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In this article we used biologically plausible simulations of coupled neu-
ronal populations to address the relationship between phasic and fast
coherent neuronal interactions and macroscopic measures of activity that
are integrated over time, such as the BOLD response in functional mag-
netic resonance imaging. Event-related, dynamic correlations were as-
sessed using joint peristimulus time histograms and, in particular , the
mutual information between stimulus-induced transients in two popula-
tions. This mutual information can be considered as an index of functional
connectivity . Our simulations showed that functional connectivity or dy-
namic integration between two populations increases with mean back-
ground activity and stimulus-related rate modulation. Furthermore, as
the background activity increases, the populations become increasingly
sensitive to the intensity of the stimulus in terms of a predisposition to
transient phase locking. This re�ects an interaction between background
activity and stimulus intensity in producing dynamic correlations, in that
background activity augments stimulus-induced coherence modulation.
This is interesting from a computational perspective because background
activity establishes a context that may have a profound effect on event-
related interactions or functional connectivity between neuronal popula-
tions. Finally, total �ring rates, which subsume both background activity
and stimulus-related rate modulation, were almost linearly related to the
expression of dynamic correlations over large ranges of activities. These
observations show that under the assumptions implicit in our model, rate-
speci�c metrics based on rate or coherence modulation may be different
perspectives on the same underlying dynamics. This suggests that activ-
ity (averaged over all peristimulus times), as measured in neuroimaging,
may be tightly coupled to the expression of dynamic correlations.

1 Introduction

Previously (Chawla, Lumer, & Friston, 1998), we found, using computer
simulations of coupled neuronal populations, that mean activity and syn-
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chronization were tightly coupled during relatively steady-state dynamics.
This allowed us to make inferences about the degree of phase locking or
synchronization among, or within, neuronal populations given macroscopic
measures of activity such as those provided by neuroimaging. This article is
about the relationship between fast dynamic interactions among neurons, as
characterized by multiunit electrode recordings of separable spike trains,
and measures of neural activity that are integrated over time (e.g., func-
tional neuroimaging). In particular we address the question, Can anything
be inferred about fast coherent or phasic interactions based on averaged
macroscopic observations of cortical activity? This question is important
because a de�nitive answer would point to ways in which electrophysiolog-
ical �ndings (in basic neuroscience) might inform functional neuroimaging
studies that employ a train of stimulus or task events to detect changes in
time-integrated activity.

Our basic hypothesis is that fast, dynamic interactions between two
neuronal populations are a strong function of their background activity.
This hypothesis derives from a series of compelling computational stud-
ies (e.g., Boven & Aertsen, 1990; Aertsen & Preissl, 1991; Aertsen, Erb, &
Palm, 1994). In other words, the dynamic coupling between two popu-
lations, re�ected in changes in their coherent activity over a timescale of
milliseconds, cannot be separated from the context in which these interac-
tions occur. This context is shaped by the population dynamics expressed
over extended periods of time and, in particular, the overall level of activ-
ity. This is based on the commonsense observation that the responsiveness
of one unit, to the presynaptic input of another distant unit, will depend
on postsynaptic depolarization extant at the time the presynaptic input ar-
rives. In a previous modeling study, using relatively steady-state dynamics
(i.e., in the absence of induced transients), we showed that the mean �ring
rate and average phase locking between two populations were tightly cou-
pled in all regions of the model’s parameter space. There could therefore
be a link between mean activity and the emergence of dynamic correla-
tions over a timescale of milliseconds. Previous modeling work has shown
it to be the case that functional and effective connectivity vary strongly
with background population activity (Boven & Aertsen, 1990; Aertsen &
Preissl, 1991; Aertsen et al., 1994). In this article, we pursue this same
question but with a more biologically motivated neuronal model, which
uses Hodgkin-Huxley-like dynamics and a more re�ned analysis of dy-
namic correlations that is statistically grounded and uses mutual informa-
tion.

We expected that the emergence of phasic coherent interactions between
two populations is both facilitated by and results in high mean population
activity, suggesting that high background population activity levels may be
a necessary condition for the emergence of faster interactions. In order to ex-
amine this, we measured the short-term correlation structures between two
simulated time series as characterized by the joint peristimulus time his-
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togram (J-PSTH). The advantages of this characterization include a proper
assessment of phasic and stochastic interactions over peristimulus time,
where these interactions are referred to a stimulus or behavioral event. Us-
ing simulations, we show that the expression of dynamic correlations is
a strong function of the mean activity (averaged over time) extant in the
two populations at the time that these interactions are expressed. Further-
more, we show an interaction between background and evoked �ring-rate
changes that is mediated by activity-dependent changes in functional cou-
pling.

Although previous work has established that the effective connectivity
among neurons is sensitive to mean levels of population activity, the spe-
ci�c issue we wanted to address in this work is how this activity-dependent
change in functional coupling would be expressed in terms of integrated �r-
ing rates. This is important from the point of view of neuroimaging, where
only time-integrated measures of activity are available. These averages in-
clude a number of components, including the background activity and
stimulus-related rate modulation. The latter component may be a strong
function of the effective connectivity within and among neuronal popu-
lations and, consequently, the background activity itself. The interaction
between background and evoked rate modulation is therefore an impor-
tant phenomenon when trying to interpret responses observed with func-
tional neuroimaging. For example, consider the cortical responses to a train
of stimuli measured when the subject was attending and not attending to
these stimuli. Increased time-integrated responses may be due to attentional
modulation of background activity, increased stimulus-related rate modula-
tion, or both. Demonstrating an obligatory increase in rate modulation with
background activity in neuronal stimulations would greatly simplify the
interpretation of imaging results because it would suggest that both mech-
anisms were being expressed. In order to address the interaction between
background activity and stimulus intensity in modulating event-related re-
sponses, we varied both while measuring the total integrated activity and
dynamic correlations.

Section 2 describes the synthetic neural model on which our simula-
tions were based. Section 3 describes a characterization of the model dy-
namics in terms of short-term interactions using J-PSTHs and mutual in-
formation. Section 3 establishes a relationship between the expression of
short-term interactions (dynamic correlations) and macroscopic descrip-
tors of the population dynamics (mean activity), revealed by varying the
strength of the simulated stimulus and the background tonic activity levels.
On the basis of these simulations we were able to characterize the spe-
ci�c form for the relationship between fast dynamic interactions and mean
activity in two neuronal populations and look at the interaction between
background activity and stimulus intensity in mediating changes in these
measures.
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2 The Neural Model

Individual neurons, both excitatory and inhibitory were modeled as single-
compartment units. Spike generation in these units was implemented ac-
cording to the Hodgkin-Huxley formalism for the activation of sodium and
potassium transmembrane channels. (Speci�c equations governing these
channel dynamics can be found in appendix A.) In addition, synaptic chan-
nels provided fast excitation and inhibition. These synaptic in�uences were
modeled using exponential functions, with the time constants and reversal
potentials for AMPA (excitation) and GABAa (inhibition) receptor chan-
nels taken from the experimental literature (see Lumer, Edelman, & Tononi,
1997a, 1997b) for the use and justi�cation of similar parameters to those used
in the present model). Intrinsic (intra-area) connections were 20% inhibitory
and 80% excitatory (Beaulieu, Kisvarday, Somogyi, & Cynader, 1992). Ex-
trinsic (inter-area) connections were all excitatory. Transmission delays for
individual connections were sampled from a noncentral gaussian distribu-
tion. Intra-area delays had a mean of 2 ms and a standard deviation of 1 ms
and inter-area delays had a mean and standard deviation of 5 ms and 1 ms,
respectively. We modeled two areas that were reciprocally connected. Both
consisted of a hundred cells that were 90% intrinsically connected and 5%
extrinsically connected. Excitatory NMDA synaptic channels were incorpo-
rated in the model (see appendix A), in addition to the excitatory AMPA
and inhibitory GABAa synaptic channels. These NMDA channels were used
only in the feedback connections.

Transient dynamics were evoked by providing a burst of noise to pop-
ulation 1. The simulated spike trains from units in both populations were
averaged over the population, binned into 4 ms bins, and then smoothed
using a gaussian kernel with a half-height full width of 16 ms. These spike
trains were then analyzed, using the J-PSTH (Gerstein & Perkel, 1969, 1972;
Gerstein, Bedenbaugh, & Aertsen, 1989; Aertsen et al., 1991). The stimu-
lus was provided to population 1 for a duration of 35 ms at intervals of
500 ms. For each analysis, the model was run for a total of 64 seconds of
simulated time. This was repeated under different levels of background
noise and stimulus intensity, using either AMPA or NMDA feedback recep-
tors.

3 Characterizing Dynamic Correlations with the J-PSTH

3.1 Peristimulus Time Histograms. The display format (see Figure 2)
has three components. Plotted along each side of the square matrix (the
J-PSTH) are ordinary peristimulus time (PST) histograms, which represent
the stimulus time-locked, average-rate modulation. As an index of the total
background activity and stimulus-induced rate modulation, we measured
the integral under the PSTH of the �rst population.This served as our macro-
scopic measure of neural activity that would be measured by, for example,
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functional magnetic imaging (fMRI) orpositronemission tomography (PET)
and represents the �rst dependent variable in our characterization. The sec-
ond dependent variable was a measure of the dynamic correlations based
on the J-PSTH or crosscorrelation matrix expressed in terms of mutual in-
formation (see below). (A detailed explanation of how to read J-PSTHs is
given in appendix B.)

3.2 Coincidence Time Histogram and Cross Correlogram. The compo-
nent of the analysis in the right panel of Figure 2 is the PST coincidence his-
togram or coincidence time histogram (CTH). This represents the stimulus
time-locked average of near-coincident �ring (which is simply the leading
diagonal of the J-PSTH). This graph thus shows how the level of coherent
�ring or synchrony (plotted vertically) varies with PST (plotted horizon-
tally). The cross correlogram, the third component, characterizes the degree
of coherence averaged over all PSTs at some time lag. Because it is not sensi-
tive to dynamic modulation of coherence, it is not used further in this article.
Similarly, we do not use the CTH because, being a metric of coincident �ring
at near-zero time lags, it is an impoverished metric of dynamic correlations
that could be expressed at nonzero time lags.

3.3 A Mutual Information Measure of Dynamic Correlations. We were
interested in how stimulus-induced dynamic correlations varied as a func-
tion of background noise, stimulus strength, and the interaction between
these two factors. As a measure of the dynamic correlations, induced be-
tween our two simulated populations, we used the mutual information
between the stimulus-induced transients having corrected for mean rate
modulation. The calculation and interpretation of mutual information are
described in appendix C.

In what follows we examine the way in which the mutual information
or functional connectivity changes with integrated �ring rate. We did this
by manipulating the strength of the stimulus under different levels of back-
ground activity. This enabled us not only to assess the effects of changing
background activity and stimulus strength on mutual information (and in-
tegrated rate) but also to characterize any interaction between these two
manipulations. The background noise levels were characterized in terms of
the average depolarization produced: ¡65:9, ¡63:4, ¡63:2, and ¡61:2 mV.
These values were calculated after applying a given noise level to both pop-
ulations, running the simulation for 64 seconds, and computing the mean
membrane potential over units and time. The stimulus intensities used were
10, 25, 50, 75, 125, 150, 175, 200, 225, and 250 Hz. Noise level and stimulus
intensity represent our two independent variables that were expected to
produce changes in the two dependent variables (integrated rate and mu-
tual information).



2810 D. Chawla, E. D. Lumer, and K. J. Friston

4 Results

4.1 Relationship Between Dynamic Correlations and Integrated Rate.
We found that increases in either background noise or the strength of the
stimulus were universally associated with increases in both integrated rate
and mutual information. Furthermore, both dependent variables (rate and
mutual information) were highly coupled in an almost linear fashion. Fig-
ure 1b shows plots of mutual information against integrated rate for three
different levels of background noise, demonstrating the coupling among
these measures, irrespective of how different levels of either were elicited.
Because of this tight relationship, we focused on how the independent ma-
nipulations of background noise and stimulus intensity affect mutual infor-
mation (equivalent effects were observed on integrated rate). Two examples
of the mean time course of activity (local �eld potential, LFP) in population
1 under two levels of background activity are illustrated in Figure 1a.

4.2 Effect of Background Activity and Stimulus Intensity on Dynamic
Correlations. Figure 1c shows mutual information as a function of stim-
ulus intensity for the three levels of background activity. As background
noise increased, the gradient of the mutual information versus stimulus in-
tensity plot also increased. A formal test for the differences in regression
slopes con�rmed the signi�cance of this effect (t-statistic = 2.2, residual de-
grees of freedom = 53, p-value = 0.016 for the average increase from low-
to high-background activities over NMDA and AMPA simulations using
multiple regression and the appropriate contrast). This is clear evidence
of an interaction between tonic background activity and stimulus-induced
rate modulation in the genesis of dynamic correlations. In other words,
high-background activity increased the sensitivity of evoked dynamic cor-
relations to increased stimulus intensity. This is demonstrated more clearly
below. These phenomena were evident irrespective of whether we used
NMDA (upper panels) or AMPA-like (lower panels) feedback receptors.

Figure 1: Facing page. (a) Mean membrane potential for one stimulus strength
at two of the background noise levels. This graph shows the mean membrane
potential over three interstimulus intervals (1500 ms). (b) Plots of stimulus-
induced mutual information between the two populations against integrated
rate (as indexed by the integral under the PSTH) for three different levels of
background activity. The stimulus intensity was varied through 10, 25, 50, 75,
125, 150, 175, 200, 225, and 250 Hz. The upper panel shows the results when
the model was implemented with NMDA feedback receptors and the lower
panel with AMPA feedback receptors. (c) The same as in b, but now mutual
information is plotted against the stimulus intensities used. In c, the regression
slopes of mutual information on stimulus intensity are plotted.



Neuronal Activity and Dynamic Correlations 2811



2812 D. Chawla, E. D. Lumer, and K. J. Friston

Figure 2: (a) J-PSTH for the simulated populations at the lowest background
noise level (see Figure 1) and similarly with a very weak stimulus applied every
500 ms for 35 ms. (b) J-PSTH at the highest background noise level (the same
as in Figure 3) and with the low intensity stimulus as in Figure 2a. (c) J-PSTH
for the neuronal populations at the low background activity as in Figure 2a and
with a high-intensity stimulus. (d) J-PSTH at a high background activity level
as in Figure 2b and with the high-intensity stimulus as in Figure 2c.

4.3 Examples of These Effects Demonstrated with J-PSTHs. Figure 2
presents J-PSTHs between the two populations at two different levels of
background activity and with two different stimulus intensities. It can be
seen that when the stimulus was very weak and the background noise was
low, the presence of the stimulus had almost no effect on the synchronous
interactions between the populations because it was not strong enough to
enable the populations to entrain each other to any extent (see CTH of Fig-
ure 2a). However, when the background noise was increased, this same
stimulus had a de�nite effect on the dynamic correlations, as can be seen
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Figure 3: Mutual information plotted against integrated rate for the highest
noise level, as depicted in Figures 2b and 2d, under both AMPA and NMDA
feedback receptors. The stimulus intensity is varied through the same values as
in Figure 1.

in Figure 2b (the background activity level in Figure 2b is higher than any
of the background levels in Figure 1). At the low background activity level
as in Figure 2a, when the stimulus was very strong, extremely signi�cant
dynamic correlations occurred (see Figure 2c), in contrast to when the stim-
ulus was weak and induced minimal dynamic correlations (see Figure 2a).
At the high-background noise level as in Figure 2b, when the stimulus was
very strong as in Figure 2c, the synchronization induced never died away,
and high levels of synchrony were maintained (see Figure 2d).

Figure 3 shows mutual information as a function of integrated rate at
the very high background activity level as in Figures 2b and 2d. This shows
that at such high background levels, the plot of mutual information versus
integrated rate eventually levels off, at which point increasing the stimu-
lus intensity will no longer facilitate an increase in the mutual information
between the two populations. This demonstrates nicely the saturation phe-
nomenon as seen in Figure 2d. Figure 2d showed that with a very high
background noise, the stimulus intensity may reach a level at which the
synchronization induced never dies away. Increasing the stimulus intensity
further then has little or no effect.
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5 Discussion

Several lines of evidence support our �ndings that a systematic relation-
ship between fast dynamic interactions (measured here in terms of mutual
information or functional connectivity) and macroscopic measures exist.
Aertsen and Preissl (1991) investigated the behavior of arti�cial networks,
analytically and using simulations. They concluded that short-term effec-
tive connectivity varies strongly with, or is modulated by, pool activity. Pool
activity is de�ned as the product of the number of neurons and their mean
�ring rate. Effective connectivity is de�ned as the in�uence one neural sys-
tem exerts over another at a synaptic level. The mechanism is simple: the
ef�cacy of subthreshold excitatory postsynaptic potentials (EPSPs) in estab-
lishing dynamic interactions is a function of postsynaptic depolarization,
which in turn depends on the tonic background activity. This idea can be
elucidated in the following way. If the network activity is very low, the in-
puts to a single neuron (say, neuron j) will cause only a very subthreshold
EPSP in that neuron. If some presynaptic neuron (say neuron i) �res so that
it provides input to neuron j, this input will be insuf�cient to cause neuron
j to �re. However, if the pool activity is high enough to maintain a slightly
subthreshold transmembrane potential in neuron j, then an input from neu-
ron i to neuron j is more likely to push the membrane potential of neuron j
over the reversal threshold and elicit an action potential.

In previous work, we demonstrated that sustained synchrony shows a
monotonic relationship with mean activity (Chawla et al., 1998). As mean
activity in the network increases, the mean instantaneous membrane time
constants decrease, giving rise to a higher level of synchrony. The decrease in
time constants is a natural consequence of conjointly increasing membrane
conductances through excitatory and inhibitory channels at high levels of
activity. Hence, as activity level increases, smaller membrane time constants
increase the synchronous gain in the network, that is, individual neurons
became more sensitive to temporal coincidences in their synaptic inputs, re-
sponding with a higher �ring rate to synchronous rather than asynchronous
inputs. Therefore, in the event-related context, as background noise in-
creases, the network should become more prone to stimulus-induced syn-
chronous transients. This is re�ected in both the time that the poststimulus
synchronization endures and a progressive increase in the mutual informa-
tion versus stimulus intensity regression slope. The latter effect constitutes
an interaction and can be viewed as a stimulus-dependent effect that is con-
text sensitive. In this instance, the context is set by the tonic background
of activity and could be mediated through a progressive diminution of the
effective membrane time constants.

Our �ndings provide the basis for two fairly important conclusions. The
�rst is that increasing the tonic or background activity can potentiate the
transient or dynamic correlations induced by a salient stimulus or behav-
ioral event. This simple phenomenon might provide a useful mechanism
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in the brain for exerting control over functional integration between neu-
ronal populations in a context-dependent fashion. For example, attentional
modulation of background activity in distinct sensory neuronal populations
could be used selectively to enhance neuronal interactions in a topograph-
ically constrained way (Frith & Friston, 1997). The fact that a higher mu-
tual information between our simulated neuronal populations was induced
under conditions of higher noise is presumably very similar to stochastic
resonance (Wiesenfeld & Moss, 1995), wherein small amounts of stochastic
noise facilitate nonlinear transformations, in this instance effected by inter-
acting neuronal populations. This phenomenon is interesting because of its
almost counterintuitive nature. Indeed, it might be thought that increased
background noise may lead to greater dif�culty in distinguishing a tran-
sient signal from noise. However, this is not necessarily the case. Mainen
and Sejnowski (1995) have shown that noisier neuronal input can increase
the precision of the cell spikes, thus increasing the sensitivity of the cells to
their inputs. Their data suggests “a low intrinsic noise level in spike gener-
ation, which could allow cortical neurons to accurately transform synaptic
input into spike sequences, supporting a possible role for spike timing in the
processing of cortical information by the neocortex” (Mainen & Sejnowski,
1995).

The second conclusion has a more practical importance and pertains
to the interpretation of neuroimaging studies in which only macroscopic
observations of rate modulation are generally allowed. By simply demon-
strating a systematic and consistent relationship between rate modulation
(integrated rate over PST) and coherence modulation (the mutual informa-
tion associated with dynamic correlations), one can be comfortable with
the probability that functional neuroimaging is not totally insensitive to
event-related fast coherent interactions of the sort mediated by dynamic
correlations. This is important given the possible role that dynamic corre-
lations may play in sensorimotor and cognitive operations (Vaadia et al.,
1995). This conclusion leads to the more general point that speci�c metrics
based on rate or coherence modulation may be different perspectives on the
same underlying dynamics. In this view, synchronized, mutually entrained
signals enhance overall �ring levels and can be thought of as mediating an
increase in the effective connectivity between the two areas. Equivalently,
high levels of discharge rates increase the effective connectivity between
two populations and augment the fast, synchronous exchange of signals. In
this sense there is an almost circular causality in the relationship between
rate and transient synchronization. Although we manipulated mean back-
ground activity in our simulations, much of the variability in integrated
rates over PST can be accounted for by the dynamic correlations induced
by the stimulus. In other words, a high mean level of activity facilitates tran-
sient coherent interactions, above and beyond those predicted by dynamic
rate modulation itself. These dynamic correlations in turn cause a mutual
entrainment of the interacting populations and augment activity levels for
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a period of time. At very high levels of activity, any stimulus-evoked tran-
sient might ignite the system, leading to high levels of synchrony and mean
activity that are self-maintaining (see Figures 2 and 3).

The statement that the distinction between temporal and rate coding is
simply a matter of perspective is a strong one that is made with some expec-
tation of being refuted. Although it is clearly possible that the information
conveyed by the precise timing of spikes is very different from that con-
veyed by discharge rates, from the point of view of population dynamics,
it may be the case that changes in spike timing cannot be divorced from
changes in �ring rate given the neuronal infrastructure employed by the
brain. The point being made here is that due to the intimate relationship
between the temporal patterning of presynaptic events (in terms of either
phase locking as discussed in Chawla et al., 1998, or in terms of dynamic
correlations, as considered in this article), and postsynaptic discharge prob-
abilities, an increase in synchronized input inevitably will result in higher
population discharge rates. The mechanisms that underlie this relationship
may involve increased membrane conductances, decreased effective mem-
brane time constants, and an increase in synchronous gain mediated by
impoverished temporal integration. Put simply, under the constraints im-
posed by the emergent nonlinear dynamics of neuronal circuits, one cannot
change the �ne temporal structure of discharge patterns without changing
population activity (this point is made by the results in Figure 1, which
show a monotonic relationship between integrated �ring rate and mutual
information). If changes in one metric of neuronal dynamics, such as spike
timing, are universally associated with changes in another metric, such as
population activity, then the two metrics are mutually redundant and re�ect
different measures of the same underlying dynamics. It should be noted that
these observations pertain only to population codes.

In summary, we have shown that background activity levels in simu-
lated neuronal populations facilitate and are facilitated by the expression of
stimulus-induced dynamic correlations. These �ndings have implications
for the context-dependent aspects of stimulus-related neuronal interactions
and also inform the interpretation of neuroimaging measures of neurophys-
iology.

Appendix A: Modeling Neuronal Dynamics

The neuronal dynamics were produced by simulations based on the equa-
tions from the Yamada, Koch, and Adams (1989) single neuron model, using
the Hodgkin and Huxley formalism:

dV=dt D ¡1=CMf.gNam2h.V ¡ VNa/ C gKn2y.V ¡ VK/ C gl.V ¡ Vl/

C gAMPA.V ¡ VAMPA/ C gGABA.V ¡ VGABA/g,

dm=dt D ®m.1 ¡ m/ ¡ ¯mm
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Table 1: Table of the Parameter Values of the Neuronal Model.

Receptor/Channel gpeak.mS/ ¿ (ms) Vj (mV)

AMPA 0.05 3 0
GABAa 0.175 7 ¡70
NMDA 0.01 100 0
NaC 200 50
KC 170 ¡90
Leak 1 ¡60

dn=dt D ®n.1 ¡ n/ ¡ ¯nn

dgAMPA=dt D ¡gAMPA=¿AMPA

dh=dt D ®h.1 ¡ h/ ¡ ¯hh

dy=dt D ®y.1 ¡ y/ ¡ ¯yy

dgGABA=dt D ¡gGABA=¿GABA

V represents the membrane potential of the neuron, CM represents the mem-
brane capacitance (1¹F), and gNa; gK, and gl represent the maximum Na+
channel, K+ channel, and leakage conductances, respectively. VNa repre-
sents the Na+ equilibrium potential, and similarly for VK and Vl. m, h, n,
and y are the fraction of Na+ and K+ channel gates that are open. gAMPA
and gGABA are the conductances of the excitatory (AMPA) and inhibitory
(GABAa) synaptic channels, respectively. The peak conductances are con-
stant for each receptor type and are given in Table 1. ¿ represents the ex-
citatory and inhibitory decay time constants. ®n, ¯n, ®m, ¯m, ®h, ¯h, ®y, ¯y
are nonnegative functions of V that model voltage-dependent rates of chan-
nel con�guration transitions. The implementation of NMDA channels was
based on Traub, Wong, Miles, and Michelson (1991):

INMDA D gNMDA.t/M.V ¡ VNMDA/

dgNMDA=dt D ¡gNMDA=¿2

M D 1=.1 C .Mg2C=3/.exp[¡0:07.V ¡ »/]/

INMDA is the current that enters linearly into the equation for dV=dt,
above. gNMDA is a ligand-gated virtual conductance. M is a modulatory
term that mimicks the voltage-dependent af�nity of the Mg2C channel pore.
» is ¡10 mV and Mg2C is the external concentration of Mg2C often used in
hippocampal slice experiments (2 mM). These and other parameters are
given in Table 1.
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Appendix B: How to Read J-PSTHs

The J-PSTH is a raster plot of the two PSTHs plotted against each other, and
as such, coincident �rings are shown along the leading diagonal of the J-
PSTH. Time-lagged synchronized �rings are shown as diagonal bands that
are shifted relative to this diagonal. The displacement of the band is there-
fore a measure of the latency of phase locking. The width and structure of the
band depend on the details of the coherent interactions. Direct synaptic con-
nections from population 1 to population 2 will produce a 45 degree band
of differing density lying below the principal diagonal at a distance pro-
portional to the latency of the interaction. Connections from population 2 to
population 1 will produce a similar band lying above the principaldiagonal.
If the interactions between the two populations are affected by the stimu-
lus, then the diagonal band will show changes in density along its length,
evidencing dynamic correlations or coherence modulation as a function of
PST. Correlations due purely to rate modulation evoked by the stimulus are
removed by subtracting the cross-product matrix of the individual PSTHs
from the raw J-PSTH and then dividing the resulting difference matrix (bin
by bin) by the cross-product matrix of the standard deviations of the PSTHs.
This is mathematically the same as computing the cross-correlation matrix
between the binned activities from both populations over stimulus epochs.

Appendix C: Explanation of Mutual Information

Our measure of mutual information is equivalent to testing the null hy-
pothesis that all the elements of the J-PSTH are jointly zero. The mutual
information can be thought of as the generalization of a correlation for mul-
tivariate data (in this case, the activity over different PSTs). As such, it serves
as a measure of functional connectivity. The critical idea in this instance is
that by predicating our measure of functional connectivity on the J-PSTH,
we properly include dynamic correlations that would otherwise be missed
if we simply looked at average correlations as implicit in the cross correl-
ogram. The importance of using the J-PSTH in the context of this article is
discussed fully in Aertsen et al. (1994). A simple example makes the dis-
tinction between these two approaches clear: Imagine a stimulus-induced
strong, positive correlation for 100 milliseconds followed, systematically,
by equally strong negative correlations for the subsequent 100 milliseconds.
The average correlationover all PSTs, as measured by the cross correlogram,
would be zero. However, the mutual information mediated by the dynamic
correlations in the J-PSTH would be extremely signi�cant.

The reason that the mutual information is an implicit test of the null hy-
pothesis that the dynamic correlations are jointly zero follows from the fact
that the maximum likelihood statistic for the latter test is Wilks’ lambda.
Under gaussian assumptions, the log of this statistic is proportional to the
mutual information between the stimulus-induced transients that produce
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the dynamic correlations. In this article, we restricted ourselves to using the
mutual information and refer interested readers to Chat�eld and Collins
(1982) for a discussion of Wilks’ lambda in the context of multivariate anal-
ysis of covariance (ManCova).

C.1 Mutual Information and Wilks’ Lambda. The J-PSTH is given by
XTY (T denotes transposition) where X is a mean corrected and normalized
data matrix from unit or population 1 with a row for every stimulus epoch
and a column for every PST bin. Y is the corresponding matrix from the
second population. The mutual information between X and Y is given by:

I.X; Y/ D H.X/ C H.Y/ ¡ H.X \ Y/;

where H.X/ is the entropy of X, H.Y/ is the entropy of Y, and H.X \ Y/ is
the entropy of X and Y considered jointly. Under gaussian assumptions:

H.X/ D ln.2¼ en |XTX |/=2;

where |XTX | is the determinant of XTX (i.e., the autocovariance matrix of
X) and n is the number of columns.

Let:

A D [XY]T[XY] D dXTX XTYe
bYTX YTYc:

then,

|A| D |XTX | |YTY ¡ YTX.XTX/¡1XTY |;

giving,

I.X; Y/ D ln. |YTY |= |YTY ¡ YTX.XTX/¡1XTY |/:

Analternative (statistical) perspective, mathematically equivalent to test-
ing for dynamic correlations, is to test the null hypothesis that XTY D 0. This
can be effected in the context of multivariate analysis using Wilks’maximum
liklihood ratio or Wilks’ lambda, ¸ D |R |=|R0 |, where R and R0 are the resid-
ual sum of squares and products under the alternate and null hypotheses,
respectively. In this instance, we treat the test for statistical dependencies
between X and Y as a multiple regression problem under the general linear
model,

Y D X¯ C ";

where ¯ are the regression coef�cients and " are errors with a multinormal
distribution. The parameter estimates are given by:

¯ D .XTX/¡1XTY

Y¤ D X¯; where Y¤ is the �tted data:
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Under the null hypothesis, ¯ D 0 and therefore,

R0 D YTY:

Similarly, under the alternate hypothesis:

R D [Y ¡ Y¤]T[Y ¡ Y¤]

D YTY ¡ YTY¤I

therefore:

¸ D |R |=|R0 | D |YTY ¡ YTX.XTX/¡1XTY|= |YTY | and

I.X; Y/ D ¡ ln.¸/

The negative log of Wilks’ lambda is the mutual information.
Under the null hypothesis of no dynamic correlations, ln.¸/ has approx-

imately a chi-squared distribution where ¡.r ¡ 1=2/ ln.¸/ » Â2.n2/ where
r are the residual degrees of freedom (number of epochs minus time bins)
(Chat�eld & Collins, 1982). In practice the number of time bins may exceed
the number of epochs. In this instance, one generally reduces the dimen-
sionality of the data X (and Y) using singular value decomposition.
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