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Population dynamics: Variance and the sigmoid activation function
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This paper demonstrates how the sigmoid activation function of
neural-mass models can be understood in terms of the variance or
dispersion of neuronal states. We use this relationship to estimate the
probability density on hidden neuronal states, using non-invasive
electrophysiological (EEG) measures and dynamic casual modelling.
The importance of implicit variance in neuronal states for neural-mass
models of cortical dynamics is illustrated using both synthetic data and
real EEG measurements of sensory evoked responses.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

The aim of this paper is to show how the sigmoid activation
function in neural-mass models can be understood in terms of the
dispersion of underlying neuronal states. Furthermore, we show
how this relationship can be used to estimate the probability den-
sity of neuronal states using non-invasive electrophysiological
measures such as the electroencephalogram (EEG).

There is growing interest in the use of mean-field and neural-
mass models as observation models for empirical neurophysiolo-
gical time-series (Wilson and Cowan, 1972; Nunez, 1974; Lopes
da Silva et al., 1976; Freeman, 1978, 1975; Jansen and Rit, 1995;
Jirsa and Haken, 1996; Wright and Liley, 1996; Valdes et al., 1999;
Steyn-Ross et al., 1999; Frank et al., 2001; David and Friston,
2003; Robinson et al., 1997, 2001; Robinson, 2005; Rodrigues
et al., 2006). Models of neuronal dynamics allow one to ask
mechanistic questions about how observed data are generated.
These questions or hypotheses can be addressed through model
selection by comparing the evidence for different models, given
the same data. This endeavour is referred to as dynamic causal
modelling (DCM) (Friston, 2002, 2003; Penny et al., 2004; David
et al., 2006a,b; Kiebel et al., 2006). There has been considerable
success in modelling fMRI, EEG, MEG and LFP data using DCM
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(David et al., 2006a,b; Kiebel et al., 2006; Garrido et al., 2007;
Moran et al., 2007). All these models embed key nonlinearities
that characterise real neuronal interactions. The most prevalent
models are called neural-mass models and are generally for-
mulated as a convolution of inputs to a neuronal ensemble or
population to produce an output. Critically, the outputs of one
ensemble serve as input to another, after some static transforma-
tion. Usually, the convolution operator is linear, whereas the
transformation of outputs (e.g., mean depolarisation of pyramidal
cells) to inputs (firing rates in presynaptic inputs) is a nonlinear
sigmoidal function. This function generates the nonlinear beha-
viours that are critical for modelling and understanding neuronal
activity. We will refer to these functions as activation or input-
firing curves.

The mechanisms that cause a neuron to fire are complex
(Mainen and Sejnowski, 1995; Destexhe and Paré, 1999); they
depend on the state (open, closed; active, inactive) of several kinds
of ion channels in the postsynaptic membrane. The configuration
of these channels depends on many factors, such as the history of
presynaptic inputs and the presence of certain neuromodulators. As
a result, neuronal firing is often treated as a stochastic process.
Random fluctuations in neuronal firing function are an important
aspect of neuronal dynamics and have been the subject of much
study. For example, Miller and Wang (2006) look at the temporal
fluctuations in firing patterns in working memory models with
persistent states. One perspective on this variability is that it is
caused by fluctuations in the threshold of the input-firing curve of
individual neurons. This is one motivation for a sigmoid activation
function at the level of population dynamics; which rests on the
well-known result that the average of many different threshold
functions is a nonlinear sigmoid. We will show the same sigmoid
function can be motivated by assuming fluctuations in the neuronal
states (Hodgkin and Huxley, 1952). This is a more plausible
assumption because variations in postsynaptic depolarisation over
a population are greater than variations in firing threshold (Fricker
et al 1999): in active cells, membrane potential values fluctuate by
up to about 20 mV, due largely to hyperpolarisations that follow
activation. In contrast, firing thresholds vary up to only 8 mV.
Furthermore, empirical studies show that voltage thresholds,
determined from current injection or by elevating extracellular
K+, vary little with the rate of membrane polarisation and that the
“speed of transition into the inactivated states also appears to
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1 In all cases, type I cells experience a saddle-node bifurcation on the
invariant circle, at threshold. Type II neurons, may have three different
bifurcations; i.e., a subcritical Hopf bifurcation (most frequent), a
supercritical Hopf bifurcation, or a saddle node bifurcation outside the
invariant circle.
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contribute to the invariance of threshold for all but the fastest
depolarisations” (Fricker et al., 1999). In short, the same mean-
field model can be interpreted in terms of random fluctuations on
the firing thresholds of different neurons or fluctuations in their
states. The latter interpretation is probably more plausible from
neurobiological point of view and endows the sigmoid function
parameters with an interesting interpretation, which we exploit in
this paper. It should be noted that Wilson and Cowan (1972)
anticipated that the sigmoid could arise from a fixed threshold and
population variance in neural states; after Eq. (1) of their seminal
paper they state: “Alternatively, assume that all cells within a
subpopulation have the same threshold, … but let there be a
distribution of the number of afferent synapses per cell.” This
distribution induces variability in the afferent activity seen by any
cell.

This is the first in a series of papers that addresses the impor-
tance of high-order statistics (i.e., variance) in neuronal dynamics,
when trying to model and understand observed neurophysiological
time-series. In this paper, we focus on the origin of the sigmoid
activation function, which is a ubiquitous component of many
neural-mass and cortical-field models. In brief, this treatment pro-
vides an interpretation of the sigmoid function as the cumulative
density on postsynaptic depolarisation over an ensemble or pop-
ulation of neurons. Using real EEG data we will show that
population variance, in the depolarisation of neurons in somato-
sensory sources generating sensory evoked potentials (SEP)
(Litvak et al., 2007) can be quite substantial, especially in relation
to evoked changes in the mean. In a subsequent paper, we will
present a mean-field model of population dynamics that covers
both the mean and variance of neuronal states. A special case of
this model is the neural-mass model, which assumes that the
variance is fixed (David et al., 2006a,b; Kiebel et al., 2006). In a
final paper, we will use these models as probabilistic generative
models (i.e., dynamic causal models) to show that population
variance can be an important quantity, when explaining observed
EEG and MEG responses.

This paper comprises three sections. In the first, we present the
background and motivation for using sigmoid activation functions.
These functions map mean depolarisation, within a neuronal
population, to expected firing rate. We will illustrate the origins of
their sigmoid form using a simple conductance-based model of a
single population. We rehearse the well-known fact that threshold
or Heaviside operators in the equations of motion for a single
neuron lead to sigmoid activation functions, when the model is
formulated in terms of mean neuronal states. We will show that the
sigmoid function can be interpreted as the cumulative density
function on depolarisation, within a population.

In the second section we emphasise the importance of variance or
dispersion by noting that a change in variance leads to a change in
the form of the sigmoid function. This changes the transfer function
of the system and its input–output properties. We will illustrate this
by looking at the Volterra kernels of the model and computing the
modulation transfer function to show how the frequency response of
a neuronal ensemble depends on population variance.

In the final section, we estimate the form of the sigmoid function
using the established dynamic causal modelling technique and SEPs,
following medium nerve stimulation. In this analysis, we focus on
a simple DCM of brainstem and somatosensory sources, each com-
prising three neuronal populations. Using standard variational tech-
niques, we invert the model to estimate the density on various
parameters, including the parameters controlling the shape of the
sigmoid function. This enables us to estimate the implicit probability
density function on depolarisation of neurons within each popula-
tion. We conclude by discussing the implications of our results for
neural-mass models, which ignore the effects of population variance
on the evolution of mean activity. We use these conclusions to
motivate a more general model of population dynamics that will be
presented in a subsequent paper (Marreiros et al., manuscript in
preparation).

Theory

In this section, we will show that the sigmoid activation func-
tion used in neural-mass models can be derived from straightfor-
ward considerations about single-neuron dynamics. To do this, we
look at the relationship between variance introduced at the level of
individual neurons and their population behaviour.

Saturating nonlinear activation functions can be motivated by
considering neurons as binary units; i.e., as being in an active or
inactive state. Wilson and Cowan (1972) showed that (assuming
neuronal responses rest on a threshold or Heaviside function of
activity) any unimodal distribution of thresholds results in a sig-
moid activation function at the population level. This can be seen
easily by assuming a distribution of thresholds within a population
characterised by the density, p(w). For unimodal p(w), the response
function, which is the integral of the threshold density, will have a
sigmoid form. For symmetric and unimodal distributions, the sig-
moid is symmetric and monotonically increasing; for asymmetric
distributions, the sigmoid loses point symmetry around the
inflection point; in the case of multimodal distributions, the sig-
moid becomes wiggly (monotonically increasing but with more
than one inflexion point). Another motivation for saturating acti-
vation functions considers the firing rate of a neuron and assumes
that its time average equals the population average (i.e., activity is
ergodic). The firing rate of neurons always shows saturation and
hence sigmoid-like behaviour. There are two distinct types of
input-firing curves, type I and type II. The former curves are
continuous and represent an increasing analytic function of input.
The latter has a discontinuity, where firing starts after some critical
input level is reached. These transitions correspond to a bifurcation
from equilibrium to a limit-cycle attractor.1 The type of bifurcation
determines the fundamental computational properties of neurons.
Type I and II neuronal behaviour can be generated by the same
neuronal model (Izhikevich, 2007). From these considerations, it is
possible to deduce population models (Dayan and Abbott, 2001).

We will start with the following ordinary differential equation
(ODE) modelling the dynamics of a single neuron from the neural-
mass model for EEG/MEG (David and friston, 2003, 2006a,b;
Kiebel et al., 2006; Garrido et al., in press; Moran et al., 2007); for
example, the i-th neuron in a population of excitatory spiny stellate
cells in the granular layer:

:x ið Þ
1 ¼ x ið Þ

2
:x ið Þ
2 ¼ jGðhHðx jð Þ

1 � w jð ÞÞi
j
þ CuÞ � 2jx ið Þ

2 � j2x ið Þ
1 :

ð1Þ



Fig. 1. Relationship between the sigmoid slope ρ and the population
variance, expressed as the standard deviation.
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This is a fairly ubiquitous form for neuronal dynamics in many
neural-mass and cortical-field models and describes neuronal
dynamics in terms of two states; :x ið Þ

1 which can be regarded as
depolarisation and :x ið Þ

2 , which corresponds to a scaled current. These
ordinary differential equations correspond to a convolution of input
with a ‘synaptic’ differential alpha-function (e.g., Gerstner 2001).
This synaptic kernel is parameterised by G, controlling the
maximum postsynaptic potential and κ, which represents a lumped
rate constant. Here input has exogenous and endogenous compo-
nents: exogenous input is injected current u scaled by the parameter,
C. Endogenous input arise from connections with other neurons in
the same population (more generally, any population). It is assumed
that each neuron senses all others, so that the endogenous input is the
expected firing over neurons in the population. Therefore, neural-
mass models are necessarily associated with a spatial scale over
which the population is deployed; i.e. the so-called mesoscale,2 from
a few hundred to a few thousand neurons.

The firing of one neuron is assumed to be a Heaviside function
of its depolarisation that is parameterised by some neuron-specific
threshold, w(i). We can write this in terms of the cumulative density
over the states and thresholds of the population

hHðx jð Þ
1 � w jð ÞÞi

j
¼

R R
H x1 � wð Þp x1;wð Þdx1dw ¼

ZZ
x1Nw

p x1;wð Þdx1dw:

ð2Þ
This expression can be simplified, if we assume the states have

a large variability in relation to the thresholds (see Fricker et al.,
1999) and replace the density on the thresholds, p(w) with a point
mass at its mode, w. Under this assumption, the input from other
neurons can be expressed as a function of the sufficient statistics3

of the population's states; for example, if we assume a Gaussian
density p x1ð Þ ¼ N x1 : A1; r21

� �
we can write

hHðx jð Þ
1 � wÞi

j
¼

Zl

w

p x1ð Þdx1 ¼ S A1 � wð ÞZp x1ð Þ ¼ S V x1 � A1ð Þ:

ð3Þ
Where S(·) is the sigmoid cumulative density of a zero-mean

normal distribution with variance σ1
2 (c.f., Freeman, 1975). Eq. (3) is

quite critical because it links the motion of a single neuron to the
population density and therefore couples microscopic and meso-
scopic dynamics. Finally, we can summarise the population dyna-
mics in terms of the sufficient statistics of the states to give a mean-
field model :A ¼ f A; Að Þ by taking the expectation of Eq. (1)

:x ið Þ
1 ¼ x ið Þ

2
:x ið Þ
2 ¼ jG S A1 � wð Þ þ Cuð Þ � 2jx ið Þ

2 � j2x ið Þ
1 Z

:A1 ¼ A2:A2 ¼ jG S A1 � wð Þ þ Cuð Þ � 2jA2 � j2A1:

ð4Þ
2 Different descriptions pertain to at least three levels of organization. At
the lowest level we have single neurons and synapses (microscale) and at
the highest, anatomically distinct brain regions and inter-regional pathways
(macroscale). Between these lies the level of neuronal groups or
populations (mesoscale) (Sporns et al., 2005).
3 The quantities that specify a probability density; e.g., the mean and

variance.
We can do this easily because the equations of motion are linear
in the states (note the sigmoid is not a function of the states). The
ensuing mean-field model has exactly the same form as the neural-
mass model we use in dynamic causal modelling of electromag-
netic observations (David et al., 2006a,b). It basically describes the
evolution of mean states that are observed directly or indirectly. In
these neural-mass models the sigmoid has a fixed form4

S Ai � wð Þ ¼ 1
1þ exp �q Ai � wð Þð Þ ð5Þ

where ρ is a parameter that determines its slope (c.f., voltage-
sensitivity). It is this function that endows the model with nonlinear
behaviour and biological plausibility. However, this form assumes
that the variance of the states is fixed, because the sigmoid encodes
the density on neuronal states (see Eq. (3)). In the particular
parameterisation of Eq. (5), the slope-parameter corresponds
roughly to the inverse variance or precision of p(xi); more precisely

r2i qð Þ ¼ R
xi � Aið Þ2p xið Þdxi

p xið Þ ¼ S V xi � Aið Þ ¼ qexp �q xi � Aið Þð Þ
1þ exp �q xi � Aið Þð Þð Þ2 :

ð6Þ

Fig. 1 shows the implicit standard deviation over neural states
as a function of the slope-parameter, ρ. Heuristically, a high
voltage-sensitivity or gain corresponds to a tighter distribution of
voltages around the mean, so that near-threshold increases in the
mean cause a greater proportion of neurons to fire and an increased
sensitivity to changes in the mean.

This analysis is based on the assumption that variations in
threshold are small, in relation to variability in neuronal states
4 By fixed we mean constant over time. Note that we ignore a constant
term here that can be absorbed into exogenous input.
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themselves. Clearly, in the real brain, threshold variance is not
zero; in the Appendix we show that if we allow for variance on the
thresholds (as suggested by our reviewers), the standard deviation
in Fig. 1 becomes an upper bound on the population variability of
the states. In the next section, we look at how the dynamics of a
population can change profoundly when the inverse variance (i.e.,
gain) changes.

Kernels, transfer functions and the sigmoid

In this section, we illustrate the effect of changing the slope-
parameter (i.e., variance of the underlying neuronal states) on the
input–output behaviour of neuronal populations. We will start with
a time-domain characterisation, in terms of convolution kernels
and conclude with a frequency-domain characterisation, in terms of
transfer functions. We will see that the effects of changing the
implicit variance are mediated largely by first-order effects and can
be quite profound.

Nonlinear analysis and Volterra kernels

The input–output behaviour of population responses can be
characterised in terms of a Volterra series. These series are a
functional expansion of a population's input that produces its
outputs (where the outputs from one population constitute the
inputs to another). The existence of this expansion suggests that the
history of inputs and the Volterra kernels represent a complete and
sufficient specification of population dynamics (Friston et al.,
2003b). The theory states that, under fairly general conditions, the
Fig. 2. Schematic of the neural-mass model used to
output y of a nonlinear dynamic system can be expressed in terms
of an infinite sum of integral operators

y tð Þ ¼
X
i

R
N
R
ki r1; N rið Þu t � r1ð Þu t � rið Þdr1 N dri ð7aÞ

where the i-th order kernel is

ki r1; N rið Þ ¼ Ayi tð Þ
Au t � r1ð Þ N Au t � rið Þ : ð7bÞ

Volterra kernels represent the causal input–output character-
istics of a system and can be regarded as generalised impulse
response functions (i.e., the response to an impulse or spike). The
first-order kernel κ1(σ1)=∂y(t) /∂u(t−σ1) encodes the response
evoked by a change in input at t−σ1. In other words, it is a time-
dependent measure of driving efficacy. Similarly the second-order
kernel κ2(σ1, σ2) =∂y 2(t) /∂u(t − σ1)∂u(t−σ2) reflects the
modulatory influence of the input at t−σ1 on the response evoked
by input at t−σ2; and so on for higher orders.

Volterra series have been described as a ‘power series with
memory’ and are generally thought of as a high-order or nonlinear
convolution of inputs to provide an output. Essentially, the kernels
are a re-parameterisation of the system that encodes the input–
output properties directly, in terms of impulse response functions.
In what follows, we computed the first and second-order kernels
(i.e., impulse response functions) of the neural-mass models, using
different slope-parameters. This enabled us to see whether the
changes in population variance are expressed primarily in first or
second-order effects.
model a single source (Moran et al., 2007).



Fig. 3. Upper panels: The first-order Volterra kernels for the depolarisation of pyramidal (blue) and spiny stellate (green) populations, for two different values of
ρ (left: 0.8, right: 1.6). There is a difference between the waveform, which is marked for the pyramidal cells. Lower panels: The corresponding second-order
Volterra kernels in image format. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Model parameters

Parameter Physiological interpretation Value

He,i Maximum postsynaptic potentials 8 mV, 32 mV
τe,i=1/κe,i Postsynaptic rate constants 4 ms, 16 ms
τa=1/κe,i Adaptation rate constant 512 ms
γ1,2,3,4,5 Intrinsic connectivity 128, 128, 64, 64, 4
w Threshold 1.8
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The specific neural-mass model we used has been presented in
detail by Moran et al. (2007). This model uses intrinsic coupling
parameters, γi, between three subpopulations within any source of
observed electromagnetic activity. Each source comprises an
inhibitory subpopulation in the supragranular layer and excitatory
pyramidal (output) population in an infra-granular layer. Both these
populations are connected to an excitatory spiny (input) population
in the granular layer. This model differs from the model used by
David and friston, (2003) in two ways: (i) the inhibitory subpopu-
lation has recurrent self-connections and (ii) spike-rate adaptation
is included to mediate slow neuronal dynamics. The equations of
motions for a three-population source are shown in Fig. 2; these all
have the form of Eq. (4).

The first-order kernels or response functions for the depolarisa-
tion of the two excitatory populations are shown in Fig. 3 (upper
panels) and the second-order kernels for the excitatory pyramidal
cell population are shown in the lower panels, for two values of the
slope-parameter; ρ=0.8 and ρ=1.6. The other parameters were
chosen such that the system was dynamically stable; see Moran
et al. (2007) and Table 1. The kernels were computed as described
in the appendix of Friston et al. (2000).
The first-order responses exhibit a more complicated response
for the smaller value of ρ; with pronounced peaks at about 10 ms
and 20 ms for the stellate and pyramidal populations respectively.
Both responses resemble damped fast oscillations in the gamma
range (about 40 Hz). In addition, there appears to be a slower
dynamic, with late peaks at about 100ms. This is lost with larger
values of ρ (right panels); furthermore, the pyramidal response is
attenuated and more heavily damped. The second-order kernels
have two pronounced off-diagonal wing-shaped positivities that do
not differ markedly for the two values of ρ. These high-order
kernels tell us about nonlinear or modulatory interactions among



Fig. 4. Upper panel: Image of the transfer function magnitude H(s) where ρ
is varied from a sixteenth to two. Lower panel: Plot of the same data over
frequencies.
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inputs and speak to asynchronous coupling. For example, the peaks
in the second-order kernel at 10 ms and 20 ms (upper arrow) mean
that the response to an input 10 ms in the past is positively
modulated by an input 20 ms ago (and vice versa). The long-term
memory of the population dynamics is expressed in positive asyn-
chronous interactions (lower arrow) around 100 ms. These second-
order effects correspond to interactions between inputs at different
times, in terms of producing changes in the output. They can be
construed as input effects that interact nonlinearly with intrinsic
states, which ‘remember’ the inputs. In the present context, these
effects are due to, and only to, the nonlinear form of the sigmoid
function, which is mandated by the fact it is a cumulative pro-
bability density function. This is an important observation, which
means, under the models considered here, population dynamics
must, necessarily exhibit nonlinear responses.

The effect of changing the gain or slope-parameter is much more
evident in the first-order, relative to the second-order kernels. This
suggests population variance does not, in itself, change the nonlinear
properties of the population dynamics, compared to linear effects.
The reason that the slope-parameter has quantitatively more marked
effects on the first-order kernel is that our neural-mass model is only
weakly nonlinear; it does not involve any interactions among the
states, apart from those mediated by the sigmoid activation function.
We can use this to motivate a focus on linear effects using linear
systems theory in the frequency domain.

Linear analysis and transfer functions

An alternative characterisation of generalised kernels is in terms
of their Fourier transforms, which furnish generalised transfer
functions. A transfer function allows one to compute the frequency
or spectral response of a population given the spectral character-
istics of its inputs. We have presented a linear transfer function
analysis of this neural-mass model previously (Moran et al., 2007).
Our model is linearised by replacing the sigmoid function with a
first-order expansion around μi=0 to give

S Aið Þ ¼ S V�wð ÞAi: ð8Þ
This assumes small perturbations of neuronal states around

steady-state. Linearising the model in this way allows us to evaluate
the transfer function

H sð Þ ¼ C sI � Að Þ�1B ð9Þ
where the state matrices, A=∂f /∂x and B=∂f /∂u are simply the
derivatives of the equations of motion (i.e., Eq. (4)) with respect to
the states and inputs respectively. The frequency response for
steady-state input oscillations at ω radians per second, obtains by
evaluating the transfer function at s= jω (where jω represents the
axis of the complex s-plane corresponding to steady-state frequency
responses). When the system is driven by exogenous input with
spectrum, U(jω), the output is the frequency profile of the stimulus
modulated by the transfer function

jY jxð Þj ¼ jH jxð ÞjjU jxð Þj: ð10Þ

In brief, the transfer function,H(s), filters or shapes the frequency
spectra of the input, U(s) to produce the observed spectral response,
Y(s). The transfer function H(s) represents a normalized model of
the systems input–output properties and embodies the steady-state
behaviour of the system. Eq. (9) results from one of the most useful
properties of the Laplace transform, which enables differentiation to
be cast as a multiplication. One benefit of this is that convolution in
the time domain can be replaced by multiplication in the s-domain.
This reduces the computational complexity of the calculations re-
quired to analyse the system.

We examined the effects of the slope-parameter on the transfer
function by computing |H(jω)| for different values of q ¼ 1

16
; 2

16
; N ; 2.

|H(jω)| corresponds to the spectral response under white noise in-
put (see Eq. (10)). Fig. 4 shows the spectral response is greatest at
about, ρ=0.8 when it exhibits a bimodal frequency distribution; with
a pronounced alpha peak (~12 Hz) and a broader gamma peak
(~40 Hz). As ρ increases or decreases from this value the alpha
component is lost, leading to broad-band responses expressed maxi-
mally in the gamma range. This is an interesting result, which suggests
that the population's spectral responses are quite sensitive to changes
in the dispersion of states, particularly with respect to the relative
amount of alpha and gamma power. Having said this, these results
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should not be generalised because they only hold for the values of the
other model parameters we used. These values were chosen to
highlight the dependency on the slope-parameter.

To illustrate the change in the response properties caused by a
change in ρ, we computed the response of the excitatory populations
to an input spike embedded in white noise process (where the
amplitude of the noise was one sixteenth of the spike). Using exactly
the same input, the responses were integrated for the two values of ρ
above: ρ=0.8 which maximises the frequency response and a larger
value, ρ=1.6. Fig. 5, shows the ensuing depolarisation of pyramidal
and spiny cells and corresponding time–frequency plots. For the
smaller ρ (large population variance), the output is relatively
enduring with a preponderance of alpha power. For the larger value
(small population variance), the output is more transient and
embraces higher frequencies. We will return to this distinction in an
empirical setting in the next section, where we try to estimate the
slope-parameters and implicit population variance using real data.

Estimating population variance with DCM

In this final section, we exploit the interpretation of the sigmoid
as a cumulative density on the states, specifically the depolarisa-
Fig. 5. Upper panels: Integrated response to a noisy spike input, for two different
(output) population is shown in blue, and the response of the spiny stellate in green.
(For interpretation of the references to colour in this figure legend, the reader is re
tion. This interpretation renders the derivative of the sigmoid a
probability density on the voltage: recall from the first section

Zl

w

p xið Þdxi ¼ S Ai � wð ÞZp xið Þ ¼ S V xi � Aið Þ: ð11Þ

This means we can use estimates of the slope-parameter,
which specifies S′, to infer the underlying variance of depolarisa-
tion in neuronal populations (or an upper bound; see Appendix).
In what follows, we estimate the slope-parameter using EEG data
and Dynamic Causal Modelling. We present two analyses. The
first addressed the question: “are changes in the mean de-
polarisation small or large relative to the dispersion of voltages?”
We answered this by evaluating the evoked changes in mean
depolarisation in somatosensory sources generating SEPs and
then comparing the amplitude of these perturbations with the
implicit variance. The second analysis tried to establish whether
population variance is stable over time. This issue has profound
implications for neural-mass models that assume variance does
not change with time.
values of ρ (left: 0.8, right: 1.6). The response of the excitatory pyramidal
Lower panels: The respective time–frequency responses for the two ρ cases.
ferred to the web version of this article.)



154 A.C. Marreiros et al. / NeuroImage 42 (2008) 147–157
Analysis of somatosensory responses

We analysed data from a study of long-term potentiation (LTP)
reported in Litvak et al. (2007). LTP is a long-lasting modification
of synaptic efficacy and is believed to represent a physiological
substrate of learning and memory (Bliss and Lomo, 1973; Martin
et al., 2000; Malenka and Bear, 2004; Cooke and Bliss, 2006).
Litvak et al. used paired associative stimulation (PAS), which
involved repetitive magnetic cortical stimulation timed to interact
with median nerve (MN) stimulation-induced peripheral signals
from the hand. The PAS paradigm has been shown to induce long-
lasting changes in MN somatosensory evoked potentials (MN-
SSEP; Wolters et al., 2005) as measured by single-channel re-
cordings from the scalp region overlying somatosensory cortex.
The generators of MN-SSEPs evoked by compound nerve sti-
mulation have been studied extensively with both invasive and
non-invasive methods in humans and in animal models (for a
review see Allison et al., 1991). Litvak et al. (2007) characterised
the topographical distribution of PAS-induced excitability changes
as a function of the timing and composition of afferent (MN) so-
matosensory stimulation, with respect to transcranial magnetic
stimulation (TMS).

In this work, we analysed the SEP data from one subject,
following MN stimulation (i.e., in the absence of magnetic
stimulation), with DCM. The network architecture was based on
reports in published literature (Buchner et al., 1995; Ravazzani
et al., 1995, Litvak et al., 2007). We modelled the somatosensory
Fig. 6. Upper panels: Source locations estimated with DCM: Orthogonal slices show
source (consisting of three dipoles: tangential, radial and orthogonal). Lower panel
graph demonstrates the goodness of fit of the DCM using the same format.
system with four equivalent current dipoles or sources, each
comprising three neuronal subpopulations as described in the
previous section. Exogenous input was modelled with a gamma
function (with free parameters), peaking shortly after MN stimu-
lation. In this model, exogenous input was delivered to the brain-
stem source (BS), which accounts for early responses in the
medulla. In Brodmann area (BA) 3b of S1, we deployed three
sources, given previous work showing distinct tangential and radial
dipoles. We employed a third source to account for any other
activity. These sources received endogenous input from the BS
source, via extrinsic connections to the stellate cells.

We inverted the resulting DCM using a variational scheme
(David et al., 2006a) and scalp data from 12 ms to 100 ms,
following MN stimulation. This inversion used standard variational
techniques, which rest on a Bayesian expectation maximisation
(EM) algorithm under a Laplace approximation to the true po-
sterior. This provided the posterior densities of the models para-
meters, which included the synaptic parameters of each population,
the extrinsic connection strengths, the parameters of the gamma
input function and the spatial parameters of the dipoles (for details
see David et al., 2006a,b; Kiebel et al., 2006). The resulting po-
sterior means of dipole locations and moments are shown in Fig. 6
(upper panel).

In terms of the temporal pattern of responses, the MN-SSEP has
been studied extensively (Allison et al., 1991). A P14 component is
generated subcortically, then a N20–P30 complex at the sensor-
imotor cortex (BA 3b) exhibits a typical ‘tangential source pattern’.
ing the brainstem dipole (BS) and the left primary somatosensory cortex (S1)
s: The left graph shows the observed MN-SSEP in channel space. The right



Fig. 8. Change in the conditional estimates of ρ (mean and 90% confidence
intervals) as a function of the peristimulus time-window used for model
inversion.
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This is followed by a P25–N35 complex with a ‘radial source
pattern’. The remainder of the SEP can be explained by an
‘orthogonal source pattern’ originating from the hand representa-
tion in S1 (Litvak et al., 2007). These successive response com-
ponents were reproduced precisely by the DCM. The accuracy of
the DCM can be appreciated by comparing the observed data with
predicted responses in Fig. 6 (lower panels).

Using Eq. (6) and the maximum a posteriori estimate of the slope-
parameter, we evaluated the implicit variance of depolarisation σi

2(ρ)
within each neuronal population (see Eq. (6) and Fig. 1). This variance
can be combinedwith the time-dependentmean depolarisationμi(t) of
any population, estimated by the DCM, to reconstruct the implicit
density on population depolarisation over peristimulus time. Fig. 7
shows this density in terms of its mean and 90% confidence intervals
for the first S1 pyramidal population. This quantitative analysis is
quite revealing; it shows that evoked changes in the mean depo-
larisation are small in relation to the dispersion. Thismeans that only a
small proportion of neurons are driven above threshold, even during
peak responses. For example, using the estimated threshold,w, during
peak responses only about 12% of neurons would be above threshold
and contribute to the output of the population. In short, this sort of
result suggests that communication among different populations is
mediated by a relatively small faction of available neurons and that
small changes in mean depolarisation are sufficient to cause large
changes in firing rates, because depolarisation is dispersed over large
ranges.

Epilogue

The preceding analysis assumes that the variance is fixed over
peristimulus time. Indeed neural-mass models in general assume a
fixed variance because they assume a fixed form for the sigmoid
activation function. Neural-mass models are obliged to make this
assumption because their state variables allow only changes in
mean states, not changes in variance or higher-order statistics of
neuronal activity. Is this assumption sensible?

In our next paper on population variance we will compare mean-
field models that cover both the mean and variance as time-varying
Fig. 7. S1 source (pyramidal population) mean depolarisation (solid line) as
estimated by DCM. The variance is depicted with 90% confidence intervals
(dashed lines); i.e., ±1.641×σi

2(ρ).
quantities. Under the neural-mass model considered here, we cannot
test formally for changes in variance. However, we can provide
anecdotal evidence for changes in variance by estimating the slope-
parameters over different time-windows of the data. If the variance
does not change with time, then the estimate of population variance
should not change with the time-window used to estimate it. Fig. 8
show estimates of ρ (with 90% confidence intervals)5 that obtain
using different time-windows of the MN-SSEP data. For example,
the estimate, ρ80 was obtained using the time period from 10 to
80 ms. It can be seen immediately that the slope-parameter and
implicit variance changes markedly with the time-window analysed.

The results in Fig. 8 should not be over interpreted because there
are many factors that can lead to differences in the conditional
density when the data change; not least a differential shrinkage to the
prior expectation. However, this instability in the conditional esti-
mates speaks to the potential importance of modelling population
variance as a dynamic quantity.

Conclusion

In this paper, our focus was on how the sigmoid activation
function, linking mean population depolarisation to expected firing
rate can be understood in terms of the variance or dispersion of
neuronal states. We showed that the slope-parameter ρ models
formally the effects of variance (to a first approximation) on
neuronal interactions. Specifically, we saw that the sigmoid function
can be interpreted as a cumulative density function on depolarisa-
tion, within a population. Then, we looked at how the dynamics of a
population can change profoundly when the variance (slope-para-
meter) changes. In particular, we examined how the input–output
properties of populations depend on ρ, in terms of first (driving) and
second (modulatory) order convolution kernels and corresponding
transfer functions.
5 Note that these confidence intervals are not symmetric about the mean.
This is because we actually estimate ln ρ, under Gaussian shrinkage priors.
Under the Laplace assumption (David et al., 2006a) this means the
condition density q(ρ) has a log-normal form.
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We used real EEG data to show that population variance, in the
depolarisation of neurons from somatosensory sources generating
SEPs, can be quite substantial. Using DCM, we estimated the SEP
parameter density controlling the shape of the sigmoid function.
This allowed us to quantify the population variance in relation to the
evolution of mean activity of neural-masses. The quantitative results
of this analysis suggested that only a small proportion of neurons
are actually firing at any time, even during the peak of evoked
responses.

We have seen that the dynamics of neuronal populations can be
captured qualitatively via a system of coupled differential equa-
tions, which describe the evolution of the average firing rate of
each population. To accommodate stochastic models of neural
activity, one could solve the associated Fokker–Planck equation for
the probability distribution of activities in the different neuronal
populations. This can be a difficult computational task, in the
context of a large number of states and populations (e.g., Harrison
et al., 2005). Rodriguez and Tuckwell (1996, 1998) presented an
alternative approach for noisy systems using the method of mo-
ments (MM). This entails the derivation of deterministic ordinary
differential equations (ODE) for the first and second-order mo-
ments of the population density. The resulting reduced system
lends itself to both analytical and numerical solution, as compared
with the original Langevin formulation.

Hasegawa (2003a) proposed a semi-analytical mean-field appro-
ximation, in which equations of motions for moments were derived
for a FitzHugh–Nagumo ensemble. In Hasegawa (2003b), the ori-
ginal stochastic differential equations were replaced by deterministic
ODEs by applying themethod ofmoments (Rodriguez and Tuckwell,
1996). This approach was applied to an ensemble of Hodgkin–
Huxley neurons, for which effects of noise, coupling strength, and
ensemble size have been investigated. In Deco and Martí (2007), the
MM was extended to cover bimodal densities on the state variables;
such that a reduced system of deterministic ODEs could be derived
to characterise regimes of multistability. We will use MM in our next
paper, where we derive the ODEs of the sufficient statistics of
integrate-and-fire ensembles of distributed neuronal sources. These
ODEs will form the basis of dynamical causal models of empirical
EEG and LFP data.

The insights from these studies and this paper motivate a more
general model of population dynamics that will be presented in the
next paper on this subject. In that paper, we will compare DCMs based
on density-dynamics with those based on neural-mass models. Mo-
delling the interactions between mean neuronal states (e.g., depo-
larisation) and their dispersion or variance over each population may
provide a better and more principled model of real data. In brief, these
models allow us to ask if the variance of neuronal states in a population
affects the mean (or vice versa) using the evidence or marginal
likelihood of the data under different models. Moreover, we can see if
observed responses are best explained by mean firing rates, or some
mixture of the mean and higher-order moments. This will allow one to
adjudicate between models that include high-order statistics of
neuronal states in EEG time-series models. In a final paper, we will
use these models as probabilistic generative models (i.e., dynamic
causal models) to show that population variance is an important
quantity, when explaining observed EEG and MEG responses.
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Software note
Matlab demonstration and modelling routines referred to in this

paper are available as academic freeware as part of the SPM software
from http://www.fil.ion.ucl.ac.uk/spm (neural models toolbox).

Appendix

The predicted firing rate of a population is the expectation of
the step or Heaviside function of depolarisation, over both the
states and the threshold probability density functions (Eq. (2) in the
main text):

hHðx jð Þ
1 � w jð ÞÞi

p wð Þp x1ð Þ
¼

R R
H x1 � wð Þp x1;wð Þdx1dw: A:1

Assuming that x1 and w are independent and normally distri-
buted; z=x1−w has a Gaussian distribution; p(z)=N(μz, Σz)=N(μx −
μw, Σx+Σw) and Eq. (A.1) can be written as:

hHðx jð Þ
1 � w jð ÞÞi

p wð Þp x1ð Þ
¼

R
H zð Þdz

¼
R
zz0

p zð Þdzc 1

1þ exp q
P

z

� �
Ax � Awð Þ� � : A:2

This means the expected firing rate remains a function of the
sufficient statistics of the population and retains the same form as
Eq. (3). Furthermore, it shows that for any given value of the slope-
parameter, ρ(Σz) the implicit variance

q
X

z

� ��1
¼

X
z
qð Þ ¼

X
x
þ
X

w
z
X

x
A:3

is always greater than the population variance on neuronal states. This
means we always overestimate the proportion of supra-threshold
neurons that contribute to the firing because Σz(ρ) is an overestimate
of the population variance. In other words, the 12% estimate from
Fig. 7 is an upper bound on the actual proportion of firing neurons.
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