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The articles in this special issue provide a rich and thoughtful perspective on the brain as an inference ma-
chine. They illuminate key aspects of the internal or generative models the brain might use for perception.
Furthermore, they explore the implications for a sense of agency and the nature of false inference in neuro-
psychiatric syndromes. In this review, I try to gather together some of the themes that emerge in this special
issue and use them to illustrate how far one can take the notion of predictive coding in understanding behav-
iour and agency.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Having read the articles comprising this special issue, I was struck
by how coherent they were and how they provide a compelling narra-
tive about how the brain responds to its sensory impressions, the im-
plications for subsequent action and the genesis of (and failures of) a
sense of agency. This review tries to summarise this narrative, in the-
oretical terms, using the main points made by the individual articles.

2. Perception active inference and agency

A common theme that runs throughout this special issue is the no-
tion of the brain as a constructive or predictive organ that actively
generates predictions of its sensory inputs using an internal or gener-
ative model. This is now a widely accepted view of perception that
can be traced back to Helmholtz's original writings on unconscious
inference (Helmholtz, 1866/1962). In this review, I want to empha-
size that exactly the same principles can also explain action and be-
haviour; and indeed theory of mind and a sense of agency. This may
be less apparent for some; in the sense that predictive coding and
other formal theories that fit within the inference framework
are not generally considered in the context of action and its agency.
However, perception and action can be related formally, through a
common minimization of prediction error (Friston et al., 2011).

This is trivially true, in the sense that under predictive coding, per-
ception is the job of optimising predictions to minimize sensory pre-
diction error, while movement invariably suppresses proprioceptive
(e.g., stretch receptor) prediction errors at the level of the spinal
rights reserved.
cord and cranial nuclei. This is nothing more than equipping a predic-
tive coding scheme with classical motor reflex arcs. At a more theo-
retical level, one can use ergodic arguments about the nature of self
organising systems to reach exactly the same endpoint; namely, an
imperative to minimize prediction errors or surprise through action.
In this view, perception can be regarded as providing veridical predic-
tions about both exteroceptive (e.g., visual) and proprioceptive (e.g.,
kinaesthetic) sensations that enable action or motor behaviour to
sample sensory inputs selectively to ensure predictions come true.
This is an important observation because it speaks to a substantial
proportion of the articles in this special issue that deal not just with
the auditory or visual consequences of a stimulus but their beha-
vioural and, implicitly, proprioceptive consequences. At a more ab-
stract level, predictions about how we will physically move are
composed and generated in a way that determines how we behave.
Perhaps the most important determinants of our behaviour (and
their underlying predictions) are beliefs about the intentions and be-
haviour of others. This necessarily requires an internal model of self in
relation to others and an implicit sense of agency. The intimate rela-
tionship between veridical and adaptive predictions, subsequent ac-
tion and a sense of agency is illustrated very nicely by the
succession of themes covered in this special issue. In what follows,
we will consider hierarchical perceptual inference in the auditory
and visual domains, active inference in terms of behaviour and re-
sponses, how this pertains to a sense of agency and, finally, failures
of inference in psychopathology.

3. Hierarchical perceptual inference

It is evident that there is a consensus about the nature of predic-
tions and their relationship to generative models in the Helmholtzian
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tradition. This is articulated very nicely by the two papers co-
authored by the special issue's guest editors. For example, Bendixen
et al. (Bendixen et al., this issue) start from the psychological perspec-
tive of mental models which “simulate our reality”. They highlight the
connections with the “theory of unconscious inference of Herman von
Helmholtz” and how these ideas have been progressed to accommo-
date “the proactive or predictive aspect of mental models” in percep-
tion. Their emphasis is on a “truly predictive account of auditory
processing (as opposed to a retrospective verification of predic-
tions)”. The mediator of this predictive optimisation is clearly predic-
tion error; namely “signals of violated predictions (mismatch signals
such as a mismatch negativity and stimulus omission responses)”.
The same theme is taken up by Winkler and Czigler (2012-this
issue), who provide a concise and compelling summary:

Helmholtz's notion of unconscious inference engendered arguably the
most fruitful line of perceptual research throughout the relatively
short history of psychology, the empiricist tradition. In one of its
contemporary variants, Gregory suggests that a percept is akin to a
scientific hypothesis; it is the brain's best fitting model for the infor-
mation entering the senses. But together with Gordon, we can ask
how these models are formed, what evidence they are tested against
and how do they adapt to an ever changing environment? To answer
these questions, some of the theories of predictive coding invoke the
principle of free energy minimisation.

Free energy is a quantity from information theory that quantifies
the amount of prediction error or, more formally, it is a variational ap-
proximation to the surprise or negative log likelihood of some data
given an internal model of those data (Friston, 2010). A particular
and neurobiologically plausible example of variational free energy
minimisation is predictive coding: “Predictive coding theories posit
that the perceptual system is structured as a hierarchically organised
set of generative models with increasingly general models at high
levels” (Winkler and Czigler, 2012-this issue). The notion of hierar-
chies is essential to perceptual inference and many of the issues
addressed below. Mathematically, hierarchical generative models en-
able the brain to optimize its own prior beliefs. In statistics, these be-
liefs are known as empirical priors and endow models with rich or
deep structure. This is illustrated nicely in the contribution of van
Petten and Luka (2012-this issue), who relate various components
of the event related potential (ERP) to the confirmation or disconfir-
mation of predictions; in other words, the elaboration of prediction
errors. Crucially, they show that late responses “consist of two dis-
tinct components with different scalp topographies”, one associated
with semantically incongruent words and one associated with con-
gruent words. This illustrates the hierarchical nature of generative
models that the brain might employ, in the sense that congruence
provides a hierarchical context for semantics. From the point of
view of hierarchical models, this context would normally be consid-
ered a higher level attribute of the models generating predictions.
The very fact that van Petten and Luka can demonstrate the electro-
physiological correlates of contextual effects suggests that the brain
must indeed be representing hierarchical attributes of the sensorium
and may be so doing in terms of prediction errors. I also liked their
observation that the meaning of “predict” derives from its origin in
Latin — pre (before or in front of) plus dicere (to speak). In other
words, “to declare what will happen in the future”.

The fundamental architectural role of hierarchies in cross modal
sensory integration suggests that amodal concepts at higher levels
in a hierarchy should generate multimodal predictions and associated
prediction errors. This rather obvious observation fits comfortably
with the formal similarities between mismatch or prediction error re-
sponses in the auditory domain and equivalent responses in the visu-
al domain. Indeed, Cheung and Bar (this issue) provide a compelling
analysis of prediction and generative modelling from the point of
view of visual research in cognitive neuroscience. The mechanistic
implications of the visual mismatch negativity are explored in
Kimura (2012-this issue) who lends this interpretation a validity, in
terms of things such as representational momentum and perceptual
sequence learning. Crucially, Kimura invokes “a bi-directional cortical
network that includes the visual extra striate in prefrontal areas”:

The notion of bi-directional message passing in cortical networks
is a key tenet of predictive coding. For those readers not familiar
with neuronal implementations of predictive coding, it is remarkably
simple: Current thinking is that the representations of the causes of
sensory inputs (for example an object in the field of view or an audi-
tory object) are encoded at multiple hierarchical levels by the activity
of deep pyramidal cells that send backward projections to lower cor-
tical levels. These backward projections preferentially target superfi-
cial layers in the cortex that house superficial pyramidal cells
thought to report prediction errors. Prediction errors are simply the
difference between the representations encoded at any level in the
hierarchy and the top-down predictions generated by the brain's in-
ternal model. The formation of prediction errors rests upon simple
synaptic mechanisms, where the predictions inhibit prediction error
units (polysynaptically), while the representational units being pre-
dicted excite them. The resulting activity in superficial pyramidal
cells is then passed through forward extrinsic connections to adjust
representational units at higher levels. This reciprocal message pass-
ing proceeds until prediction error is minimised throughout all levels
of the hierarchy; thereby affording a Bayes-optimal representation of
sensory causes at multiple levels of description. Fig. 1 illustrates this
scheme.

Interestingly, given the focus of this special issue on event related
potentials, the superficial pyramidal cells thought to report prediction
errors are exactly the same cell populations that predominate in non-
invasive electromagnetic recordings. In other words, the explanation
of a mismatch negativity in terms of prediction error has a high de-
gree of biological plausibility, under these predictive coding schemes.
A key aspect of hierarchical representations or generative models is
exemplified in the papers on music perception. As noted by
Rohrmeier and Koelsch (2012-this issue), “It is well understood that
constant predictive activity is indispensable and vital for survival”.
This constancy speaks to multiple temporal scales and a separation
of those scales in a hierarchical setting. This is illustrated nicely in
Schwartze et al. (2012-this issue) who describe “a model of temporal
processing in audition and speech that involves a division of labour
between the cerebellum and the basal ganglia in tracing acoustic
events in time”. In their model, they assign the cerebellum a special
role in modelling temporal structure with a high temporal precision,
while the basal ganglia-thalamo-cortical system evaluates slower
“longer range” temporal structure. This “division of labour” is exactly
the same in formal models of predictive coding. In these models, high
level central pattern generators (that exhibit winnerless competition)
provide the slower temporal structure that guides faster dynamics
controlling the amplitude and frequency modulation of predicted
acoustic input (Kiebel et al., 2009). Although “fully fledged music pre-
diction cannot be modelled at present” (Rohrmeier and Koelsch,
2012-this issue) both simulations of this sort and the empirical evi-
dence that they review, shed light on the nature of “interactive pre-
dictive mechanisms”.

Up until now, we have focussed on the minimisation of prediction
error in terms of self organised neuronal activity in response to senso-
ry surprises or new stimuli. However, exactly the same principle can
be applied to any other attribute of the brain's generative model; in-
cluding synaptic connection strengths or efficacy. The suppression of
prediction errors through changes in coupling among brain areas cor-
responds to perceptual learning and can be expressed in a form that is
very similar to classical associative or Hebbian plasticity (Friston,
2010). Janacsek and Nemeth look at perceptual learning in terms of
consolidation and, in particular “implicit sequence learning that not



Fig. 1. This figure illustrates the neuronal architectures thatmight implement predictive coding and active inference. The left panel shows a schematic of predictive coding schemes in
which Bayesian filtering is implemented by neuronal message passing between superficial (red) and deep (black) pyramidal cells encoding prediction errors and conditional pre-
dictions or estimates respectively (Mumford 1992). In these predictive coding schemes, top-down predictions conveyed by backward connections are compared with conditional
expectations at the lower level to form a prediction error. This prediction error is then passed forward to update the expectations in a Bayes-optimal fashion. In active inference,
this scheme is extended to include classical reflex arcs, where proprioceptive prediction errors drive action— a (alpha motor neurons in the ventral horn of the spinal-cord) to elicit
extrafusal muscle contractions and changes in primary sensory afferents frommuscle spindles. These suppress prediction errors encoded by Renshaw cells. The right panel presents a
schematic of units encoding conditional expectations and prediction errors at some arbitrary level in a cortical hierarchy. In this example, there is a distinction between hidden states
xx that model dynamics and hidden causes xv that mediate the influence of one level on the level below. The equations correspond to a generalized Bayesian filtering or predictive
coding in generalized coordinates of motion as described in (Friston, 2010). In this hierarchical form f(i) := f(xx(i),xv(i)) corresponds to the equations of motion at the i-th level, while
g(i) :=g(xx(i),xv(i)) link levels. These equations constitute the agent's prior beliefs. D is a derivative operator and Π(i) represents precision or inverse variance. These equations were
used in the simulations presented in the next figure.
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only underlies motor but cognitive and social skills as well”. Interest-
ingly, they note consolidation of memory traces after the initial acqui-
sition can “result in increased resistance to interference or even
improvement in performance following an offline period”. This is a
fascinating observation that suggests optimisation of the brain's gen-
erative model does not necessarily need online sensory data. Indeed,
there are current theories about the role of sleep in optimising the
brain's generative model, not in terms of its ability to accurately pre-
dict data, but in terms of minimising complexity. Mathematically, this
is interesting because surprise or model evidence can be decomposed
into accuracy and complexity terms; suggesting that model evidence
can be increased by removing redundant model components or pa-
rameters (Friston, 2010). This provides a nice Bayesian perspective
on synaptic pruning and the issues considered by Németh and
Janacsek (2012-this issue).

4. Active inference

As noted above, a simple extension to predictive coding is to con-
sider their suppression by the motor system. In this extension, predic-
tion errors are not just suppressed by optimising top-down or
descending predictions but can also be reduced by changing sensory
input. This does not necessarily mean visual or auditory input but
the proprioceptive input responding to bodily movements. As noted
above, the suppression of proprioceptive prediction errors is, of
course, just the classical reflex arc. In this view, motor control be-
comes a function of descending predictions about anticipated or pre-
dicted kinematic trajectories. See Fig. 1 for a schematic. The important
observation here is that the same sorts of synaptic mechanisms and
inferential principles can be applied to both perception and the con-
sequences of action. This nicely accommodates the literature on
error related negativity reviewed by Hoffmann and Falkenstein
(2012-this issue); who consider the “monitoring of one’s own ac-
tions” and its role in adjusting behaviour. Again, the focus is on EEG,
suggesting that even within single trial recordings, the neurophysio-
logical correlates of behaviour-dependent prediction errors can be
observed empirically. In their words: “The initiated response is com-
pared with the desired response and a difference; i.e., mismatch be-
tween both representations induces the error negativity”. This is not
the proprioceptive prediction error that drives reflex arcs but a high
level perceptual (or indeed conceptual) prediction error; suggesting
that the long-term hierarchical predictions of unfolding sensory and
kinematic changes have been violated. In other words, these phe-
nomena speak again to separation of temporal scales and hierarchies
in providing multimodal predictions to the peripheral sensory and
motor systems.

Active inference means that movements are caused by top-down
predictions, which means that the brain must have a model of what
caused these movements. This begs the interesting question as to
whether there is any sense of agency associated with representations.
In other words, if I expect to move my fingers and classical motor re-
flexes cause them to move, do I need to know that it was me who ini-
tiated the movement? Furthermore, can I disambiguate between me
as the agent or another. These are deep questions and move us on
to issues of self modelling and action observation:

5. Action observation and agency

In a nice analysis of agency, gait and self consciousness, Kannape
and Blanke (2012-this issue) start by acknowledging: “Agency is an
important aspect of bodily self consciousness, allowing us to separate
own movements from those induced by the environment and to
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distinguish own movements from those of other agents”. They also
note that “participants self attribute their own movements (i.e. expe-
rience a sense of agency for their own movements)”, even when ex-
ogenous perturbations cause them to unconsciously change their
movement trajectories. These observations tell us something ex-
tremely subtle but profound about the representation of self and the
production of behaviour: We are apparently remarkably ignorant of
perturbations and fluctuations to our intended movements; ignorant
in the sense that they do not need to be represented explicitly. This
fits comfortably within the predictive coding framework, in that if
low-level (reflex arc) mechanisms can explain away prediction
error in the periphery, then there is no need to adjust perceptual rep-
resentations to accommodate them centrally. This suggests that
movements are indeed the product of top-down predictions, whose
violations are not detected post hoc but are eliminated at all levels
of the hierarchy, including the spinal cord. Formal simulations of pre-
dictive coding have shown their remarkable robustness to exogenous
perturbations and also provide a nice metaphor for action observation
and the shared representation of perceptual inference about the
movements of self and others (see Fig. 2). The example in Fig. 2 starts
to address the notion of models of self and others that guide beha-
vioural sequences, perhaps in language and social discourse. Gomot
Fig. 2. This schematic summarizes the results of the simulations of action observation repor
model of itinerant movement trajectories (based on winnerless competition, whose states ar
visual and proprioceptive inputs, which prescribe movement through reflex arcs at the level
the previous figure. These predictions include the Newtonian mechanics of a two jointed arm
spring. The location of the target is prescribed (in an extrinsic frame of reference) by the high
ment) frame of reference constitute the agent's prior beliefs. The ensuing posterior beliefs
process of inference, as summarized in the previous figure. The resulting sequence of move
over time on the lower right (as thick grey lines). The red dots on these trajectories signify w
active during action (left panel) and observation of the same action (right panel): More pre
shown as a function of limb position. The left panel shows the responses during action an
in an extrinsic frame of reference. The equivalent results on the right were obtained by prese
This can be considered as a simulation of action observation and mirror neuron like activit
(2012-this issue) consider autism spectrum disorder (ASD) in terms
of a failure of implicit high level generative models of others and
the interpersonal context in which motor behaviour is generated
(predicted). Indeed they note, “substantial differences in how the
ASD predicts the environment might have a fundamental role in the
deficit revealed in the highly unpredictable social world”. They devel-
op their argument in terms of a compromised ability to build “flexi-
ble” predictions and discuss the putative role of impaired top-down
influences. It is precisely these top-down or descending influences
that predictive coding will associate with predictions and, at the sen-
sorimotor level, constitute the motoric substrates of interpersonal
communication and avoidance.

The basic message here is that a fundamental failing of predictive
coding mechanisms may underpin many neuropsychiatric disorders,
particularly those that involve complicated or difficult Bayesian infer-
ence problems that predictive coding tries to solve. If this is the case,
one might expect empirical evidence for failures of predictive coding
at all levels of the hierarchy, including the elaboration of mismatch
negativities. This is precisely what we see; and is nicely discussed in
the final two papers considered in this review. Todd et al. (2012-
this issue) start by noting that “since the first publication in 1991,
over 120 papers have commented on the reduced amplitude of
ted in (Friston et al., 2011). The left panel pictures the brain as a forward or generative
e shown as a function of time in coloured lines). This model furnishes predictions about
of the spinal cord (insert on the lower left). The variables have the same meaning as in
, whose extremity (red ball) is drawn to a target location (green ball) by an imaginary
-level winnerless competition. These dynamics and the mapping to an extrinsic (move-
are entrained by visual and proprioceptive sensations by prediction errors during the
ments was configured to resemble handwriting and is shown as a function of location
hen a particular neuron or neuronal population encoding one of the hidden states was
cisely, the dots indicate when responses exceeded half the maximum activity and are
d illustrates both a place-cell like selectivity and directional selectivity for movement
nting the same visual information to the agent but removing proprioceptive sensations.
y.
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mismatch negativity in schizophrenia”. They pursue the interpreta-
tion of the MMN as “a prediction error signal” and link the theoretical
neurobiology inherent in predictive coding with the pathophysiology
and psychopathology of schizophrenia. It is interesting that, from a
theoretical perspective, one of the key predictions of abnormal infer-
ence in predictive coding would be an abnormal perceptual learning
and reduced amplitude of prediction error signals in the odd-ball par-
adigm. At the same time, empirical studies over the past decade or so
have highlighted this as probably one of the most consistent electro-
physiological signatures of schizophrenia. Ford and Mathalon (2012-
this issue) take up the theme of predictive coding and schizophrenia
explicitly, in terms of a sense of agency. Their focus here is on the
efference copy and corollary discharge systems that, in classical
motor control, are copies of motor commands that enable the brain
to accommodate the consequences of its own action. They report
studies that show “that auditory cortical responses to speech sounds
during talking are reduced compared to when they are played
back”. Furthermore, this suppression is reduced in schizophrenia.
These results tie together predictive coding, active inference, action
observation, agency and psychopathology in a beautiful way: using
the language above, efference copy (or more specifically corollary dis-
charge) corresponds to top-down predictions of the auditory conse-
quences of articulatory movement. In other words, one has in mind
a high level representation of a speech act that generates bimodal
(exteroceptive or auditory and proprioceptive or kinematic) predic-
tions. The former correspond to corollary discharge and the latter to
descending proprioceptive drive to the cranial nuclei responsible for
speech. The auditory consequences of articulating a word are thereby
predicted by the corollary discharge, so as to reduce prediction error.
Clearly, this reduction is not available when simply listening to spo-
ken words — a phenomena exploited by Ford and Mathalon. The fas-
cinating issues here are the consequences of breaking this system and
the implications for attributing the agency of perceived speech to self
or others; and its role in hallucinations and other positive systems of
schizophrenia.

6. Conclusion

In conclusion, we have seen how many papers in this special issue
can be read like the chapters of a book that takes us from the basic
fundaments of perceptual inference to a plausible and principled
understanding of auditory hallucinations in schizophrenia. Clearly,
this may reflect the astute way in which authors were invited to con-
tribute but, I suspect, also reflects the fact that when people ask deep
questions about how the brain works, they generally this converge on
the same veridical answers.
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