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ABSTRACT

In this paper, we describe a generic approach to modelling dynamics in neuronal populations. This approach
models a full density on the states of neuronal populations but finesses this high-dimensional problem by re-
formulating density dynamics in terms of ordinary differential equations on the sufficient statistics of the
densities considered (c.f., the method of moments). The particular form for the population density we adopt
is a Gaussian density (c.f., the Laplace assumption). This means population dynamics are described by
equations governing the evolution of the population's mean and covariance. We derive these equations from
the Fokker-Planck formalism and illustrate their application to a conductance-based model of neuronal
exchanges. One interesting aspect of this formulation is that we can uncouple the mean and covariance to
furnish a neural-mass model, which rests only on the populations mean. This enables us to compare
equivalent mean-field and neural-mass models of the same populations and evaluate, quantitatively, the
contribution of population variance to the expected dynamics. The mean-field model presented here will
form the basis of a dynamic causal model of observed electromagnetic signals in future work.

© 2008 Elsevier Inc. All rights reserved.

Introduction

Mean-field models of neuronal dynamics have a long history,
spanning a half-century (e.g., Beurle 1956). Models are essential for
neuroscience, in the sense that most interesting questions about the
brain pertain to neuronal mechanisms and processes that are not
directly observable (Tass 2003; Breakspear et al., 2006). This means
that questions about neuronal function are generally addressed by
inference on models or their parameters; where the model links
hidden neuronal processes to our observations and questions (Valdes
et al.,, 1999). Broadly speaking, models are used to generate data to
study emergent behaviours. Alternatively, they can be used as forward
or observation models (e.g., dynamic causal models), which are
inverted given empirical data (David et al., 2006, Kiebel et al., 2006).
This inversion allows one to select the best model (i.e., hypothesis),
given some data and make probabilistic statements about the
parameters of that model (e.g., Penny et al., 2004).

In particular, mean-field models are appropriate for data that
reflect the behaviour of neuronal populations, such as the electro-
encephalogram (EEG), magnetoencephalogram (MEG) and functional
magnetic resonance imaging (fMRI) data. The most prevalent models
of neuronal populations or ensembles are based upon the so-called
mean-field approximation. This approximation replaces the time-
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averaged discharge rate of individual neurons with a common time-
dependent population activity (ensemble average; Knight 2000;
Haskell et al., 2001). The mean-field approximation is used extensively
in statistical physics for otherwise computationally or analytically
intractable problems. An exemplary approach, owing to Boltzmann
and Maxwell, is the approximation of the motion of molecules in a gas
by mean-field terms such as temperature and pressure. Similarly,
evoked response potentials (ERPs) represent the average response
over millions of neurons, where the mean-field approximation
describes the time-dependent distribution of the average population
response. This is possible because the dynamics of the mean of the
density are much less stochastic than the response of a single neuron.
This makes it feasible to develop algorithms that use Bayesian
inference to infer neuronal parameters given measured responses,
using mean-field models (e.g., Harrison et al., 2005).

Usually, neural-mass models are used to model the evolution of the
mean response or the response at steady state. Mean-field approxima-
tions go further and model the full distribution of the population
response. However, mean-field models can be computationally
expensive, because one has to consider the density at all points in
neuronal state-space as opposed to a single quantity (e.g., the mean). In
this paper, we present an approach that simplifies the mean-field
model by using the Laplace approximation: Under the Laplace
approximation, the population or ensemble density assumes a
Gaussian form, whose sufficient statistics comprise the conditional
mean and covariance. In contrast to neural-mass models, this allows
one to model interactions between the first two moments (i.e., mean
and variance) of neuronal states. In a subsequent paper, we will use the
Laplace and neural mass approximations presented here as generative
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models of electrophysiological responses to sensory input. This
subsequent paper will use Bayesian model comparison to compare
both models and establish whether empirical responses contain
evidence for a role of variance in shaping population dynamics.

The Laplace approximation is a ubiquitous device in statistical
physics and machine learning and finesses difficult integration
problems when integrating over probability densities (see Friston
et al 2007; Chumbley et al 2007). Exactly the same device is used here
to furnish a simple scheme for modeling density dynamics. Because
the sufficient statistics of a Gaussian density can be specified in terms
of the first two moments, the ensuing scheme is formally identical to
the second-moment method described by Rodriguez and Tuckwell
(1996). The method of moments (Rodriguez and Tuckwell 1996, 1998),
replaces a system of stochastic differential equations (describing the
states of an ensemble) with deterministic equations describing the
evolution of the sufficient statistics or moments of an ensemble
density. This approach was first applied to a FitzHugh-Nagumo (FN)
neuron (Rodriguez and Tuckwell 1996, Tuckwell and Rodriguez 1998)
and later to Hodgkin Huxley (HH) neurons (Rodriguez and Tuckwell
1998, 2000). This approach assumes that the distributions of the
variables are approximately Gaussian so that they can be character-
ized by their first and second order moments; i.e., the means and
covariances. In related work, Hasegawa described a dynamical mean-
field approximation (DMA) to simulate the activities of a neuronal
network. This method allows for qualitative or semi-quantitative
inference on the properties of ensembles or clusters of FN and HH
neurons; see Hasegawa (2003a,b).

This paper comprises three sections. In the first, we provide the
background to modelling neuronal dynamics with mean-field and
neural-mass models. In the second section, we derive a generic mean-
field treatment of neuronal dynamics starting with any equations of
motion. This treatment is based on a Laplace approximation to the
ensemble density, and is formulated compactly, in terms of the
equations of motion for the sufficient statistics of the ensemble
density. This approach reduces to a neural-mass model when the
second-order statistics (i.e., variance) of neuronal states are ignored.
We will illustrate how neuronal state equations are reformulated as a
mean-field approximation, using a simple conductance-based model
(c.f,, Morris and Lecar, 1981). In the third section, we establish the
validity of the Laplace approximation by comparing the response of
simulated ensembles of neurons to responses under the Laplace and
neural-mass assumptions. The key behaviour we are interested in is
the coupling between the mean and variance of the ensemble, which
is lost in the neural-mass approximations.

Mean field and neural-masses

What follows is a brief summary of the material in Deco et al (in
press), which provides a full account of mean-field models in
neuroscience. The most prevalent models of neuronal populations or
ensembles are based on the mean-field approximation. The basic idea
behind these models is to approximate a very high dimensional
probability distribution with the product of a number of simpler
(marginal) densities. Its utility is best seen in the context of ensemble
or population density models.

Mean-field models

Ensemble models attempt to model the dynamics of large
populations of neurons. Any single neuron can have a number of
attributes; for example, post-synaptic membrane depolarisation, V,
capacitive current I or the time since the last action potential, T. Each
attribute induces a dimension in the state or phase-space of a neuron.
In this example, the phase-space would be three-dimensional and the
state of each neuron would correspond to a point x={V,I.T}eR? or
particle in phase-space. Imagine a very large number of such neurons

that populate phase-space with a density, q(x,t). As the state of each
neuron evolves, the points will flow through phase-space and the
ensemble density; q(x,t) will evolve until it reaches some steady-state
or equilibrium. It is the evolution of the density per se that is
characterised in ensemble density methods. These models are
particularly attractive because the density dynamics conform to a
simple equation; the Fokker Planck equation (Risken 1996; Dayan and
Abbott 2001; Frank et al., 2001; Gerstner and Kistler 2002)

. L afig, & (99
q=-V-fqg+Vv-Dvq= 1-; % +i_jZ:1 (T&DUTXJ,)‘? 1
For n states; x©M". The equation comprises flow and dispersion
terms, which embed the assumptions about the dynamics and
random fluctuations. The flow, f{x, t) and dispersion, D(x, t) constitute
our model at the neuronal level. This level of description is usually
framed as a stochastic differential equation (SDE) that describes how
the states evolve as functions of each other and some random
fluctuations

dx=f(x)dt + odw. (2)

Where, D =%02 and w(t) is a standard Wiener process (where, in one
dimension w(t + At)-w(t)~N(0,At)). Under the Fokker-Planck formal-
ism, even if the dynamics of each neuron are very complicated, or
indeed chaotic, the density dynamics remain simple, linear and
deterministic. In short, for any model of neuronal dynamics, specified
as a stochastic differential equation, there is a deterministic linear
equation that can be integrated to generate ensemble dynamics.
However, there is a problem; the dimensionality of phase-space can
become unmanageably large, if we consider too many neuronal states
or different types of neuron. Generally speaking, full ensemble models
of realistic systems are computationally intractable. However, we can
use a mean-field approximation to finesse this problem.

The mean-field approximation

Consider the states of m sorts of neuron, each with n states; then
the states x=x(1,...,.X™Me&R"*™ could have a large nxm dimension-
ality. However, if we assume the density factorises over the m
populations

a= [l a(x") ©)

we have only to deal with n-dimensional states x) € 9%". However, by
factorising the density into marginal densities we have effectively
assumed that they are independent. This implausible assumption can
be circumvented by coupling the ensembles so that the flow in the
phase-space of one ensemble, fix\", u) depends upon the others;
through mean-field quantities ) =p(q(x™)). These are phase-functions
of the ensemble densities. These mean-field effects could come from
the same ensemble and model interactions among neurons in the
same population. The ensuing dynamics conform to a series of
coupled nonlinear Fokker-Planck equations (Frank 2004). Typically,
these phase-functions return the average state (e.g., mean depolarisa-
tion or firing). It is important to realise that coupling ensembles
through mean-field quantities, pE9R" entails strong assumptions
about the nature of the interactions: specifically, the dynamics or
fluctuations in one member of an ensemble cannot affect a member of
another ensemble. Instead, all the neurons in one ensemble are
affected identically by the average behaviour of another ensemble. In
many instances, this is a reasonable approximation but, clearly, it
makes the exact form of the mean-field approximation an important
consideration. In subsequent work, we will incorporate the mean-field
model of this paper into dynamic causal models of distributed
neuronal sources. In this context, the coupling above determines how
one neuronal source influences another; i.e., it corresponds to
effective connectivity (Friston et al., 2003; David et al., 2006).
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Even for a single ensemble the dimensionality of €R" may
preclude numerical or analytic analysis. One can simplify the model by
summarising the dynamics with a small number of states. In the limit,
one can reduce the dynamics to a single neuronal state x%R. An
important example is when the state is voltage, i.e., x={V}. For
example, Gerstner and Kistler (2002) formulate the dynamics of an
ensemble of leaky integrate and fire neurons with equations of motion

FV) =& v-v) +p )

using the Fokker-Planck equation (Eq. (1)), with boundary conditions
on q(V, t) that model spiking and a re-setting of the membrane
potential. Here, C represents membrane capacitance and g; a leakage
conductance An alternative method is to use the auxiliary variable T
(time elapsed since last spike) to parameterize the refractory density, q
(T, t); see Eggert and van Hemmen (2001). Chizhov et al., (2006) have
refined this approach to account for fast and slow ionic currents, with
some compelling results.

In summary, one can approximate an ensemble density on a high-
dimensional phase-space with a series of low-dimension ensembles
that are coupled through mean-field effects. The product of these
marginal densities is then used to approximate the full density.
Critically, the mean-field coupling induces nonlinear dependencies
among the density dynamics of each ensemble. This typically requires
a nonlinear Fokker-Planck equation for each ensemble. The Fokker-
Planck equation prescribes the evolution of the ensemble dynamics,
given any initial conditions and equations of motion that constitute
our neuronal model. However, it does not specify how to encode or
parameterize the density. There are several approaches to density
parameterization (Knight 2000; Nykamp and Tranchina 2000;
Omurtag et al., 2000; Haskell et al., 2001; Casti et al., 2002; Sirovich
2003). These include binning the phase-space and using a discrete
approximation to a free-form density. However, this can lead to a vast
number of differential equations, especially if there are multiple states
for each population. One solution to this is to reduce the dimension of
the phase-space to render the integration of the Fokker-Planck more
tractable (e.g., Chizhov and Graham 2007). Alternatively, one can
assume the density has a fixed parametric form and deal only with its
sufficient statistics (Rodriguez and Tuckwell 1996, 1998; Hasegawa
2003a,b). The simplest form is a delta-function or point mass; under
this assumption we get neural-mass models.

Neural-mass models

Neural-mass models can be regarded as a special case of ensemble
density models, where we summarize the ensemble density with a
single number. Early examples can be found in the work of Beurle
(1956) and Griffith (1963, 1965). The term mass action model was coined
by Freeman (1975) as an alternative to density dynamics. Assuming
that the equilibrium density has a point mass (i.e., a delta function), we
can motivate the description above in terms of the expected value of the
state, i; under the assumption that the equilibrium density has a point
mass (i.e., a delta function). This is one perspective on why these simple
mean-field models are called neural-mass models. In short, we replace
the full ensemble density with a mass at a particular point and then
summarize the density dynamics by the location of that mass. What we
are left with is a set of non-linear differential equations describing the
dynamic evolution of this mode. But what have we thrown away? In the
full nonlinear Fokker-Planck formulation, different phase-functions or
probability density moments could couple to each other; both within
and between ensembles. For example, the average depolarisation in
one ensemble could be effected by the dispersion or variance of
depolarisation in another. See Deco et al (in press) for a nice example
from the work of Michael Breakspear. In neural-mass models, one
ignores this potential dependency because only the expectations or
first moments are coupled. There are several devices that are used to

compensate for this simplification. Perhaps the most ubiquitous is the
use of a sigmoid function g(V) relating expected depolarisation to
expected firing-rate (Freeman 1975; Marreiros et al., 2008): This
implicitly encodes variability in the post-synaptic depolarisation,
relative to the potential at which the neuron would fire. A common
form for neural-mass equations of motion posits a second-order
differential equation for expected voltage p, or, equivalently, two
coupled first-order equations, where

7 w262 412 )y = K2yl )=
(57 T >/~lv = K*ye(py) )
Ly =4y
1y = K2 ye(ty)=2Kp=Kpy
where m; can be regarded as capacitive current. The input gV(my) is
commonly construed as firing-rate (or pulse-density) and is a sigmoid
function of mean voltage of the same of another ensemble. The
coupling constant g scales the amplitude of this mean-field effect. The
constant K controls the rise and decay of the implicit (synaptic)
impulse response G(t) to input; convolving input with this impulse
response kernel gives the expected voltage

Hy (£) = [G(E=t)e(uy (£)dE’

G(t) = yK%t exp(-kt) (6)

This form of neural-mass model has been used extensively to model
electrophysiological recordings (e.g., Lopes da Silva et al., 1974;
Zetterberg et al., 1978; Elbert et al., 1994; Jansen and Rit 1995; Kincses
et al,, 1999; Wendling et al., 2000; David and Friston 2003; Moran
et al., 2007) and has been used recently as the basis of a generative
model for event-related potentials that can be inverted using real data
(Valdes et al., 1999; Jansen et al., 2001; Friston et al., 2003; Kiebel et al.,
2006; David et al., 2006; Moran et al 2007, 2008).

In short, neural-mass models are special cases of ensemble density
models that are furnished by ignoring all but the expectation or mode
of the ensemble density. This affords the considerable simplification of
the dynamics and allows one to focus on the behaviour of a large
number of ensembles, without having to worry about an explosion in
the number of dimensions or differential equations one has to
integrate. An important generalisation of neural-mass models,
which allow for states that are functionals of position on the cortical
sheet, are referred to as neural-field models (Jirsa and Haken 1996;
Wright et al., 2003; Robinson et al., 2003; Breakspear et al., 2006).
Deco et al (in press) provide a comprehensive overview of neural-
mass and field models, to which the interested reader is referred.

Summary

In conclusion, statistical descriptions of neuronal ensembles can be
formulated in terms of a Fokker-Planck equation; an equation
prescribing the evolution of a probability density on some phase-
space. The high dimensionality and complexity of these Fokker-Planck
formalisms can be finessed with a mean-field approximation to give
nonlinear Fokker-Planck equations, describing the evolution of
separable ensembles that are coupled by mean-field effects. By
parameterising the densities in terms of their sufficient statistics,
these partial differential equations can be reduced to ordinary
differential equations describing the evolution of the statistics. In
the simplest case, we can use a single statistic corresponding to the
expectation or mode of the probability for each ensemble. This can be
regarded as encoding the location of a probability mass. In what
follows, we consider what would happen if the sufficient statistics
included both the mean and dispersion.

Ensemble dynamics under the laplace assumption

In this section, we derive a general mean-field reduction for
neural dynamics formulated with any set of ordinary differential
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equations. This is formally equivalent to the method of moments
(MM) proposed by Rodriguez and Tuckwell (1996, 1998) for
summarising density dynamics. In the next section, we apply the
treatment to the equations used in dynamic causal modelling (DCM)
of electrophysiological responses. The treatment here rests on
summarising the ensemble density with a fixed form; namely, a
Gaussian density. This corresponds to the Laplace assumption made
in mean-field treatments in variational or ensemble learning in
statistics. Here we use this approach to reduce a very high-
dimensional integration problem into the manageable integration
of the sufficient statistics (e.g., moments) of the ensemble density.
The sufficient statistics are those quantities needed to define a
particular density, in this case the mean p” and covariance 3" of the
states of the i-th population, with a multivariate normal distribution;
q(x(’ p(’ 2(1))

A single population

For simplicity, we will start with one population and generalise
later. Consider some equations of motions for the dynamics of a single
neuron and the corresponding density dynamics

X =f(x,u)+I(x) (7)
==V -fq+v-Dvq

Here, we have introduced an exogenous input u that exerts its
effect through the flow (e.g., pre-synaptic input from another
population causing a depolarisation and change in voltage). From
these equations we can derive the equations of motion for the
sufficient statistics (mean and covariance) of the ensemble density,
q(x)=N(p2).

1= [xiq (x)dx 8)
= [fitog(x)dx

= [RiXi(0dx
= j(ijfi(x) +Xifi(x))q(x)dx + Dy + Dy

Where X; = (x;—1;) represent perturbations from the mean of the i-th
state. These equalities can be verified using integration by parts; for
example, with a single state we have

=J"—xé)x(fq)dx +J"xé)XDé)qux
=X (X)q(0)% * [f(x)a(x)dx + xDdxq)%.~ [Do xqdx. (9)

= [fx)qdx

Here, we have used the fact that g(x)=0xq(x)=0:x—te is a
proper density. The dynamics of the sufficient statistics in Eq. (8) are
intuitively sensible; the rate of change of the mean of any state is
the expected flow, in the direction of that state. Similarly, the
variance only stops changing when dispersion due to random
fluctuations is balanced by contraction due to flow. This contraction
is proportional to the negative correlation between flow and the
distance from the mean. This perspective can be made explicit by
writing Eq. (8) as

;= {fiX)q

Sy 0 500 (10

+Dij+Dji

We can now exploit the fixed-form (Laplace) assumption about the
ensemble density by rewriting Eq. (10) in terms of its sufficient
statistics, using an expansion of the flow around the expected state

af _

) =) + %+ 13 o°f

Xj )I( IX; ka

XXy + (11)

Under Gaussian assumptions (x;), =0 and (X;X;), = 3; and we get

9%f;
[ =fi(nu) + dedxk i (12a)
. af; af;
Zij_ 2 9%, Ejk %37”{2,-,{+D,-j+Dﬁ
This can be expressed more compactly in matrix form
= Fi(u) + (20 i) (12b)

=0xf3+ 30T +D+D"

This is a key expression because it allows us to formulate population
dynamics, under the Laplace assumption, knowing only the flow, its
gradient and curvature (f;, Ox, fi, Oxx fi) at the expected state.
Furthermore, we have circumnavigated the problem of integrating
the density at every point in state-space to integrating a small number
of sufficient statistics for each population. Eq. (12a,b) is instructive
because it shows explicitly how the first and second moments of the
density depend on each other; the variance affects the mean when and
only when the curvature (second derivative) of the flow is non zero.
This will always be the case if the equations of motion are nonlinear in
the states. Similarly, the effect of the mean on the variance depends on
nonlinear dynamics because the gradients in the second equality above
will only change with the mean, when the curvature is non zero.

Interestingly, the form of neuronal dynamics implicit in Eq. (5) is
linear in the states; in other words, 0xf;=0. Eq. (12a,b) shows that the
dynamics of the mean do not depend on the covariance and a neural-
mass model is sufficient to model density dynamics. Below, we will
consider a nonlinear conductance-based model where 0xxf;#0, which
means there is a potential role for dispersion. Finally, Eq. (12a,b) shows
that if we approximate the ensemble density with a point mass we
recover the original equations of motion for a single neuron; i.e., if
3=0 then the dynamics are completely specified in Eq. (12b) by
‘u;=fi(uu). This is a neural-mass model and precludes interactions
among moments of the population density.

Coupling different populations

Above, we treated each member of the neuronal population as
evolving independently of the others, as if we were modelling a ‘gas’ of
neurons. However, real neurons are connected and influence each
other. We now consider mean-field equations for a set of m coupled
populations that accommodate these influences. Under mean-field
coupling each neuron ‘senses' the states of all neurons in one or more
populations. The ensuing effects can be formulated by making the
motion of each neuron a function of population densities and,
implicitly, their sufficient statistics, p=p®,...,u™ and 3=31),... 3™

£ f( ’>u,uZ)+1"() (13)

This couples the microscopic evolution of each neuron to macroscopic
density dynamics within and between populations. These mean-field
effects basically change the pattern of flow within a population's
state-space. The corresponding density dynamics of the j-th popula-
tion are now

pX(}') =fi(j) (,3.u) +%tr(2(j)ﬁ)0(f;'(j)) (14)
D 2 0 f 03 + 30, f 0T + DU + pUIT

Notice that the terms involving gradients and curvatures pertain only
to the population in question. This is because 9f")/ax® =0 : Vi=j ; in
other words the motion in one population £)=f(x,3) depends only
on the density on the states of others, not the states per se. Before
turning to a specific example we consider the outputs or responses of
these systems.
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Observed responses

In subsequent work, we will use the density dynamics above
as the basis of a dynamic causal model (DCM) of observed data.
This requires one to specify how the density maps to observed
responses, such as the electroencephalogram (EEG) or blood oxygen
level dependent (BOLD) signals in functional magnetic responses
imaging (fMRI). Generally, these observations are generated by
an average n(u 3)=(g(x")),); we will use this below. For fMRI
g(x“))=H<txJ(.’>—T may be a Heaviside or threshold function of
depolarisation to reflect synaptic firing. Under the Laplace assumption
the expected firing rate n(j, %) becomes a sigmoid [error] function of
the mean depolarisation. We will pursue the use of density-based
DCMs elsewhere (see also Harrison et al., 2005).

Application to a conductance-based model

In this section, we apply the Laplace approximation to a model we
have used in previous papers (Friston et al., 2003), which has a
complexity intermediate between simple integrate-and-fire models
and Hodgkin-Huxley models. This involves specifying the equation of
motion and implicitly their gradients and curvatures. These quantities
specify the density dynamics in terms of sufficient statistics under the
Laplace assumption. Finally, we will look at some special cases that
will be compared in the final section of this paper.

The equations of motion

The neuronal dynamics of any given population considered here
conform to a simplified Morris and Lecar (1981) model, where the
states x0 = {v() gV g® L comprise transmembrane potential and a
series of conductances corresponding to different types of ion channel.
The dynamics are given by the stochastic differential equations

cvi = zkg,i”(vk—v@) +[+ Ty
(i) o) ( () _gD) (15)
8 =Kk (vk 81 )+Fk

These equations of motion constitute a model for a single neuron and,
when solved simultaneously for an ensemble of neurons, furnish an
ensemble model. They are effectively the governing equations for a
parallel resistance-capacitance circuit; the first says that the rate of
change of transmembrane potential (times capacitance, C) is equal to
the sum of all currents across the membrane (plus exogenous current,
I=u). These currents are, by Ohm's law, the product of potential
difference between the voltage and reversal potential, Vj for each type
of conductance. These currents will either hyperpolarise or depolarise
the cell, depending on whether they are mediated by inhibitory or
excitatory receptors respectively (i.e., whether V, is negative or
positive). Conductances change dynamically with a characteristic rate
constant K, and can be regarded as the number of open channels.
Channels open in proportion to pre-synaptic input g, and close in
proportion to the number open. The pre-synaptic input corresponds to
the expected firing rate in another population, times a coupling
parameter yg. for the k-th conductance

;I((i) = Zj yg.J'q(V(f))H(V(j)—VR)dVU)
- Zj ,yso (ﬂ5/1>_VR72(]))

where H(-) is a Heaviside function and the sigmoid function o (-) is a
cumulative density on the depolarisation; see Marreiros et al. (2008)
and Eq. (17) below. The form of Eq. (16) is motivated in detail in
Marreiros et al. (2008; Eq. (6)).

The coupling parameters specify connectivity among populations.
Furthermore, they can be used to ensure that each population
couples to one and only one conductance type (i.e., each population
can only release one sort of neurotransmitter). Generally, one would
model a neuronal network of areas, where each area comprises two

(16)

or more populations. This engenders the distinction between
intrinsic and extrinsic connections, which couple populations within
and between brain areas. In this paper, we restrict ourselves to a
single area and intrinsic connections; however, there is no
mathematical distinction between intrinsic and extrinsic connec-
tions. The firing in source populations is a Heaviside or threshold
function of depolarization where the threshold, Vx determines the
proportion of afferent cells firing. Under the mean-field assumption,
this input is a function of the population density of the source and
under the Laplace assumption this function is simply the Gaussian
cumulative density

1M
o, >)=2m det(E))ff exp (—%XTE’lx) dx (17)

and is a function of the source's sufficient statistics. These equations
constitute f9=f(xu,11,3) of the previous section and are sufficient to
elaborate a mean-field approximation under the Laplace assumption
using Eq. (14); where (dropping the population superscript for clarity)

E %gk(Vk‘V) +e
f= Ki(¢1=81)
K2(¢282)
- 18
e V) W) 18
i)xf= 0 —K1 0
0 0 )
0
-1.0 0
(7xva= 1(
<0 0
dxfg=0

Note that the curvature has a simple form because the equations of
motion are second order in only voltage and conductance. An example
of the expressions for the ensuing motion of the sufficient statistics N=
(u®, 39} from Eq. (14) and the corresponding Jacobian, d\'A are
provided in Fig. 1, for two populations. This figure provides an iconic
summary of how different quantities affect each other. For example, the
variances affect only the mean depolarisation, in inverse proportion to
the capacitance. These equations are not necessary to integrate the
sufficient statistics; we only derived the subset of equations shown in
the figure for didactic purposes. In practice, these derivatives are
evaluated numerically, given the user specified equations of motion.

Some special cases

Before assessing the accuracy of the Laplace scheme we will
consider some special cases of Eq. (14). The first obtains if we assume
5® s fixed for all populations. Because the covariance is fixed, we only
have to integrate the ensemble mean; furthermore because the
curvature is constant (voltage) or zero (conductance), this entails an
extra decay term for voltage, giving density dynamics of the form

i) =) s + 1o (30 00 ) (19)
i) = £ (.3 )

This corresponds to a neural-mass model with decay and will be
used for comparative analyse in the next section. Finally if we
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Fig. 1. Expressions for the motion of the sufficient statistics \"=p®, 3@ (mean and variance) and the corresponding Jacobian for two populations that conform to simplified

Morris-Lecar-like dynamics. The grey area in the Jacobian covers terms that link mean s
models.

further assume that 3 is spherical (i.e., all off-diagonal terms are
zero) then this decay terms disappears because the leading diagonal
of f?x,(f‘ﬁ’) is zero. In this instance, the dynamics reduce to the
original equations of motion because we can ignore the second-
order statistics completely
i@ _ ()
e = (w3 u). (20)
This is a conventional neural-mass model with the usual sigmoid
activation function. This function depends on the variance (see Eq.
(15)), which we assume is fixed. Note that this provides another
perspective on the parameterisation of the sigmoid activation
function in classical neural-mass models (c.f. Eq. (5) and the
derivations in Marreiros et al., 2008). In the next section we will
compare the Laplace (Eq. (14)) and neural-mass (Eq. (19)) approxima-
tions in terms of modelling evoked neuronal transients.

tates to each other and are this considered in neural-mass reductions of full mean-field

Summary

We are now in a position to compare and contrast ensemble
models of neuronal populations with mean-field (MFM) and neural-
mass (NMM) approximations. Ensemble models (Eq. (15)) provide the
trajectories of many neurons to form a sample density of population
dynamics. The MFM is obtained by a mean-field and a Laplace
approximation to these densities (Eq. (14)). The NMM is a special case
of the mean-field model in which we ignore all but the first moment of
the density (i.e., the mean or mode). In other words, the NMM
discounts dynamics of second-order statistics (i.e., variance) of the
neuronal states. The mean-field models allow us to model interactions
between the mean of neuronal states (e.g., firing rates) and their
dispersion or variance over each neuronal population modelled (c.f.,
Harrison et al., 2005). The key behaviour we are interested in is the
coupling between the mean and variance of the ensemble, which is

Table 1

Overview of the three models: Ensemble, Mean-Field model (MFM) and Neural-Mass model (NMM)

Model Description Equation

Ensemble Stochastic differential equation that describes how the states evolve dx =f(x,u)dt + odw (Eq. (2))
as functions of each other and some random fluctuations ) ) )

MFM Differential equation that describes how the density evolves as functions u? =9, 3, u) +%tr(2(”ﬂx,j|”>) 30 = fO 3 +30,f0T +pU) + DUT (Eq.14)
of mean and covariance. Resulting from a mean-field and Laplace
approximations of the ensemble model ‘ .

NMM Differential equation that describes how the density evolves as a function u? =9, 3, ) +%tr(2(”zfxxfl.‘”) 39 =0 (Eq. (19))

of the mean. Obtained by fixing the covariance of the MFM

For a detailed description of the equations see main text.
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Fig. 2. Source model with layered architecture comprising of three neuronal populations (Spiny-stellate, Interneurons, and Pyramidal cells), each of which has three different states

(Voltage, Excitatory, and Inhibitory conductances).

lost in the NMM. The different models and their mathematical
representations are summarised in Table 1.

Neural-mass vs. mean-field models

In this section, we examine the accuracy of the Laplace approx-
imation to density dynamics, in relation to the true density dynamics
that obtain by integrating the trajectories of a real but finite-sized
population. We will also take the opportunity to highlight the
difference between the Laplace approximation and neural-mass
simplifications. In what follows, we examine the response of three
populations connected to emulate the source model for electromag-
netic responses we use in DCM for ERPs (David et al., 2006, Kiebel et
al., 2006). Each electromagnetic source comprises two excitatory
populations and an inhibitory population. These are taken to
represent input cells (spiny stellate cells in the granular layer of
cortex), inhibitory interneurons (allocated somewhat arbitrarily to the
superficial layers) and output cells (pyramidal cells in the deep layers).
The deployment and intrinsic connections among these populations
are shown in Fig. 2 and the parameters are provided in Table 2.

In this model, we use three conductance types: leaky, excitatory
and inhibitory conductance. This gives, for each population

V) =g (V=v0) + gl (V-v ) + g0 (v-vD) + T+ Ty
gg) = KE(QS)-gS)) +IE
g;i) =K (;;i)‘g,(i)) I
oy 'Y{'}O(HV)'VR«,ZU))

(21)

Notice that the leaky conductance does not change, which means
the states reduce to, x() = {Vmg};)g,“)}. Furthermore, for simplicity,

we have assumed that the rate-constants, like the reversal potentials
are the same for each population. The excitatory and inhibitory
nature of each population is defined entirely by the specification of
the non-zero intrinsic connections «/‘5. (see Fig. 2). The resulting
sparse connectivity means that not all populations have all
conductances.

Simulations

In what follows, we examine the response of this three-
population source to exogenous input using the Laplace and
neural-mass approximations. We first compare the analytic approx-
imations based on the mean-field (Eq. (14)), with the sample density
of responses from simulated neuronal ensemble (Eq. (15)). We
present more comprehensive characterisations, comparing predicted
responses under mean-field and neural-mass models to transient
and sustained input. Our aim was to (i) evaluate the Laplace
approximation in relation to the response obtained by integrating
the original stochastic equation of motions and (ii) to compare the
Laplace approximation (Eq. (14)) with the neural-mass model (Eq.

Table 2

Parameter values for all models used in this paper

Parameter Physiological interpretation Value

gL Leaky conductance 1mV

Tg1=1/Kg; Postsynaptic rate constants 4 ms, 16 ms

[0 Ve Y Vo T Intrinsic connectivity 1,05,1,05,2

VL,VEV; Reversal potential -70 mV, 60 mV, -90 mV
Vi Threshold potential -40 mV
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(19)) to assess the need for population covariance as part of the
model.

Ensemble dynamics

In the first simulations, we examined population responses to an
impulse or burst of afferent input. This can be regarded as a simple
evoked response. We integrated the equations of motion (Eq. (15)) for
the three population model of Fig. 2, with 64 neurons per population.
To integrate the stochastic differential equations, we added a random
normal variate to the states of each neuron, at each time step At
sampled from a Gaussian density with variance, 2DAt. The ensuing
impulse responses are shown in Fig. 3, in terms of the depolarisation
of pyramidal cells. Because we used a relatively small ensemble of
neurons there are some (but not marked) finite-size effects: Finite-
size effects are seen when approximating the response of a large
ensemble with the response of a small number of neurons (see Mattia
and Del Giudice, 2004; Doiron et al., 2006 and Galan et al., 2007 for a
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Fig. 3. Top: Exogenous input. Middle: Integrated response (64 neurons) of the pyramidal
population, where the spike is driving the neuronal source through intrinsic
connections (Fig. 2). Bottom: Summary of the density over trajectories in terms of
their mean (solid line) and a 90% confidence interval (grey region).

discussion of finite element methods in characterising the behaviour
of neuronal ensembles). Critically, the random fluctuations due to the
Wiener processes lead to different trajectories (Fig. 3; middle panel),
which provide a sample density for the population dynamics. This can
be summarised in terms of its mean and a 90% confidence interval,
over peristimulus time (Fig. 3, lower panel). The key thing to observe
here is that the dispersion is not stationary; it changes with time.
Specifically, when the states are changing quickly around the peak
response, the dispersion of states is much smaller than when the
ensemble is at baseline. It is this change in dispersion that is
discounted by conventional NMMs.

Fig. 4 shows the integrated responses of this ensemble of neurons,
for all states and populations. The red arrows show the main causal
influences that couple different populations. These are the mean-field
effects of depolarisation in one population increasing the excitatory or
inhibitory conductance of another (through intrinsic connections).
This, in turn leads to depolarisation or hyperpolarisation of the target
population. The configuration of intrinsic connections means that
input, which enters at the spiny stellate population, may only be
expressed ten or more milliseconds later in other populations. It is
these slow population effects we want to approximate.

We solved the population dynamics to give the MFM and the NMM
approximations to the impulse responses in Fig. 4. For the MFM, the
mean and dispersion of the state dynamics were computed by solving
Eq. (14) for the same model and input used above. The NMM dynamics
were obtained by fixing the dispersion of the MFM to its steady-state
value (in the absence of input); this is the stationary solution to Eq.
(14). In Fig. 5, we plot the responses from all three models. One can see
that the mean of the trajectories are similar for all models. Although
one can see that after the peak, the mean response of the MFM
response is more like the ensemble model than the NMM response.
Furthermore, like the ensemble model, the MFM dispersion changes
over time, while the dispersion of the NMM is constant. For more
complex source models these small differences may have significant
repercussions, if the dynamics of the mean depend on dispersion. We
will see an example of this later. The MFM appears to overestimate the
dispersion in comparison to the ensemble model; however, this is
probably due to finite size effects.

Comparing MFM and NMM predictions

Using the above model, we compared the MFM and the NMM
responses using exogenous inputs that varied in amplitude and were
transient or sustained. The results of these simulations are shown in
Fig. 6, in terms of pyramidal cell population depolarisation. With
transient inputs we found that both the MFM and the NMM predicted
a similar response. The two models respond with a short-lived burst of
activity that increased with input amplitude and showed a plateau
around 60 pA. When the input exceeds 90 pA, the response under both
models become biphasic, with a second peak that lasted for about
30 ms. With sustained input, both models show complex nonlinear
behaviour for input amplitudes greater than 24 pA. However, for input
amplitude values greater than 50 pA the response patterns of the two
models are very different. The MFM shows a sustained oscillatory or
limit-cycle behaviour that is largely unaffected by further increases in
input. In contrast, the NMM returns to a fixed level of depolarization (a
fixed-point attractor) after about 200 ms; this illustrates that the MFM
retains key nonlinearities and can exhibit bifurcations that are
structurally distinct from the NMM. In short, one observes subtle
but potentially important differences between the two models, which
may have important implications for generative models of observed
neuronal responses.

A quantitative characterisation
To quantify neuronal responses to sustained input under the MFM,
we used frequency analyses and mean spiking responses. We focussed
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Fig. 4. Ensemble model responses for the three neuronal populations (stellate, interneurons, pyramidal) over their three different states (voltage, excitatory and inhibitory
conductance). The red lines correspond to the causal influences mediated by intrinsic connections that convey means-field effects (from voltage to conductances). The vertical broken

line is aligned to the exogenous input that arrives at 64 ms.

on the pyramidal population, which represents the principal (output)
cells in cortex and are the predominant source of electromagnetic
signals that are observed empirically. The results of these analyses are
shown in Fig. 7 using the same model and range of sustained input as
above. It can be seen that the spectral responses are greatest between
about 8 and 16 Hz, for input amplitudes between 25 and 45 pA (Fig.
7A). In this range, the peak frequency increases almost linearly with
amplitude. In Fig. 7B we look in more detail at the MFM spectral
response profile at input amplitudes of 32 and 64 pA. These two input
levels fall into two different regimes of the spectral response (broken
lines in Fig. 7A). For the 32 pA input there is a pronounced alpha peak
at ~10 Hz, for the 64 pA input, the spectrum has a small beta peak
around 24 Hz.

We next looked at how the population firing response probability
scales with input amplitude. Fig. 7C shows that a response emerges,
after about 100 ms, at about 25 pA input amplitude and shows
nonlinear behaviour over time; for higher input amplitudes, the

activity oscillates at a constant frequency. This response pattern is
very similar to the depolarization (Fig. 6), because firing rate is a
nonlinear function of the density on pyramidal depolarization. The
ensuing input-firing rate curve (averaged over peristimulus time)
shows a highly nonlinear behaviour, with no firing below a threshold
of 20 pA and progressive increases until the firing saturates at input
amplitudes of about 50 pA (Fig. 7D).

This sort of simulation demonstrates that the limit-cycle attractor
of the MFM can be exploited to study the relationship between
oscillatory dynamics and mean levels of firing. In this instance, the
model suggests that high firing rates, induced by sustained inputs,
will be expressed in the context of higher frequencies in a
desynchronised or ‘activated’ EEG. This is entirely consistent with
empirical observations (e.g., Kilner et al 2005 and references therein).
More generally, this simple simulation shows that the nature of
responses predicted by mean-field and neural-mass models of
exactly the same neuronal system can differ profoundly in terms of
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Fig. 5. Population response of the pyramidal cells for the three models: ensemble
model, mean-field model and neural-mass model. One can see differences for the mean
(solid lines) and the dispersion (grey regions) of the trajectories.

the dynamics they support. Here, the addition of extra variables
encoding population covariance leads to oscillations, under sustained
input that are not predicted by a reduced neural-mass model. In
principle, this means that mean-field DCMs of evoked and induced
responses may provide better models of empirical data. We pursue
the theme of nonlinearity and limit-cycles in the final simulations,
which look at nested oscillations.

Modelling nested oscillations and phase-synchronisation

Nonlinear coupling between distinct brain regions are observed,
predominantly as interactions between low and high frequencies.
These nonlinear influences are thought to mediate top-down
modulation, ‘attentional’ and other context-defining functions (Kopell
et al,, 2000; Von Stein et al., 2000; Varela et al., 2001; Canolty et al.,
2006). Two principal forms of cross-frequency phase interactions have

been recognized: ‘n:m phase synchrony’, which indicates amplitude-
independent phase-locking of n cycles of one oscillation to m cycles of
another oscillation (Tass et al., 1998; Palva et al., 2005); and ‘nested
oscillations’, which reflect the locking of the amplitude fluctuations of
faster oscillations to the phase of a slower oscillation (Vanhatalo et al.,
2004; Canolty et al., 2006, Penny et al., 2008). Nested oscillations have
been observed in both the human brain and rat hippocampus
(Chrobak and Buzsaki, 1998; Mormann et al., 2005); they have been
proposed to underlie the discrete nature of perception and the
capacity of working memory (Penny et al., 2008), as well as playing a
role in sleep (Steriade, 2006) and olfaction (Kepecs et al., 2006). There
many studies which rest on cross-frequency coupling, for example
(Lisman and Idiart, 1995; Fukai, 1999; Hocking and Levy, 2007;
Haenschel et al., 2007).

Motivated by these findings, we reproduced nested oscillations
using our three-population source (Fig. 2). We drove the neuronal
source with a slow sinusoidal input to elicit periods of bursting in the
inhibitory population. This produced phase-amplitude coupling, most
notably between the inhibitory population and the spiny population
that was driven by the low-frequency input. The bursting and
concomitant nested oscillations are caused by nonlinear interactions
between voltage and conductance, which are augmented by coupling
between their respective means and dispersions. Fig. 8 shows the
predicted responses from the MFM and NMM models. The population
responses of the MFM and NMM show clear differences in the number
and amplitude of the oscillations per cycle of the low frequency input.
Again this illustrates the potential importance of using a MFM (as
opposed to a NMM) when modelling nonlinear or quasi-periodic
dynamics, like nested oscillations. This simulation is another illustra-
tion of how small differences between models can have large effects
on the nature of predicted neuronal responses.

Discussion

The purpose of this work was to describe a generic approach to
modelling dynamics in neuronal populations. Our work is motivated
by the observation that neural-mass approaches, currently used as
generative models for observed data (David et al., 2006), are a limiting
case of mean-field models. In other words, they consider only the first
moment of the density for each population, which is a special case of
the more general ensemble density formulation. In this paper we
augmented the neural-mass model with quantities that encode
population dispersion to furnish mean-field models that capture full
density dynamics.

The high dimensionality and complexity of Fokker-Planck formal-
isms can be reduced with a mean-field approximation, which
describes the evolution of separate ensembles coupled by mean-
field effects. By parameterising the densities in terms of their
sufficient statistics, the partial differential equations can be reduced
to ordinary differential equations describing the evolution of its
sufficient statistics or moments (Table 2). In this way, we obtained a
key equation (Eq. (14)), which formulates population dynamics, using
only the flow, its gradient and curvature, at the mean state. This
expression shows explicitly how the first and second moments of the
density depend on each other; the variance affects the mean if and
only if the curvature (second derivative) of the flow is non zero. This
will be the case if the equations of motion are nonlinear in the
neuronal states. Similarly, the effect of the mean on the variance
depends on nonlinear dynamics because the gradients will only
change with the mean, when the curvature is non zero.

We have looked at the neuronal response of a particular but
ubiquitous model (Fig. 2) in terms of the mean and the dispersion of
its underlying neuronal states (Figs. 3 and 4). We established the
validity of the Laplace approximation by comparing the response of a
simulated ensemble of neurons to the response under the Laplace and
neural-mass assumptions. The key behaviour we were interested in
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Fig. 6. (Left): Pyramidal population response (depolarization) under the mean-field model to varying levels of input. (Right): Equivalent pyramidal population response under the
neural-mass model. (Top row) transient input at 64 ms; (Lower row) sustained input. The key thing to note is the difference between the predictions of the two models in the lower
panels, which show the mean-field model prediction to oscillate at high levels of input. White indicates -10 mV and black -80 mV.

was the coupling between the mean and variance of the ensemble,
which is lost in the neural-mass approximations. This enabled us to
compare equivalent mean-field and neural-mass models of the same
populations and evaluate, quantitatively, the contribution of popula-
tion variance to shaping population dynamics. The simulations for the
Laplace mean-field model, which considers second-order statistics,
support a more realistic and plausible model than the neural-mass
model. The MFM shows, for an impulse response function, a
dynamical behaviour that is more similar than the NMM to the
response obtained by integrating the stochastic ensemble dynamics
(Fig. 5). Although the NMM enjoys much attention because of its
simplicity, it only considers the mean neuronal state and does not
consider higher statistics like the variance. We speculate that this
simplifying assumption may have implications when trying to invert
generative models of real data.

We compared the Laplace approximation (Eq. (14)) with the
neural-mass model (Eq. (19)) to assess the role of the population

covariance. NMMs, despite their relative simplicity, exhibited
complex dynamical behaviour reminiscent of real neuronal
responses. However, qualitative differences between MFM and
NMM predictions were easy to demonstrate. In particular, we saw
that the MFM showed a bifurcation from fixed-point to a limit-cycle
attractor, as sustained input levels were increased (Fig. 6). We also
looked at the spectral response of the pyramidal population of the
mean-field model (Fig. 7). This analysis disclosed the presence of
physiologically plausible oscillatory signals in the alpha and beta
band and how their relative power changed with activation.
Additionally, we presented an interesting example of the quantita-
tive difference between MFM and NMM by reproducing nested
oscillation behaviour (Fig. 8). In short, the MFM appeared to
represent richer and more complex dynamics. This approach may
have potential applications in dynamic causal modelling of imaging
studies (M/EEG, fMRI) where one tries to explain the coordinated
activity of a large number of neurons.
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amplitude.

The Laplace assumption is a common device in statistical physics
and finesses the problem of integrating a complicated density by
assuming a Gaussian form. In machine learning, it allows one to focus
on its sufficient statistics, namely the mean and covariance. In the
present context, it allows one to summarise density dynamics using
the method of moments (MM; Rodriguez and Tuckwell 1996, 1998).
This entails replacing the system of stochastic differential equations
with a system of deterministic equations (ODE) representing the
dynamics of the means, variances, and covariance of the state
variables, i.e., the first and second-order moments of the population
density. This is precisely what we have done; namely, derive the ODE
for the sufficient statistics of a Gaussian population density, given any
set of Fokker-Planck equations that are coupled by phase-functions
specifying mean-field effects or effective connectivity.

In related work, Hasegawa has proposed a semi-analytical mean-
field approximation, in which the equations of motion for moments

were derived for FN and HH ensembles (Hasegawa, 2003a,b). Later he
proposed an augmented moment method (AMM; Hasegawa 2004),
which relaxes the Gaussian or Laplace approximation (Hasegawa,
2006, 2007). In Deco and Marti (2007), the MM was extended to cover
bimodal densities on the state variables; such that a reduced system of
deterministic ODEs could be derived to characterise regimes of
multistability. The ODEs in Fig. 1 pertain to Morris-Lecar-like neurons
and will form the basis of dynamical causal models of empirical EEG
and LFP data.

Conclusion

In conclusion, we have derived a generic mean-field treatment of
neuronal dynamics, which is based on a Laplace approximation to the
ensemble density and is formulated in terms of equations of motion
for the sufficient statistics of the ensemble density. We saw how this
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Fig. 8. Nested oscillations in the three-population source driven by slow sinusoidal input for both MFM and NMM. Input is shown in light blue, spiny interneuron depolarization in
dark blue, inhibitory interneurons in green and pyramidal depolarization in red. The nonlinear interactions between voltage and conductance produces phase-amplitude coupling in
the ensuing dynamics. The MFM shows deeper oscillatory responses during the nested oscillations.

approach reduces to a neural-mass model when the second-order
statistics (i.e., variance) of neuronal states is ignored. In a future paper,
we will use the Laplace and neural-mass approximations presented
here as generative models of electrophysiological responses to
sensory input. This paper will use Bayesian model comparison to
compare both models and establish whether empirical responses
contain evidence for a role of the variance in shaping population
dynamics. This framework will allow one to adjudicate between
models that include the high-order statistics of neuronal states in
predicting EEG time series and may also be important in the context of
EEG-fMRI fusion; where power (second-order statistics) in electrical
dynamics may be an important predictor of BOLD signals.
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