while the middle and lower rows
show the results for pathologically high log-precisions (cf., hyper-dopaminergic states) of eight
and twelve, respectively. The increase in precision means that the conditional representations of
changes in the physiological state (here the second physiological variable) are overconfident and,
in extreme cases, illusory. This is shown in the left panels in terms of the conditional expectations
(solid lines) and the true changes (dotted lines). These are in good agreement for appropriate levels
of precision but represent a ‘fantasy’ at very high levels of precision (see lower row). These over-
confident predictions are reflected in a progressive fall in prediction error (see right column), such
that, at high levels of precision there is no prediction error when there should be. In short, a high
precision leads to overconfident inference, which subverts appropriate prediction errors and their
ability to drive associative plasticity
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in the ensuing perseverative behaviour. This may represent one way in which ad-
dictive behaviour could be understood. The implicit explanation for why high lev-
els of precision are maintained in addictive (preservative) behaviour rests upon the
assumption that the behaviour per se results in the brain adopting inappropriately
high levels of precision. Neurobiologically speaking, this translates into inappro-
priately high levels of post-synaptic gain in specific neuronal populations. This is
consistent with the action of nearly all known drugs of abuse, which affect the
mesocorticolimbic dopamine system. Clearly, there can be many ways in which
to associate dopaminergic and other neuromodulatory mechanisms with the various
parameters and states of predictive coding models. We have chosen to focus on the
role of classical neuromodulators in optimising the sensitivity or gain of cells and
have equated this with the brain’s representation of the precision of random fluc-
tuations in the environment: in other words, a representation of uncertainty. This
is certainly consistent with some electrophysiological interpretations of dopamin-
ergic firing, in which phasic dopamine release may represent reward prediction
error per se and sustained or tonic firing represents the level of uncertainty (Fio-
rillo et al. 2003). For example, prediction error on the physiological states could
be encoded by phasic discharges in the dopaminergic system, whereas the post-
synaptic gain of DA error units may be influenced by (or cause) tonic discharge
rates.

Traditionally, midbrain dopamine neurons in the substantia nigra and ventral
tegmental area (VTA) are thought to encode reward prediction error (Montague et
al. 1996; Schultz et al. 1997; Schultz 1998; Salzman et al. 2005). Activity in these
neurons reflects a mismatch between expected and experienced reward that emulates
the prediction errors used in (abstract) value-learning theories (Friston et al. 1994;
Montague et al. 1996; Sutton and Barto 1981). Indeed, aberrant reward predic-
tion error accounts have proposed for addictive behaviour (Lapish et al. 2006;
Redish 2004) and the maintenance of maladaptive habits (Takahashi et al. 2008).
However, recent studies suggest a diverse and multilateral role for dopamine that
is more consistent with encoding the precision of generalised prediction errors
in the predictive coding sense (as opposed to reward prediction errors in particu-
lar). For example, punishment prediction error signals (Matsumoto and Hikosaka
2009) and mismatches between expected and experienced information (Bromberg-
Martin and Hikosaka 2009) may be encoded in distinct anatomical populations
of midbrain dopamine neurons. Furthermore, the timing of reward-related sig-
nals in VTA precludes the calculation of a reward prediction error per se (Red-
grave and Gurney 2006) and may report a change in the certainty about sensory
events, via cholinergic input from the pedunculopontine tegmentum (Dommett et
al. 2005). Similarly, violations of perceptual expectations engage hippocampal pro-
jections to the VTA, which modulate a broad population of dopamine neurons
(Lodge and Grace 2006). Human studies with functional neuroimaging suggest
that the ventral striatum responds to non-rewarding, unexpected stimuli in propor-
tion to the salience of the stimulus (Zink et al. 2006), as well as to novel stim-
uli (Wittmann et al. 2007). One of the proposed functions of these striatal re-
sponses is to reallocate resources to unexpected stimuli in both reward and non-
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reward contexts (Zink et al. 2006). Hsu et al. (2005) show that “the level of am-
biguity in choices correlates positively with activation in the amygdala and or-
bitofrontal cortex, and negatively with a striatal system” and interpret their find-
ings in terms of a “neural circuit responding to degrees of uncertainty, contrary to
decision theory”. These results suggest that rather than just coding reward predic-
tion errors, the striatum may have a more general role in processing salient and
unexpected events, under varying degrees of ambiguity or uncertainty (precision).
In summary, the mesocorticolimbic dopamine system may encode numerous types
of expectation violations associated with a change in the precision of top-down
predictions and ensuing prediction errors (see also Schultz and Dickinson 2000;
Fiorillo 2008).

Perhaps one thing to take from these considerations is the complex but intu-
itive interplay between the many variables that need to be encoded by the brain for
optimal behaviour. This means that it may not be easy, given the present state of
knowledge, to associate the algorithmic components of optimal schemes with spe-
cific neurotransmitter systems or their kinetics. Having said this, there are obvious
commonalities between the dynamical simulations presented above and the more
abstract formulations that rest on things like the Rescorla-Wagner model (Rescorla
and Wagner 1972) and dynamic programming. All these formulations highlight the
importance of prediction error on physiological states normally associated with re-
ward. This has been nuanced in the current formulation by a focus on the precision
of this prediction error as opposed to the prediction error per se. As we have noted
previously, it may be that dopamine does not encode the prediction error on value
but the value (precision) of prediction error. The motivation for this perspective rests
on the empirical observations discussed above and, more theoretically, on symmetry
arguments that place precision centre-stage in terms of amplifying expected actions
and percepts. This bilateral role of neuromodulation to select actions and precepts
maps nicely to a role for post-synaptic gain in intention and attention. In short, we
may be looking at the same mechanism but implemented in different parts of the
brain.

9.6 Conclusion

In this chapter, we have tried to cover the fundaments of adaptive behaviour starting
from basic principles. We have used the imperative for biological systems to resist
an increase in their entropy to motivate a free-energy principle that explains both
action and perception. When this principle is unpacked, in the context of generative
models the brain might use, we arrive at a fairly simple message-passing scheme
based upon prediction errors and the optimisation of their precision by synaptic
gain. We then considered generic forms that these models might possess, where the
form itself entails prior expectations about the motion of hidden states in the world
and, through active inference, behaviour. We considered fixed-point policies of the
sort found in psychology and optimal control theory. We then proceeded to itinerant
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policies that have a more dynamic and ethologically valid flavour. The notion of
itinerant policies, when combined with active inference, provides a rich framework
in which to understand many aspects of behaviour. We have focused on changes
in behaviour following a down-regulation or up-regulation of the precision, under
which perceptual inference and learning proceeds. This was motivated by the psy-
chopharmacology of addiction, which almost invariably involves some change in
dopaminergic neurotransmission and, from an algorithmic perspective, the optimi-
sation of precision in the brain. The results of these simulations suggest plausible
explanations for bradykinetic and addictive behaviour that rest upon impaired infer-
ence and learning respectively. Both the functionalist perspective afforded by this
analysis and the putative neurobiological mechanisms fit comfortably with many
known facts in addiction research. However, a specific mapping between functional
architectures of the sort considered here and the neurobiology of addiction clearly
requires more work. Although an awful condition from a clinical point of view, ad-
diction may be nature’s most unique and pervasive psychopharmacological experi-
ment, in which complex behaviour confounds the elemental (synaptic) mechanisms
upon which it rests.
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nett for helping prepare this manuscript.

Appendix A: Parameter Optimisation and Newton’s Method

There is a close connection between the updates implied by Eq. (9.9) and Newton’s
method for optimisation. Consider the update under a local linearisation, assuming
Lϕ ≈ Fϕ

�μ̃(ϕ) = (
exp

(
t�(ϕ)

) − I
)�(ϕ)−1 ˙̃μ(ϕ)

˙̃μ(ϕ) =
[

μ′(ϕ)

−Lϕ − κμ′(ϕ)

]

�(ϕ) = ∂ ˙̃μ(ϕ)

∂μ̃(ϕ)
=

[
0 I

−Lϕϕ −κ

]
(A.1)

As time proceeds, the change in generalised mean becomes

lim
t→∞�μ̃(ϕ) = −�(ϕ)−1 ˙̃μ(ϕ) =

[
�μ(ϕ)

�μ′(ϕ)

]
= −

[
L−1

ϕϕLϕ

μ′(ϕ)

]

�(ϕ)−1 =
[−κL−1

ϕϕ −L−1
ϕϕ

I 0

] (A.2)

The first line means the motion cancels itself and becomes zero, while the change
in the conditional mean �μ(ϕ) = −L−1

ϕϕLϕ becomes a classical Newton update.
The conditional expectations of the parameters were updated after every simulated
exposure using this scheme, as described in Friston (2008).
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Appendix B: Simulating Action and Perception

The simulations in this paper involve integrating time-varying states in the envi-
ronment and the agent. This is the solution to the following ordinary differential
equation

u̇ =

⎡
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ȧ

⎤
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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−Fa
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� =
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.1)

To update these states we use a local linearisation; �u = (exp(�t�) − I )�(t)−1u̇

over time steps of �t , where � = ∂u̇/∂u is evaluated at the current conditional
expectation (Friston et al. 2010).
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