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The agranular architecture of motor cortex lacks a func-
tional interpretation. Here, we consider a ‘predictive
coding’ account of this unique feature based on asym-
metries in hierarchical cortical connections. In sensory
cortex, layer 4 (the granular layer) is the target of as-
cending pathways. We theorise that the operation of
predictive coding in the motor system (a process termed
‘active inference’) provides a principled rationale for the
apparent recession of the ascending pathway in motor
cortex. The extension of this theory to interlaminar
circuitry also accounts for a sub-class of ‘mirror neuron’
in motor cortex — whose activity is suppressed when
observing an action —explaining how predictive coding
can gate hierarchical processing to switch between per-
ception and action.

Cortical architecture and hierarchical connectivity
Motor cortex was localised to the precentral gyrus of apes
by Sherrington in 1901 [1], and was first identified histo-
logically the following year by Campbell, using the brains
of Sherrington’s subjects [2]. Although Campbell empha-
sised the prominent fibre architecture of motor cortex, it is
the cytoarchitectural tag ‘agranular’ cortex, coined by
Brodmann [3] to describe his areas 4 and 6, that has proved
the more enduring. Both authors used variations in corti-
cal architecture for cartographic purposes, but these var-
iants have rarely, if ever, been interpreted functionally;
despite its ‘fame’, the dramatic recession of granular layer
4 in motor cortex has not attracted a single functional
hypothesis.

Sensory and sensorimotor hierarchies

Cortical layers are identified by cytoarchitecture, and fur-
ther characterised by patterns of intrinsic axonal and
dendritic arborisation [4]. Laminar distribution distin-
guishes consistent types of extrinsic corticocortical connec-
tion, classified as ascending, descending, and lateral [5].
These patterns are sufficiently conserved to identify a
hierarchical organisation of areas in sensory systems
(Box 1). Initial descriptions of sensorimotor hierarchies
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placed premotor above primary motor cortex (M1), with
areas 3a and 3b (components of the primary somatosensory
area, S1) at the lowest levels [5]. Our own survey aimed to
establish the polarity of key reciprocal connections, but not
to arrange areas into discrete tiers [6]. The absence of a
distinct granular layer in primary motor cortex calls for
some modification of the laminar criteria, but the presence
of a cryptic layer 4 [7-9] justifies the treatment of terminal
patterns that target the layer 3/5 border zone as forward
connections (or backward, if the pattern avoids this zone).
Similar arguments apply to premotor cortex (Brodmann’s
area 6), sometimes described as ‘dysgranular’ [10], owing to
a rudimentary granular layer.

There is a consistent asymmetry between forward con-
nections from sensory to motor areas and the reverse
backward connections (e.g., between M1 and area 3a)
[11-13], but the reciprocal connections among motor areas
are of a distinct nature: there is a backward pattern of
termination for projections from premotor areas to M1 [10],
yet the reverse connections (e.g., M1 to SMA, supplemen-
tary motor area) are columnar [11-13], of the sort normally
associated with lateral connections. Hence, the premotor
areas may top the hierarchy, as previously suggested
[5,14], but there is little evidence for a classical ascending
pathway through motor areas [6,14]. In this review, we
attempt to reconcile the laminar architecture and connec-
tivity in both visual and sensorimotor hierarchies within a
popular theoretical framework for describing cortical
operations [15].

The principles of predictive coding
A percept can be regarded as a hypothesis that explains
sensory input [16,17] — on occasion, an erroneous hypothe-
sis, as demonstrated by classic illusions (Figure 1A). The
percept interprets sensory data, such that what we see is
the inferred cause of the sensations, not merely an image of
the data per se [18]. In Figure 1A, the facial features have
an ambiguous depth structure that is resolved by our past
experience of convex faces. The ability to infer the cause of
visual sensations (e.g., a face) rests on an internal, gener-
ative model of how objects generate sensory data [19,20].
Generative models are required to finesse the problem of
sensory indeterminacy (e.g., ambiguity) that illusions aptly
illustrate.

A generative model also has a temporal aspect: velocity
is not a property of an instantaneous scene or ‘snapshot’,
but an attribute that integrates sensory evidence over
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Box 1. Laminar specific connectivity and hierarchical distance
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Figure | shows the laminar sources and distributions of ascending
connections (green) and descending connections (red, violet, and
blue), originating from a certain level (i) in a hierarchical chain.

The basic laminar patterns distinguishing ascending and descend-
ing connections were originally established by studies of primate
visual cortex [5,97,98]. Systematic variations with hierarchical dis-
tance were later formulated as a ‘distance rule’ [37,99]: with regard to
origins, the proportion of superficial (layer 3A) neurons forming a
backward projection decreases with greater distance spanned by the
projection [99-102], illustrated in Figure | by the ‘red’ terminals failing
to contact level (i-2). The backward projection originating from deep
layers reaches further, but these descending terminations (blue) show
a progressive shift of focus upon layers 1 and 6 [51]. In the opposite
direction, levels (i+1) and (i+2) show a progressive shift of focus of
ascending terminations (green) upon layer 4 [97].

The differential contribution of superficial and deep sources to
superficial and deep terminations in descending projections is not
well established, because few studies have used tracers with subtotal
layer deposition to study interareal connectivity. At minimum, the rule
may be that like connects with like, laminar-wise. Layer 6, for instance,
receives the densest input when the source of the descending
projection includes layer 6 of the higher area [103,104]. However,
layer 1 can receive descending input from deep layers in systems as
diverse as primate visual and rodent somatomotor cortex [105,106],
and layer 5 can receive descending input from superficial sources, at
least in cat and rat area V1 [103,104]. These patterns are summarised

time. Biological motion detection implies recognition of
complex motion patterns, such as a reach and grasp move-
ment, or a repetitive action, such as walking [21]. In other
words, the generative model of the brain is more like a
narrative or scenario, predicting sequences of events. The
scenario enables predictions about what may happen next.
If a head is turning, for instance, a frontal view of a face
may soon be replaced by a profile [22].

Generative models are necessarily hierarchical (in
space and time). If the visual system operates as a genera-
tive model, the percept corresponding to a particular cause
is not specified at only one level, but has multiple levels of
description. Take face processing, for example: a high-level
face area encodes view-invariant face identity, whereas
lower levels are view specific but less identity specific [23].
Features such as hair, eye, and skin colour are also encoded
elsewhere [24]. In addition, because face cells are size and
position invariant [25], lower areas must represent the
‘filled-in surface’ and ‘border ownership’ attributes of a
percept [26—28]. In short, the gestalt of a ‘face’ has multiple
components. In modelling terms, the high-level face area
provides the highest stamp of recognition, guiding and
contextualising inference about physical attributes in low-
er-level areas. Here, we shall use the term ‘expectations’ to
refer to the representations of causes encoded at each level.

Predictive coding schemes (e.g., [29]) describe the inver-
sion of a generative model, in order to recognise causes
from their sensory consequences. In global terms, the
model generates predictions of sensory input from high-
level representations of causes; more specifically, the ex-
pectations at any given level predict the expectations at the
level below. The model is inverted using a ‘guess it and try
it’ approach (Figure 1B): each level computes ‘prediction
errors’ by subtracting top-down predictions from its cur-
rent expectations. The requisite predictions are based
on expectations from the level above and conveyed by

2

in Figure | by the violet tone of descending terminations to layer 5 and
superficial layers in level (i-1), indicating a mix of superficial (red) and
deep (blue) sources at level (i). The blueing of terminals in deeper
layers of level (i-1), and all layers in level (i-2), indicates a progressive
domination of deep layer sources from level (i).
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Figure |. Prototypical laminar origins and terminations of connections in a
hierarchy of sensory cortical areas (adapted from [4]).

top-down or backward connections. Bottom-up prediction
error signals are then passed forwards to modify expecta-
tions in the level above. This iterative, reciprocal exchange
of predictions and errors minimises prediction error at
every level of the hierarchy and provides a plausible ex-
planation for visual sensations, in terms of expectations at
multiple levels.

Expectations: causes, states, and precisions
In generalised formulations of hierarchical predictive cod-
ing, there are three sorts of expectation: expected ‘causes’,
‘states’, and ‘precisions’ [15]. Causes are invariant aspects
of the world that create regularities in sensory data, such
as objects in the visual scene. Their correspondence to
elements of the scene is concrete at lower levels (e.g., a
colour), and increasingly abstract at higher levels of the
hierarchy (e.g., a smile). Whereas causes model categorical
aspects of the world, states model their dynamics; that is,
the fluctuations caused by the interactions among causes
(e.g., motion of an object) or between cause and context
(e.g., a rotating object and its illumination). Finally, preci-
sion corresponds to the reliability (inverse amplitude of
random fluctuations) of causes and states. Therefore,
expected precision determines the relative confidence in
descending predictions and ascending prediction error.
The differential equations describing predictive coding
are provided elsewhere [30], together with the theory
relating predictive coding to Bayesian inference [15,31].
Here, we consider the computational architecture and its
implementation by neuronal circuitry. Figure 2 shows five
kinds of computational unit (¢f. neuronal ensembles): ex-
pectation and error units for causes and states, and units
signalling expected precision. To recap, expectation units
encode the expected causes and states describing events
(scenarios) in the environment, whereas error units report
inconsistencies between expectations at different levels or,
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Figure 1. Predictive percepts and prediction error. (A) The hollow face illusion: on the left, the concave impression of a face is more readily seen as convex, lending it the
appearance of a face mask, floating to one side of the vertical surface and illuminated from below. Once the facial features are removed (right), the cavity submits to the
interpretation of being concave and illuminated from above. The illusion demonstrates the interplay of two prior expectations, concerning cause and context. The context is
the attribution of a top-down light source: the featureless cavity continues to look concave, as if illuminated from above, even if the cue for a superior light source provided
by the convex face is obscured. The cause is the attribution of a convex shape to an ovoid surface with facial features, which is sufficiently strong, in this illustration, to
override the default contextual assumption of illumination from above. (B) Schematic illustrating the basic architecture of predictive coding. In this example, ambiguity
(about occluded surfaces) is caused by visual occlusion that necessarily involves a nonlinear interaction between the causes of visual input (in that the appearance of an
occluded object depends upon the occluder). This nonlinear perceptual inversion problem can only be resolved by a generative model that knows a priori that visual
impressions are caused by objects. This problem is solved in predictive coding by generating descending predictions, given an initial hypothesis as to the cause, which is

adjusted by ascending prediction errors. Adapted, with permission, from [107] (A).

at the sensory level, the mismatch between predictions and
sensory input. Units encoding expected precision modulate
the gain of error units and endow them with greater or
lesser weight. This cortical gain control balances the influ-
ence of prediction errors at different levels in the hierarchy.
Accordingly, precision is associated with the top-down
deployment of attention [32] in the sensory domain and
action selection in the context of affordance. In summary,
expectation and error units interact to update beliefs about
causes and states in the world, with one crucial distinction:
expected causes are updated by reciprocal exchanges be-
tween hierarchical levels, whereas expected states are
updated within each level.

Below, we suggest a neural implementation of the pre-
dictive coding model outlined above (noting that alternative

formulations could specify a different neural architecture
[33]). We prefabricate the scheme in visual cortex, as amodel
of hierarchical processing, before transcribing it to motor
cortex and illustrating its explanatory scope through the
example of mirror neurons.

Neural implementation of predictive coding: sensory
(visual) pathways

We now attempt to marry the computational anatomy of
predictive coding with cortical microcircuitry. For simplic-
ity, we focus on updating expected causes: our aim is not to
specify exactly how such computations are performed at
the synaptic level, but to indicate how they might map onto
the laminar architecture of extrinsic and intrinsic cortical
connections. The scheme shown in Figure 3 is inferred from

3
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Figure 2. Graphical representation of the computational interactions between expectation and error units: the interactions depicted here are based on the differential
equations describing the neuronal dynamics implied by generalised predictive coding (e.g., Equation 3 in [30]). Note the hierarchical structure: predictive coding involves
recursive interactions among an arbitrary number of hierarchical levels, of which just one, level (i), is shown in full here. There are separate expectation and error units for
causes and states (for definitions, see main text). The computations relating to causes and states are formally identical, except that the updates for causes are based on
reciprocal exchanges between levels. In this scheme, expectation units recursively update their activity (1 and 5) with input from error units associated with other
expectations (2, 3, 6, and 7), and predictions about themselves (4 and 8). The error units compare the activity of their associated expectation (10 and 13) with predictions
based on a nonlinear function of other expectations (11 and 14); note that, for causes, this is a comparison of the expectation arising from the same level (13) with a
prediction descending from the higher level (14). Crucially, the gain of error units is modulated by precision signals (9 and 12), shown here to originate from the higher level
where they are regulated by expectations about causes and states, so rendering precision (i.e., gain control) context or state dependent. The relation with neural
architecture is given in Figures 3 and 4. As portrayed here, the different computational units represent multilaminar neuronal ensembles: expectation units are square, error
units are circular, and units mediating neuromodulation or precision are triangular. Connections with closed arrowheads are excitatory; connections with closed balls are
inhibitory and linear; connections with open balls are inhibitory and nonlinear; and connections with arcs have a modulatory (gain) effect.

anatomy alone; there is no explicit physiological categor-
isation of the notional expectation, error and precision
units, but we make the provisional assumption that all
three are represented in some form by pyramidal cells (or
by excitatory, spiny stellate cells in layer 4). Extrinsic and
intrinsic axonal ramifications typically contact inhibitory
interneurons as well as pyramidal neurons [34], but the
former are largely excluded: for this reason, and others, we
emphasise that Figure 3 presents a much simplified subset
of known circuitry.

The scheme for updating expected causes (Figure 3)
makes the fundamental assumption that ascending
connections forward prediction error and descending
(backward) connections convey predictions [19,35-37].
Prediction error is forwarded to level %’ from superficial
pyramidal cells of the level below (connection 6). As indi-
cated in Box 1, the ascending axons typically terminate in
both layer 4 and layer 3B [38,39]. The layer 4 cells retain
the status of error units; they perhaps preprocess the error
signals before relaying them to layer 3B; one such possi-
bility is described in [40]. The cells in layer 3B receiving
these inputs are deemed to be expectation units; note that
expectation units have previously been assigned to the
deep layers (5 and 6), where they act as the source of
descending predictions [19,35]. Layer 6 receives collaterals
of ascending axons carrying prediction error (not shown)
[38,39,41], but the ascending projection targets mainly the
superficial layers; therefore, expectation units must also
exist superficially [36]. The superficial expectation units
may correspond to a class of pyramidal cell lacking extrin-
sic output [42,43]. These units update and maintain ex-
pectations by collating ascending error signals, and by
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participating in recurrent interactions with each other
(connection 5, representing the horizontal network of con-
nections among pyramidal cells [44-46]). Finally, expecta-
tion units enjoy a looped connection with specific error
units in the same (3B) layer, excitatory in the forward
direction but inhibitory in the backward direction, to which
we must assign an intervening interneuron (connections
13 and 8).

In this scheme, layer 3B error units represent the point
of convergence of the superficial and deep components of
backward pathways, mediating precision and prediction,
respectively. Precision exerts a modulatory or gating influ-
ence over error units that is compatible with nonlinear
synaptic effects on apical dendritic arborisations in layer 1
(connection 12). The mechanism (as derived for large py-
ramidal neurons in layer 5 [47,48]) involves back propaga-
tion of action potentials into the apical dendrite, lowering
the threshold for apical calcium spiking and rendering the
cell ‘exquisitely sensitive’ to backward input arriving at the
apical tuft [49]. Hence, layer 3B error units should be
pyramidal neurons that are modulated by descending pre-
cision signals via their apical tufts in layer 1, after initial
(forward) activation by superficial expectation units. Other
targets of superficial backward projections may include the
apical tufts of pyramidal neurons in layers 3A and 2, them-
selves encoding precision, mediating a descending chain of
precision signals through the superficial layers. Because the
level of expected precision depends upon expected states of
the world, precision signals are regulated by superficial
expectation units through local axon collaterals. This same
population of expectation units must also give rise to the
deep component of the backward pathway, acting via an
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Figure 3. Neuronal interpretation of the message passing in Figure 2: the schematic illustrates the updating of expected causes, using extrinsic and intrinsic circuitry. The
extrinsic connections are hierarchical and involve reciprocal connections of one area, level (i), with the levels above and below (Box 1). The intrinsic connections form a
canonical microcircuit that has been summarised as a relay from layers 4 to 3 (and 2), and 3 to 5, with layer 6 receiving a certain level of input from all the layers above it
[36,108-111]. Conventions for the identity of computational units and labelled connections follow Figure 2, with the added proviso that all connections shown here arise
from pyramidal cells; two connections (8 and 14) are explicitly indicated to require inhibitory relays, but all the remaining connections are likely to subsume contacts on
both pyramidal neurons and interneurons. The circuitry may be summarised as follows. Forward, extrinsic connections terminate in layers 4 and 3B. The major output of
layer 4 is to the superficial layers, where subclasses of pyramidal neurons represent expectations (rectangular units) and prediction errors (circular), or mediate precision
(triangular). Activity in expectation units is maintained by recurrent interactions between pyramidal neurons and is informed by prediction error signals: excitation by the
ascending prediction error arriving from layer 4, and inhibition from local error units in layers 2 and 3, which are the source of ascending prediction error for the level above.
These superficial error units represent a subtraction of two signals: an excitatory signal received from their associated expectation units and a descending prediction,
relayed by a local interneuron (see main text for further details). Interlaminar connections from layer 3 to layers 5 and 6 are likely to transmit all three classes of signal, but
only the relay of expectation signals is shown here. These contact the deep pyramidal neurons that are the source of descending predictions. Precision signals arise from
pyramidal neurons in layers 2 and 3A conditioned by input from expectation units, and form a descending chain of transmission through the superficial layers; these signals
are capable of modulating error units via their apical tufts in layer 1. Overall, the scheme compiles anatomical data across species and visual areas. To provide but one
example, it matches the particulars of local circuitry established for the relay of lateral geniculate nucleus (LGN) parvocellular signals through macaque V1 [42]: superficial
expectation units can be associated with a class of intrinsic pyramidal neuron in layer 3B characterised by a short, tuftless apical dendrite, shown to receive direct input from
the parvocellular input layer 4Cb; by contrast, layer 3B pyramidal neurons that have extrinsic axons always lack direct input from layer 4Cb, and express apical dendritic
tufts in layer 1, characteristics associated with error units. This is consistent with a trisynaptic input—output architecture for the ascending parvocellular pathway, and the

regulation of error units by descending precision signals.

intrinsic relay to the source expectation units in layers 5 and
6 (connection 14).

This deeper descending stream generates predictions
that act subtractively on error units in the level below. In
our computational jargon, a ‘prediction’ is generated from
an ‘expectation’ through a nonlinear transformation (in-
volving backward connections; Figure 2). The generation of
predictions is necessarily nonlinear, because it must model
nonlinear interactions between the causes of sensory data
(e.g., one object occluding another; Figure 1B). Further-
more, because one cause can have many consequences, a
single expectation may generate separate predictions in
different contexts and modalities. Neuronally, this reflects
the fact that descending axons typically innervate several
areas [6,50,51]. Because these projections arise from pyra-
midal neurons in the higher area, and are excitatory, there
has to be an intervening inhibitory neuron somewhere in
the circuit. Although not outlawing alternatives, we have
shown this pathway to operate through descending input
to layer 6 pyramidal neurons, which transmit to superficial
error units via layer 3 interneurons. This element of the
proposed circuitry owes much to recent findings in mouse
V1, where layer 6 pyramidal neurons were selectively
activated in vivo with optogenetics [52]. This activation

reduced visually driven activity in all pyramidal neurons
recorded in layers 2-5. By contrast, inhibitory interneur-
ons in layers 2—5 exhibited enhanced activity, suggesting a
disynaptic suppressive influence of layer 6 on superficial
layers: the relay we propose to layer 3B would be one
element of this circuitry. Other studies of rodent V1 have
shown that most inhibition in the superficial layers is
generated locally, and have identified a class of interneu-
ron receiving input from the deep layers [53,54]. This could
be a somatostatin-positive (e.g., Martinotti) interneuron,
known to exert subtractive inhibition [55,56]. Other mech-
anisms for the subtraction of predictions from expectations
could involve direct contacts on superficial interneurons by
axons of the backward projection. In layer 1, the effects can
be modulatory and disinhibitory [57], but layer 2 harbours
a greater concentration of interneurons [58], many of
uncertain function.

Concluding with the deep layers, we depict intrinsic and
extrinsic connections of layer 6 restricted to the reception
and emission of descending expectation signals. Layer 5
not only shares this role, but may also transmit expected
precision to lower areas, because it contributes to descend-
ing projections with superficial terminations (not shown,
but see Box 1). Precision may be a crucial aspect of layer

5
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5 function in motor cortex, considered below. Figure 3
omits one further subset of extrinsic connections: the
ascending output from the deep layers. Note that these
originate in a distinct subpopulation of cells in layers 5 and
6, not from cells with axons bifurcating to both ascending
and descending targets [37]. We interpret this class as
error units, and anticipate that they should include a
complement of larger layer 5 pyramidal neurons with
apical tufts in layer 1, as reasoned for superficial error
units. Error units in layer 6 could be regulated by precision
signals in layer 5. An example is the layer 6 ‘Meynert’ cell of
primate V1, which has a short apical dendrite restricted to
layer 5, and an ascending projection to area V5/MT [59]; it
also has subcortical output to the colliculus [60,61], con-
tributing to a tecto-pulvinocortical loop [62,63], but, impor-
tantly, is not among the corticogeniculate neurons of layer
6 [64,65].

Corticothalamic feedback

The final link in the descending chain of predictions is
from layer 6 of V1 to the lateral geniculate nucleus (LGN).
The LGN may lack the sophisticated architecture of
cortex, but can still be regarded as computing an error
signal, by subtracting a cortical prediction from retinal
input. The action of cortical feedback upon the LGN has
been studied more intensively than any other descending
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pathway [66,67]. We note three findings in particular: (i)
that corticogeniculate pyramidal cells lack apical den-
drites ascending to layer 1 [68]; (ii) that most corticogen-
iculate neurons have receptive fields of ‘simple’ (rather
than ‘complex’) organisation [69,70]; and (iii) that there is
a direct phase reversal in the registration of cortical
simple ON and OFF subfields, in relation to the OFF
centre and ON surround (or vice versa) of the LGN relay
neurons that they contact [71]. This arrangement precise-
ly meets the requirements for producing a prediction
error in the LGN [72].

Neural implementation of predictive coding: motor
pathways

We now apply the principles of predictive coding to the
motor system. Expectations encoded in motor cortex pre-
dict the sensory state of the body consequent to action,
predicting the proprioceptive dynamics of the movement
trajectory (not only its final state) [73]. The obvious differ-
ence between perceptual (exteroceptive) predictions and
active (proprioceptive) predictions is that, whereas the
former change to accommodate sensory prediction errors,
the latter can be fulfilled directly by classical reflex arcs. In
this process, which we term ‘active inference’, propriocep-
tive predictions serve as motor intentions. Descending
signals in motor pathways are traditionally referred to
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Figure 4. A generalised predictive coding interpretation of the circuitry sustaining visual activation of mirror neurons across four sectors of somatomotor cortex: anterior
parietal (areas AIP and PFG), premotor (area F5), motor (M1), and somatosensory S1 (area 3a). Visual ‘mirror’ activation is transmitted to F5 from AIP and/or PFG, whose
intrinsic and reciprocal connections are similar to those of sensory areas shown in Figure 3; AIP/PFG matching the lower level (i-1) and F5 the middle level (i). Therefore, the
visual ‘mirror’ activity propagates through expectation and error units of F5, including the corticospinal expectation output from layer 5. Deep layer expectation units in area
F5 also terminate as backward connections in the deep layers of M1. This can be likened to the backward connection from upper level (i+1) to middle level (i) in Figure 3. The
subsequent circuitry, an internal relay from layer 6 to layer 3, reproduces that shown for sensory cortex, but this remains uncertain for motor cortex [88,89]. However
relayed, the descending prediction suppresses activity of superficial error units in M1, resulting in disinhibition of superficial expectation units. Hence, layer 3 expectation
units in M1 can also demonstrate visual ‘mirror’ activity that in turn is relayed to layer 5 to increment corticospinal transmission during action observation (output labelled
‘inc.’). The effectiveness of corticospinal expectations in giving rise to action is governed by activity of superficial units in F5 mediating precision. We envisage two varieties,
labelled ‘perception’ and ‘action’, with complementary levels of activity. When attending to the (visual) consequences of another’s action, a high level of expected precision
is predicted in areas AIP-PFG, where it enhances the gain of the error units relaying visual signals to F5; a corresponding decrement in ‘action’ precision is transmitted to
M1, and is also relayed corticospinally via layer 5 of both F5 and M1 (output labelled ‘Dec.’), suppressing action. Conversely, during action per se, enhanced corticospinal
action-precision signals descending from layer 5 facilitate prediction error-dependent reflexes in the spinal cord. Thus, F5 and M1 are shown to have similar circuitry for
corticospinal transmission, capable of generating mixed mirror neuron activity during action observation [87,93], both incremental (expectation) and decremental
(precision). A similar interplay is proposed for M1 and S1, whereby the superficial conveyed action-precision signal is intrinsically relayed to layer 5 of area 3a, and
hypothetical corticospinal mirror neurons of the suppressive type (output labelled ‘*Dec.’).
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as ‘commands’, but ‘intentions’ is probably more apt,
given that precise muscular forces are not prescribed,
but organised by spinal reflex arcs in receipt of predictive
signals. This issue and others (such as the relation of
active inference to ‘optimal control’ theories of motor
function) are discussed in greater detail elsewhere
[6,73,74].

The correspondence between the sensory and motor hi-
erarchies is supported by numerous anatomical, physiolog-
ical, and pharmacological criteria, all of which suggest that
descending pathways in sensory and motor systems are
organised similarly [6]: they share, for example, a higher
level of divergence compared with forward pathways and
their synapses express a higher proportion of nonlinear
NMDA receptors. Many aspects of ascending pathways
are also concordant, with one rather glaring exception:
the anatomy of forward corticocortical pathways in motor
cortex. The absence (or recession) of layer 4 indicates a
difference in functional organisation. However, this excep-
tion is readily interpretable — demanded even — by active
inference: a motor intention is deterministic, being a model
(or plan) of behaviour to be enacted, rather than a model
awaiting revision by prediction errors, as in a sensory
system. Prediction error generated within the motor periph-
ery activates spinal reflex arcs, and the resulting muscle
activity quashes prediction error, thereby fulfilling the pre-
diction [73,74]. Hence, the forward pathway, through which
proprioceptive prediction error ascends, is redundant [6].
Indeed, under active inference, M1 has to be shielded from
the spinal proprioceptive prediction errors that engage
reflexes; otherwise, it would infer that the intended move-
ment was not being executed. In the somatosensory and
exteroceptive domain, this shielding takes the form of sen-
sory attenuation, namely, attending away from the sensory
consequences of self made acts [75].

This is not to assert that there is no ascending proprio-
ceptive prediction error (reafference discharge). Motor
neurons are known to respond to proprioceptive stimula-
tion, and so-called ‘transcortical’ reflex arcs form an im-
portant component of motor control [76-78]: the
corticospinal component of this loop makes direct contact
with spinal motor neurons and may mediate precision (as
we argue below). The fact that ascending proprioceptive
predictions are computationally redundant in M1 sug-
gests that they have been eliminated (by activity depen-
dent plasticity) during neurodevelopment or, indeed,
epigenetically. Notably, Brodmann himself observed that
the inner granular layer (layer 4) is clearly formed in area
4 of the human foetus at 8 months [3]. An abnormal
persistence of layer 4 has been linked to severe motor
impairment in infants with cerebral palsy [79]. The sup-
position would be that the postnatal recession of layer 4
reflects the neurodevelopmental acquisition of motor
skills: as prediction errors come to be efficiently eliminat-
ed in the periphery, their ascension to M1 is increasingly
redundant and subversive. By contrast, the same predic-
tion error relayed to S1 subserves perceptual inference,
updating expectations of the proprioceptive and kinematic
state of the body and, through subsequent transmission to
motor cortex, helping to ensure motor intentions are ful-
filled as intended [6].
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Mirror neurons

To illustrate the explanatory power of predictive coding, we
now turn to the convergence of visual and motor function in
mirror neurons, building on existing neuronally plausible
simulations [73,74]. Originally discovered in premotor area
F5, and subsequently in anterior parietal cortex [80], the key
property of these neurons is to activate when performing
and observing the same action [81]. They can be regarded as
the apex of a visual pathway encoding action understanding
[81-83] that ascends to premotor area F5 from superior
temporal areas sensitive to biological motion, via parietal
areas known to be engaged by visually guided reaching and
grasping [84]. By their nature, mirror neurons encode motor
intentions, whether enacted by oneselfor used to explain the
observed behaviour of others. From the standpoint of active
inference, mirror neurons represent a visuomotor construct
that predicts both visual and proprioceptive consequences
[85]. However, how can these modes (action and action
observation) operate separately? To put it bluntly: why is
an observed action not, excepting the echopraxia of young
infants [86], automatically mimicked?

The answer rests on separate expectations about motor
and sensory precision. Effectively, proprioceptive predic-
tion errors can be turned on during action and off during
action observation. Active inference (action) occurs when
peripheral proprioceptive prediction errors are afforded
high precision, facilitating the spinal reflex [6,85]; con-
versely, the precision can be attenuated (cf. sensory atten-
uation) during action observation [85]. This attenuation
does not affect action observation, because perceptual
inference is driven by visual prediction errors. As noted

Box 2. Predictions

To consolidate the requisite features of a cortical architecture
performing predictive coding in the manner outlined here, we list
some testable predictions:

e Pyramidal neurons belong to one of three separate classes
[expectation (Exp), error (Err) or precision (Prc) neurons], with
distinct connectional, morphological, and physiological charac-
teristics.

Err neurons are the source of forward connections, and Exp and
Prc neurons the source of backward connections; there should be
few, if any, neurons with axons bifurcating to both forward and
backward targets, in either the superficial or deep layers.

The minimal forward relay through an area should be disynaptic:
input to Exp, and Exp to Err (output). Hence, ascending axon
terminals should contact Exp neurons, but not Err neurons. By
contrast, the minimal backward relay might be monosynaptic, for
Prc neurons relaying through layer 2/3A, for instance.

Pyramidal neurons with ascending extrinsic output (i.e., Err
neurons) should have apical dendritic arborisation in layer 1, to
undergo modulation by descending precision signals.
Physiologically, Exp and Err neurons should be characterised by
inverse effects of expectation. For instance, a predictable trajec-
tory of rightward motion should suppress rightward direction-
selective Err neurons, but enhance rightward direction-selective
Exp neurons. There is also the possibility of ‘crossover’, that is,
the rightward trajectory might exert the opposite effects upon
leftward direction-selective Err and Exp neurons.

Arising from our analysis of mirror neurons in motor cortex, we
predict that: (i) mirror neurons with a suppressive response to
action observation occur in layer 5 of area 3a of S1; and (ii)
separate populations of Prc neurons in premotor area F5 are the
source of backward connections to area M1, on the one hand, and
to anterior parietal areas AIP and PFG, on the other.
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above, precision enhances the gain of error units; in other
words, corticospinal transmission of (high) precision facil-
itates alpha motor neurons and produces an action [6].
Figure 4 illustrates the cortical circuitry, suggested by
recent physiological evidence, that could attenuate echo-
praxia (unintended actions) during action observation.

Intrinsic circuitry in premotor cortex

The ascending visual signals informing an observed action
reach F'5 (higher area) from anterior parietal areas PFG and
AIP (lower areas) [84]. The relation between F5 and PFG—
ATP is analogous to that depicted in Figure 3 for a pair of
higherandlowersensory areasalthough,duetotherecession
oflayer 4, the ascending signals (i.e., visual prediction error)
must terminate predominantly upon superficial expectation
units in F5. The intrinsic circuitry of F5 shown in Figure 4
includes a new element, a descending precision signal in the
corticospinal (pyramidal tract) output from layer 5. Some
pyramidal tract neurons in F5 have been identified as mirror
neurons that, importantly for our purposes, subdivide into
two classes: one that responds to both action and action
observation, according to the classic definition, and a second
that is excited by action but shows suppression when observ-
ing action [87]. The latter meet our criteria for a (precision)
unit whose decline in activity could attenuate spinal predic-
tion error and so preclude echopraxia.

Intrinsic circuitry in primary motor cortex

The descending connections from F5 to M1 and the recipro-
cal connections between S1 and M1 are also analogous to
those illustrated in Figure 3. Intrinsic circuitry is better
established in M1 than elsewhere in motor cortex. For
instance, several studies have identified excitatory input
to layer 5 from layers 2/3 as the most prominent internal
relay [88-90]. We also note previous work distinguishing
three distinct classes of pyramidal neuron in the superficial
layers of cat M1 on the basis of cell morphology, layer
position, and orthodromic activation by stimulation of S1
[91,92]: one class was monosynaptically activated from S1
(area 2), qualifying it as an expectation unit (that is driven
by ascending prediction errors). The other two classes were
activated at a longer (variable) latency, implying a polysyn-
aptic pathway from S1 that would be characteristic of error
and precision units, as influenced via expectation units. One
of these was smaller and more superficial, consistent with
our location of units mediating precision. All three displayed
axon collateral branching in layer 5, although this was less
extensive for the superficial class [91]. Importantly, M1
neurons can also display the mirror property [93,94]. Fur-
thermore, some pyramidal tract neurons in M1 layer 5 have
recently been identified as mirror neurons with, again,
excitatory and suppressive types in regard to action obser-
vation [93], where the suppressive type is in a position to
provide descending corticospinal precision (gain) control to
attenuate spinal reflexes during action observation.

A subset of corticospinal neurons in M1 (known as ‘CM’
neurons) make direct contact with spinal alpha and
gamma motoneurons [95], and we noted previously that
the population of smaller CM neurons, also found in area
3a and likely to contact gamma motoneurons [96], would be
good candidates for transmitting precision signals [6].
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Therefore, we have extended the backward transmission
of precision signals one step further to area 3a, with the
supposition that here, too, it may be possible to find mirror
neurons with a suppressive response to action observation.

Segregated origins of descending precision signals

Clearly, it is crucial for the above scheme that neurons
mediating (proprioceptive) precision that project from F5
to M1 should be anatomically distinct from those provid-
ing (exteroceptive) precision control to parietal cortex (cf.
attentional control). It is commonly found that descend-
ing axons innervate multiple targets [6,50,51]. One might
predict that top-down precision control to areas AIP and
PFG can be mediated by bifurcating axons, but that a
separate population of F5 precision neurons projects
to M1. Activity in these two systems should be comple-
mentary: when attending to one’s own intentions, high
motor precision in F5 would be necessary to facilitate
action, whereas high sensory precision in PFG-AIP

Box 3. Outstanding questions

e What is the origin of precision or gain control? Or, in other words,
how does the cortical microcircuit compute the expected preci-
sion of, or confidence in, sensory signals? Precision may have
several separate origins. It could arise and be signalled directly
through interaction between expectation and error units. Or, if
explicitly represented in separate neuronal populations (as we
have illustrated in this review) are there sources of precision local
to sensory cortex, and/or in external regulatory systems, relating
to the attentional optimisation of precision [32]?

e To what extent is precision mediated by descending cortical, and
corticospinal connections, as opposed to neuromodulatory effects
(e.g., as mediated by cholinergic and adrenergic transmission)
acting through nonspecific neuronal terminations?

e How should lateral connections be interpreted? Anatomically,
lateral connections appear to be a superposition of the forward
and backward laminar patterns [5]. A literal functional interpreta-
tion would require laterally interconnected areas to be computing
two distinct sets of causes, distinguished by a mutually reversed
hierarchical order. An alternative is to consider computations
relating to states that are not hierarchically ordered, but may still
make use of interareal communication. If we envisage the
expectation, prediction error and precision units for states to
occupy the same layers as their equivalent neurons for causes, a
symmetrical exchange of signals relating to states could easily
generate broad laminar distributions of origins and terminations,
as observed for the ‘intermediate’ laminar pattern of lateral
connections.

e Do superficial expectation neurons ever make extrinsic connec-
tions? The population of superficial pyramidal neurons that lack
extrinsic axonal projections would be classified as expectation
units, but it is also plausible that other expectation neurons do
make extrinsic (not necessarily backward) connections to report
expectations to other brain systems in the form of corollary
discharge: for example, visual expectation neurons reporting to
language and/or speech cortex.

If expectation, error, and precision units are valid categories of

pyramidal neuron, they should map to existing physiological

characterisations of distinct classes of sensory and motor units. In
relation to the distinction between (visual) ‘simple’ and ‘complex’
neurons of V1, for instance, one might associate simple cells with
expectations and complex cells with error units, at least insofar as
complex cells process input from simple cells to generate
ascending output, whereas simple cells provide most of the
descending (corticogeniculate) output. The challenge here is to
develop diagnostic criteria for physiological characteristics that
identify the computational role of specific neuronal populations;
for example, their characteristic frequency responses [36].
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would be necessary to attend to the action of another
(Boxes 2 and 3).

Concluding remarks

The principle that cortical areas serving different func-
tions should have different architectures seemed logical
to Campbell and Brodmann and their successors, but few
have attempted to consider how function dictates struc-
ture. Admittedly, architectural differentiation can be
subtle. However, even one of the most marked architec-
tural subtypes, agranular motor cortex, has so far
resisted explanation. Predictive coding can account for
the basic asymmetries of hierarchical connectivity in the
cortex and has been applied here to provide a framework
for laminar connectivity and a principled rationale for
the recession of the granular layer in motor cortex.
Furthermore, we hope to have illustrated the consilience
between structure and function under this framework,
through the operation of mirror neurons, which may
represent one of the hierarchically deepest forms of
active inference.
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