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Spatial Registration and Normalization of Images 
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Abstract: This paper concerns the spatial and intensity transformations that map one image onto another. 
We present a general technique that facilitates nonlinear spatial (stereotactic) normalization and image 
realignment. This technique minimizes the sum of squares between two images following nonlinear 
spatial deformations and transformations of the voxel (intensity) values. The spatial and intensity 
transformations are obtained simultaneously, and explicitly, using a least squares solution and a series of 
linearising devices. The approach is completely noninteractive (automatic), nonlinear, and noniterative. It 
can be applied in any number of dimensions. 

Various applications are considered, including the realignment of functional magnetic resonance 
imaging (MRI) time-series, the linear (affine) and nonlinear spatial normalization of positron emission 
tomography (PET) and structural MRI images, the coregistration of PET to structural MRI, and, implicitly, 
the conjoining of PET and MRI to obtain high resolution functional images. 
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INTRODUCTION 

This paper is about the spatial transformation of 
image processes. Spatial transformations are both 
ubiquitous and important in many aspects of image 
analysis. For example, in neuroimaging, the realign- 
ment of a time-series of scans from the same subject 
(correcting for movement) is necessary for voxel-based 
analyses of time-dependent changes. This issue is of 
current interest in the analysis of functional magnetic 
resonance imaging (fMRI) time-series. Intersubject 
averaging, with change distribution analysis or statisti- 
cal parametric mapping, requires the images to be 
transformed into some standard stereotactic space 
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[e.g., Fox et al., 1988; Friston et al., 1991aj. Anatomical 
variability and structural changes due to pathology 
can be framed in terms of the transformations re- 
quired to map the abnormal onto the normal. The 
interpretation of functional mapping studies often 
refers to some notion of normal anatomical variability 
[e.g., Steinmetz and Seitz, 19911. This variability embod- 
ies neuroanatomical information of a probabilistic 
nature that is the focus of some important new brain 
mapping initiatives [e.g., Mazziotta et al., submitted]. 

Spatial transformations can be broadly classified as 
label based and non-label based. Label-based techniques 
identify homologous spatial structures, features, or 
landmarks in two images and find the transformation 
that best superposes the labelled points. These trans- 
formations can be linear [e.g., Pelizzari et al., 19881 or 
nonlinear ( e g ,  thin plate splines [Bookstein, 19891). 
Non-label-based approaches identify a spatial transfor- 
mation that minimizes some index of the difference 
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between an object and a reference image, where both 
are treated as unlabelled continuous processes. Again, 
these can be linear (e.g., principal axes [Alpert et al., 
19901; image realignment [Woods et al., 1992; Collins 
et al., 1994; and see Lange, 19941) or nonlinear (e.g., 
plastic transformation [Friston et al., 1991bI with some 
interesting developments using neural nets [Kosugi et 
al., 19931. 

In the absence of any constraints it is of course 
possible to transform any image such that it matches 
another exactly. The issue is therefore less about the 
nature of the transformation and more about defining 
the constraints under which the transformation is 
effected. The validity of the transformation can usu- 
ally be reduced to the validity of these constraints. The 
first tenet of the general approach described here is 
that the constraints be explicit, reasonable, and opera- 
tionally specified. The reliability of label-based ap- 
proaches is limited by the reproducibility of the 
labelling. Non-label-based techniques are generally 
noninteractive and are therefore completely reliable. 
The second key aspect of our approach is therefore 
that it be non-label-based and automatic. Many ap- 
proaches to spatial transformation use some form of 
gradient descent or nonlinear minimisation to find the 
global minimum of an error surface. These iterative 
techniques are flexible but may find local solutions 
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and are computationally very expensive (e.g., 30 min- 
utes for a simple linear MRI to MRI matching [Collins 
et al., 19941). To avoid these problems we have used an 
approach with explicit and unique solutions that can 
be obtained by solving just one equation. 

In short, the aim of this work was to develop an 
efficient, automatic, and general multidimensional 
nonlinear spatial transformation technique. (Rigid body 
and affine transformations were considered as special 
linear cases of this more general approach.) The only 
automatic nonlinear and noniterative technique used 
widely at present [Friston et al., 1991bI is fundamen- 
tally limited in the sense that it is only valid for 
one-dimensional images. (Current implementations 
apply this one-dimensional transformation to the radii 
of transverse slices in a polar space.) 

This paper begins by describing the idea on which 
the transformations are based and providing the 
general operational equations. (A full exposition is 
provided in an appendix.) This is followed by a brief 
description of the fMRI, structural MRI, and positron 
emission tomography (PET) data used in subsequent 
sections. The remaining four sections deal with a 
range of specific applications and extensions. The first 
("Within modality, within subject") illustrates the 
simplest application, namely, orthogonal (rigid body) 
transformations of single-slice N R I  data that would 
be applied to reduce head movement artifact in fMR1 
time-series. The algorithm was tested using simulated 
head movement and a real time-series of 64 images. 
Performance was assessed by comparing the esti- 
mated and known movement parameters. The esti- 
mates were also compared with those obtained with a 
widely used image realignment routine [Woods et al., 
19921. Using a real time-series, the validity of the 
realignment was further addressed by looking at its 
effect on time-dependent functional changes. The 
second section ("Within modality, between subject") 
deals with general nonlinear three-dimensional trans- 
formations of the sort required to map an arbitrary 
PET image into a standard PET image conforming to 
the space described by the atlas of Talairach and 
Tournoux [1988]. This spatial normalization transfor- 
mation is used to 1) introduce a recursive application 
of the least squares analysis and 2) compare it with 
equivalent nonlinear minimisation. The section con- 
cludes by introducing a simultaneous solution for the 
transformation using a series of feature-enhanced 
images derived from the primary image pair. This 
extension is demonstrated in the context of matching 
structural MRI images from different subjects. The 
third section ("Between modality, within subject") 
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looks at the registration of structural MRI and PET 
from the same individual. The focus here is on the 
intensity transformation implicit in the overall solu- 
tion. This intensity transformation can be used to 
create a structural MRI image whose voxel values are 
functional [e.g., regional cerebral blood flow (rCBF)- 
like] in nature. The final section ("Between modality, 
between subject") deals with the most general prob- 
lem of normalization using structural MRI and func- 
tional PET images from different subjects. 

This paper is methodological; however, its main aim 
is to communicate the basic idea, mathematical formal- 
ism, and the variants or extensions that ensue. The 
focus is therefore more conceptual than operational. 
Subsequent papers will present more detailed numeri- 
cal information on performance, robustness, and appli- 
cation to some simple questions about normal and 
abnormal anatomical variability. 

THEORY 

The basic idea is to formulate the most general 
problem of spatial transformation so that a unique 
least squares solution exists. This involves linearising a 
highly nonlinear multidimensional problem using rea- 
sonable constraints. This linearisation starts by ac- 
knowledging that the differences between two images 
[say n(x) and t(x)] have two components: The first 
component is due to voxel value or intensity differ- 
ences when two images are in perfect anatomical 
register. These differences may be artifactual ( e g ,  
different resolutions, low spatial frequency intensity 
variations in MRI images or different methods of rCBF 
parameter estimation used for PET) or real (e.g., 
hypofrontality in PET scans of psychomotor poverty 
syndromes, differences in global activity, or experimen- 
tally induced physiological activations). We assume 
that, at point x, there is some operator fx[.) that 
transforms voxel values from one image to those of 
another (assuming perfect anatomical congruence). 

The second component of the differences between 
the two images will be due to misalignment or indeed 
differences in shape and size of the objects scanned. 
This spatial discrepancy between the two scans is 
assumed to be characterized by a function of position 
q(x). This partitioning of the difference between one 
image and another can be expressed as: 

where e(x) is some error. For simplicity this error term 
will be omitted in subsequent expressions. Equation 

(1) expresses the conjecture that two images can be 
approximated by applying an intensity transformation 
fx[.) to one and a spatial transformution q(x) to the other. 
The next step is to linearise Equation (1) so that both 
fx{.} and q(x) have explicit least squares solutions. This 
can be effected by low order approximations and by 
imposing some constraints on the forms of fX[.} and 
q(x). The constraints are basically 1) that the operator 
fx{.} can be expressed in terms of a convolution and a 
(nonstationary) nonlinear function and 2) that both 
fx( .} and q(x) change slowly with location. For fx( .) this 
local-stationariness means that the "operation" that 
converts voxel values from one image into the other 
(the intensity transformation) can change with position 
but is similar within a given locale. In other words, the 
transformation fx( .) is locally stationary but globally 
unspecified. Stationariness means that something does 
not change with position in the image. The slowly 
changing nature of q(x) means that the spatial transfor- 
mation is smooth and that local contiguity relation- 
ships are preserved. More formally, the smooth spatial 
transformation ensures a positive Jacobian which pre- 
serves important features, including critical points such 
as peaks and saddle points [Amit et al., 19911. Stronger 
constraints can be imposed on q(x), for example in 
realigning scans from the same individual, q(x) would 
represent an orthogonal rigid-body transformation 
with six parameters, but would still be smooth. 

In what follows fx{.) is taken to be some nonlinear 
function yx(.) of the original process convolved with a 
kernel c(x). This means that, ignoring misregistration 
effects, one image can be converted into another by 
applying a nonlinear transformation to the voxel 
values and then (de-)convolving into the same resolu- 
tion as the second image, i.e., f, [.) = c(x) * rx(.) where * 
means convolution. Note that this form of fx{.) requires 
the nonlinear function to be applied before the convo- 
lution. In practice one would always want to arrange 
the images so that one was convolving the higher 
resolution image to match the lower resolution image. 
The kernel or differential point spread function c(x) 
will be known or can be estimated post hoc using 
established and empirical methods of estimating im- 
age smoothness [Friston et al., 1991al. Without loss of 
generality one can take some expansion of yx[.) = 
C ui(x).fi(t(x)) and expand the position-dependent 
coefficients ui(x) in terms of some "smooth" spatial 
basis functions pf(x) [i.e., ui(x) = C uijPf(x)J. An expan- 
sion is simply expressing a function as the sum of 
(usually) simpler functions. q(x) can be similarly ex- 
panded in terms of x and some smooth basis functions 
@(x). Smooth basis functions can be thought of as 
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smooth functions of, or profiles in, space that are 
(usually) chosen to be independent or orthogonal. 
Using these expansions Equation (1) becomes: 

c(x) * Z{f'(t(x)) r, uilp;(X)] = O(X + 2 q&(x)). (2) 

Now if iL(x) is smooth the effects of small distortions 
qkQ(x) will not interact to a significant degree. In 
other words, if R(x) is smooth we can expand the 
right-hand side of Equation (2) using Taylor's theorem 
where, ignoring high order terms: 

(see Appendix). Combining Equation (2) and Equation 
(3) we get: 

This approximate equality says that, give or take 
some residual error, one image can be approximated 
to another by 1) applying an intensity transformation 
to the first image (where the coefficients of the transfor- 
mation's expansion can change slowly with position) 
convolving, and 2)  approximating the distortion of the 
second image by simply adding the effects of each 
component of the distortion (assuming the compo- 
nents are small relative to the image's resolution). The 
coinponents of the distortion are defined by a set of 
smooth basis functions in space. 

The importance of Equation (4) is that it is linear in 
the unknown coefficients (ui, and qk) and that these 
coefficients have a unique least squares solution. This 
may be seen more clearly by considering the matrix 
equivalent of Equation (4) which is of the form 
A.[u~ U I  . . qlT 0: 

[c.diag(fo(t)).pf c.diag(fl(t)).pf. . . 

-diag(dR/dx).pq].[uo u, . . . qIT = R (5) 

(see Appendix for a fuller explanation and notational 
details). The vector [uo u1 u2.  . . . q] has a unique least 
squares solution. This solution for qk (9) can then be 
used to implement the spatial transformation that 
maps R(x) onto t(x) or vice versa given that q(x) = x + 

qkPz(x). 

THE DATA 

This section describes briefly how the data were 
acquired and stored. The data were obtained from 

(different) male subjects in accord with local and 
national ethical requirements. 

Functional MRI data 

The data were a time-series of 64 gradient-echo EPI 
coronal slices (5 mm thick, with 64 X 64 voxels) through 
the calcarine sulcus and extrastriate areas. Images were 
obtained every 3 seconds from a normal male subject 
using a 4.0-T whole-body system, fitted with a small 
(27 cm diameter) z-gradient coil (TE, 25 ms; acquisition 
time, 41 ms). Photic stimulation (at 16 Hz) was pro- 
vided by goggles fitted with 16 light emitting diodes. 
The stimulation was off for the first 10 scans (30 s), on 
for the second 10, off for the third, and so on. The data 
were interpolated to 128 x 128 voxels. The image 
dimensions were 128 x 128 x 1. The voxel size was 
1.25 x 1.25 x 5 mm. Data were stored at 8-bit precision. 

Structural MRI data 

These data were high resolution structural MRI 
scans obtained at 1.5 T using a standard T1-weighted 
sequence. The image dimensions (following reorienta- 
tion of the sagittal acquisition and resampling) were 
256 x 256 x 118. The voxel size was 0.976 x 1.3 x 1.952 
mm. Data were stored at 8-bit precision. 

PET data 

The PET images were obtained with a CTI PET 
camera (model 953B, CTI, Knoxville, TN, USA). Recon- 
structed images had a resolution of about 8 mm 
[Townsend et al., 1992; Spinks et al., 19921. 1 5 0  was ad- 
ministered intravenously as radiolabelled water in- 
fused over 2 minutes. Total counts per voxel during the 
buildup phase of radioactivity served as an estimate of 
rCBF [Fox and Mintun, 19891. The image dimensions 
(following reconstruction and bilinear interpolation) 
were 128 x 128 x 43. The voxel size was 2.09 x 2.09 x 
2.45 mm. Data were stored at 8-bit precision. 

All the image manipulations and matrix calculations 
were performed in MATLAB (Mathworks Inc., Sher- 
born, MA, USA) on a SPARC Workstation. The PET 
and MRI images were scalp edited. (Preprocessing of 
this sort is not a prerequisite for anything that follows.) 

APPLICATIONS 

Within subject, within modality 

In this section we deal with one of the simpler 
transformations, namely, the registration of homolo- 
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gous images acquired sequentially from the same 
subject. This application is important because it re- 
moves variance from time-series that would otherwise 
be attributed to error (i.e., decreasing sensitivity) or to 
treatment effects (i.e., movement artifacts). The most 
important source of this variance is usually movement 
during the scanning session. Although important in 
PET studies, these effects can seriously confound the 
analysis of fMRI studies, where the slightest subvoxel 
movement may profoundly effect the voxel value. 
This section is divided into two parts. In the first we 
compare the least squares approach to known (simu- 
lated) movement and to that estimated with a widely 
used image realignment program (automated image 
realignment [AIR] [Woods et al., 19921). In the second 
part the least squares approach is applied to the real 
fMRI time-series to demonstrate that the estimated 
movement is real and to validate the realignment in 
terms of detecting functional changes. This is achieved 
by analyzing the fMRI time-series using singular value 
decomposition (SVD). SVD identifies important spa- 
tial modes and their time-dependent activity. 

The reason realignment can be considered a simple 
case of the more general spatial transformation prob- 
lem is because the form of the spatial transformation 
q(x) is exactly specified and the intensity transforma- 
tion is known fx{t(x)} = t(x). The second equality 
follows from the fact that the same object is scanned 
with the same imaging device. (We are obviously 
assuming that time-dependent physiological changes 
of interest are small relative to the anatomic profile 
and that these effects can be relegated to the error 
term.) Substituting these simple forms for q(x) and fx{.} 
into Equation (4), one has (in matrix notation): 

[-diag(dlR/dx).pq].qT = [a - t] 
or 

In this instance the basis functions cover the space of 
all allowable translations and rotations, i.e., pq = 

[py p,” . . . . . . p:] where the columns pz correspond to 
translations in three dimensions and the three orthogo- 
nal rotations. In practice it is easier to compute the six 
columns of dR/dq directly [as implied in the second 
form of Equation (6)] by simply applying small transla- 
tions and rotations to a ( x )  and measuring the changes 
in voxel values. The six elements of the row vector q 
correspond to the estimated translations and rotations 
that constitute the movement to be corrected. 

Simulated movement 

The first fMRI slice was translated over 64 logarith- 
mically increasing distances (1 pm to 3 mm) and the 
displacement was estimated for each simulated move- 
ment by comparing the moved image and the first or 
reference image. These estimates were computed with 
least squares according to Equation (6) and the appro- 
priate AIR algorithm. Moved images were constructed 
by adding uncorrelated Gaussian noise (at 5% of the 
image mean), to emulate the effects of thermal noise in 
the fMRI scans, and translating with bilinear interpola- 
tion. Clearly this is not the same as actually moving 
the real object but is a reasonable approximation for 
small movements. The data were saved as 8 bit. This 
reduction to 8-bit precision introduces nonlinear noise 
due to round-off errors and to some extent simulates 
digitizing noise during acquisition. The actual and 
estimated translations were compared graphically. 

Figure 1 presents the results of this analysis. These 
results highlight two points. First, both the AIR and 
the least squares estimates are generally very good. 
This sort of analysis helps to establish the construct 
validity of both techniques in terms of the other. 
Second, at very large and small displacements, there is 
a dissociation in the performance of the two tech- 
niques. AIR is better than the least squares approach 
when the spatial misalignment approaches the resolu- 
tion of the images ( - 2.5 mm). The upper line (in Fig. 
1, left) represents the actual movement and the AIR 
estimates. The lower line corresponds to the least 
squares estimates. This divergence at large transla- 
tions is due to a failure of the first order approximation 
of the Taylor series implicit in Equation (3); more 
simply, if the displacements are bigger than the 
image’s smoothness then the linearisation in the least 
squares approach becomes suspect. In practice this is 
not a problem because 1) the images can be smoothed, 
or 2) the least squares analysis can be applied recur- 
sively (see below). Conversely, the least squares analy- 
sis is better for small displacements. Figure 1 (right) 
shows the same data but on a semilog scale. The AIR 
algorithm starts to fail noticeably at about 100 pm 
whereas the least squares analysis remains reasonably 
robust until about 10 pm. 

The differences between the least squares and AIR 
estimates should not be overinterpreted in the sense 
that many differences were not controlled for in the 
two algorithms. In general, results obtained from the 
two analyzes are consistent. It should be noted, how- 
ever, that the least squares analysis is about an order of 
magnitude faster than the AIR. This is because the AIR 
approach is iterative. 
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Figure 1. 
Comparison of the least squares technique with known (simulated) 
movement parameters and parameter estimates using AIR [Woods 
et al., 19921. Left: y translation expressed in millimeters over the 
different simulated movements. The two solid lines correspond to 
the actual and least squares estimates of movement. The least 

squares estimate deviates on the extreme right (lower curve) from 
actual movement. The AIR estimates (broken line) are largely 
superimposed on the actual movement curve. Right: The same 
data plotted on a semilog scale. Straight line, actual; solid line, least 
squares; broken line, AIR. 

A real time-series 

It may seem to some that a precision of 100 pm or 
less is rather irrelevant for realignment routines be- 
cause this scale of movement is practically undetect- 
able and harmless anyway. They would be wrong. 
The purpose of this section is to show that 1) move- 
ments measured in tens of micrometers can be de- 
tected in fMRI time series, and 2) removal of these 
effects by realignment can substantially effect the 
variance-covariance structure of the data. 

The 64-scan time-series was subject to the least 
squares analysis using the first scan as a reference. The 
movement parameters reflecting estimated movement 
suggested translations (solid lines in the upper panel 
of Fig. 2) in the order of 100 pm or less. These 
translations will be referred to as Ax and Ay. The 
results of this analysis compared well with the equiva- 
lent AIR results (see the lower panel of Fig. 2). 

To demonstrate that these estimated movements 
were due to real movement, the time-dependent 
hemodynamic variance was partitioned into a series of 
orthogonal spatial modes (or eigenimages) using SVD 
(the first four scans were ignored to avoid magnetic 
saturation effects). See Friston et al. [1994] for a 
discussion of spatial modes and their identification. In 

brief, these spatially distributed patterns reflect inde- 
pendent systems that share a common source of 
variance. Figure 3 (top right) shows the first spatial 
mode (that accounting for the most variance). This 
mode has been elicited by photic stimulation and 
includes striate and extrastriate regions. The time- 
dependent expression of this mode (the solid line in 
the top left of Fig. 3) matches that predicted by photic 
stimulation (the dotted line). The dynamics predicted 
by photic stimulation were obtained by convolving 
the square wave input with a hemodynamic response 
function of 7 seconds delay and dispersion [Friston et 
al., 19941. 

Consider now the third mode-that accounting for 
the third largest source of variance. (The second mode 
is not shown in this paper.) Inspection of the third 
mode immediately suggests that it can be attributed to 
movement along a positively inclined diagonal. Figure 
3 (bottom right) shows that the time-dependent expres- 
sion of the third mode (solid line) is closely matched 
by least squares estimates (Ax and Ay) of diagonal 
motion 1.3.Ax + 1.7.Ay (dotted line). This concordance 
demonstrates that movements estimated by the least 
squares analysis are probably real. 

The relative contribution of the first and third 
spatial modes can be expressed in terms of the appro- 
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Figure 2. 
Estimated movement from a real time-series of 64 coronal fMRl slices through visual cortex. Upper 
panel: x and y translation (solid lines) and rotation (broken line) as estimated by the least squares 
approach. Lower panel: x translation estimated using AIR regressed on least squares estimates. 

priate 2-norm (a standard measure of how much a 
pattern or vector of voxel values contributes to the 
variance-covariance structure). For the original data 
these 2-norms are the eigenvalues associated with the 
spatial modes and are presented in Figure 4 (left). The 
remarkable observation is that variance due to subject 
movement (of usually less than 100 pm) was about 
one-seventh of that introduced by the sensory stimula- 
tion. It is pleasing to see that this, and only this, source 
of variance (the third mode) was reduced following 
realignment of the images (Fig. 4, right). 

It may be asked at this point: “why not simply 
remove this mode from the time-series?” Or, more 
generally: “why not remove any component of all the 
modes that corresponds to a partial spatial derivative 

of the image?” In fact, this is equivalent to the least 
squares approach proposed. 

Within modality, between subject 

In this section we consider the more general prob- 
lem of spatial transformation where the same imaging 
device has been used but the objects imaged (e.g., 
subjects’ heads) are not exactly the same. Spatial or 
stereotactic normalization belongs to this class of 
problems when it is solved by matching an arbitrary 
image to some ideal image, model, or template. For 
example, in the intersubject averaging of PET activa- 
tion studies, change distribution analysis [Fox et al., 
19881 and statistical parametric mapping [Friston et al., 
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1991al both require mapping into some standard 
space (the generally accepted international standard is 
the space described in the atlas of Talairach and 
Tournoux [1988] as proposed by Fox et al. [1988]). 
Friston et al. [1991b] suggested that this mapping can 
be effected by ”matching” an individual’s image with 
an ideal reference image, model, or template, where 
the template conforms to the standard space in ques- 
tion. Clearly there are many other examples that could 
have been chosen for this section, but the one pre- 

sented here is of immediate relevance for those en- 
gaged in functional mapping. This section also intro- 
duces two important extensions of the least squares 
approach which involve 1) a repeated or iterative 
application [where the spatially transformed object 
image .R(q(x)) is used recursively as a new object 
image fl(x)] and 2) making two sets of images from the 
original image pair and simultaneously solving for the 
spatial transformation that conjointly maps one set of 
images onto the other set. 
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Figure 4. 
Singular (squared) or eigenvalue spectrums following an SVD analysis of the fMRl time series before 
(left) and after (right) spatial transformation (realignment). The key difference is a decrease in the 
amount of variance attributable to the third spatial mode. This can be interpreted as a removal of 
movement artifacts. 

PET to PET spatial normalization 

The problem in this section is more general than in 
the previous section because the allowable transforma- 
tions are not precisely specified and rx(.), the func- 
tional component of the operator f,{.], is not known. 
This case is, however, not as general as situations 
considered later: We know that the resolution of the 
image process to be matched is the same (i.e., c = I, the 
identity matrix) and consequently Equation (5) re- 
duces to: 

[diag(t).pf -diag(aRldx).f3q].[u1 qIT = R (7) 

assuming a first order approximation for yX(.). This first 
order approximation can be justified given that the 
images are of the same modality. Notice also that the 
zeroth order term (the constant) has been omitted, 
since we expect zero counts in one image to corre- 
spond to zero counts in the other. The basis functions 
(PI and pq) can be arbitrary as long as they are smooth. 
In the present (and subsequent) example the basis 
functions for both u1 and q were the same and are 
shown in Figure 5. These basis functions correspond 
to Fourier modes, obtained by incrementing the spa- 
tial frequencies by n/2 and orthogonalising the result- 

ing basis set. These basis functions can be quite 
arbitrary as long as they are smooth and cover the 
"space" of distortions in a reasonably comprehensive 
way. The exact nature and number of basis functions 
would probably vary from application to application. 
For simplicity we use the same set here throughout. 

Spatial normalization 

The object image R(x) was taken from the SPM 
(MRC Cyclotron Unit, London, and see Friston et al. 
[1991b]) library of template images and corresponds to 
a transverse section lying 12 mm above the intercom- 
missural plane. The reference image t(x) was the 
corresponding slice from a normal subject acquired as 
described above. Although we present a spatial normal- 
ization of a single slice, it should be noted that this 
normalization is generally applied in three dimensions. 

In this example we have used the "template" image 
as the object image (the image subject to spatial 
transformation). The designation of which image is 
the object and which the reference is usually arbitrary: 
The spatial transformation from object to reference is 
given by: 

q(x) = x + p9.q 
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Figure 5. 
The basis functions used in subsequent nonlinear spatial transformations and intensity transformation 
expansions. The gray scales are arbitrary and each function has been normalized to its maximum. 

where q(x)-' is the complementary or inverse transfor- 
mation from reference to object: 

q(x)-' = x - diag(1 + dp/dx.q)-'pq.q. (8) 

This approximate equality is easy to derive using a 
first order Taylor expansion. The spatial and voxel 
value transformations were computed according to 
Equation (7) and the spatial transformations applied 
to n(x). The result [i.e., n(q(x)] was substituted for n(x) 
in Equation (7) and the second spatial transformation 
added to the first. This process was repeated 3 times 
(see below). The results of this analysis are presented 
in Figure 6. Figure 6 shows the individual's transverse 
image (reference, top right) and the template PET 
image (object, top left). Figure 6 (lower left) shows the 
object image following spatial transformation. The 
spatial congruency between the resampled image and 
the reference image is seen and is largely a result of a 

counterclockwise rotation (particularly of subcortical 
structures). The image on the lower right is also a 
spatially transformed object image, but the solution 
for the resampling was computed in a different way, 
as described next. 

Comparison with nonlinear minimization 

The iterative solution of Equation (7) can be evalu- 
ated in relation to nonlinear minimization (e.g., the 
Levenberg-Marquardt technique [More, 19771) by ex- 
amining the trajectory of the paths taken in the 
recursive least squares approach and that taken by a 
nonlinear search in the space of the spatial transforma- 
tion coefficients q. The nonlinear minimisation solu- 
tion was obtained by minimizing the square of the 
2-norm (over voxel locations x): 
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Figure 6. 
Spatial normalization of PET images effected by spatial normaliza- 
tion of one PET image to another. The object image (upper left) is 
presented after spatial normalization (lower left) and shows a 
greater degree of correspondence with the reference image 
(upper right). The equivalent spatial transformation of the object 

as a function of [ull . . . . . . * uli 91 ’ * ’ ’  ” .  qjl 1 ~ 1  41 
using standard nonlinear minimization (as imple- 
mented in MATLAB, MathWorks Inc., Sherborn MA, 
USA). This solution is equivalent to solving Equation 
(7) but without the first order approximation implicit 
in Equation (3). The solutions for q were recorded at 
each iteration. The trajectory of these estimates was 
then compared with the trajectory traced out by the 
four recursive least squares solutions of Equation (7). 
These two trajectories were plotted in the two- 
dimensional subspace of the search space associated 
with the largest singular values. This is simply a device 
to view the trajectories from a direction that reveals 
the greatest excursions. 

image estimated using nonlinear minimization is shown on the 
lower right. All images have been scaled to their image maximum 
and are displayed on the proportional grid used by the atlas of 
Talairach and Tournoux [ 19881. 

Despite the fact that the spatially transformed im- 
ages in Figure 6 (lower panels) look very similar, the 
solutions obtained by least squares and nonlinear 
minimization were different. The results of this trajec- 
tory analysis are presented below and illustrate two 
key points: 1) the least squares approach found the 
global minimum whereas the nonlinear minimization 
did not, and 2) the search strategies differ fundamen- 
tally in their nature. 

Figure 7 (top left and right) shows the singular 
distortions (c.f. principal warps [Bookstein, 19891) or 
spatial transformations associated with the largest two 
singular values following SVD of the sequence of 
solutions for q (using both the least squares and 
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Comparison of the least squares approach and nonlinear minimiza- 
tion in terms of searches over an error surface. Upper left and 
upper right: Singular warps or distortions defined by an SVD of 
the search trajectories in the space of the basis functions. These 
two singular warps correspond to the axes in the lower panels. The 
two warps accounted for the greatest excursions of the search 
trajectories and are orthogonal. Each singular warp has been 

nonlinear minimization). These distortions are simply 
a linear combination of the basis functions. This linear 
sum is determined by the singular vectors associated 
with the largest singular values. The two distortional 
modes (Fig. 7, top left and right) correspond to the 
vertical and horizontal dimensions of the search sub- 
space shown in Figure 7 (lower left panel). The 
corresponding error surface is depicted in the lower 
right panel. This surface reflects how "far off" the 
match is, in terms of the two singular distortions. The 

Error surface 

z 
N 

1 st distortion mode 

applied to the object image (Fig. 6, top left). Lower left: Search 
trajectory in the space defined by the singular warps. Solid line, least 
squares; broken line, nonlinear minimization. Lower right: The 
corresponding error surface computed as a two-dimensional 
subspace of the search space. This subspace includes the final 
solution of the nonlinear minimization algorithm. 

error surface was computed by varying the first two 
singular distortions, whilst using the final nonlinear 
estimate for the other parameters (remaining singular 
distortions and ul) using Equation (9). It is immedi- 
ately obvious that the two trajectories (least squares- 
solid and nonlinear minimization-broken) converge 
to the different solutions. The nonlinear minimization 
found a Iocal minimum. Furthermore, the recursive 
least squares approach used a handful of steps whereas 
the nonlinear minimization took over 20 iterations to 



+ Spatial Registration and Normalization of Images + 

converge. The number of floating point operations 
(flops) per iteration taken by the nonlinear minimiza- 
tion was 2.7 times the number of flops required by one 
least squares solution. In short, the least squares 
approach will usually be an order of magnitude more 
efficient than an iterative nonlinear equivalent. 

It is instructive to contrast the explicit least squares 
and nonlinear minimization. In anthropomorphic 
terms both approaches want to find the global mini- 
mum in a landscape defined by Equation (9) (the error 
surface in Fig. 7). The nonlinear minimization starts at 
an arbitrary location and, with acknowledged igno- 
rance of all but the local landscape, sets of one step at a 
time always trying to chose the "best" path based on 
local features. The least squares approach is more 
pretentious and makes some (possibly) unwarranted 
assumptions about the global shape of the landscape 
(e.g., it assumes the landscape is parabolic) and, based 
on local features, goes straight to the (anticipated) 
lowest point. However, because the landscape is not 
quite as "well behaved' as the least squares thinks, it 
may need to "home in" on the global minimum, hence 
the iterative approach adopted in this section. 

MRI to MRI 

The last part of this section deals with a simple 
extension to the least squares approach. Here we deal 
with MRI to MRI matching and assume, as in the pre- 
vious section, that c = I and yJ.1 has only a first order 
term. In fact, in this application we assume fx(y} = y. 
Now consider some arbitrary function yi{ .) applied to 
both t(x) and R(x) where yi(t(x)} = ti(x) = ti and 
yi{fl(x)} = Ri(x) = Ri. Equation (7) can be generalized 
to: 

[diag(ti).pf - diag(dCli/ax).f3q].[ul qIT = Q. 

Because we assume fx{y) = y, this simplifies to: 

ti - diag(dRi/dx).Pq.qT = Ri. 

Because the spatial transformations are the same ir- 
respective of the intensity transformations yi( .) we can 
solve for q simultaneously using several yi{.} functions: 

and so on. In simple terms this extension means that 
we can extract any feature from both the reference 

and object image and match the resulting images. 
Because the spatial transformation is the same for all 
possible features we can combine several feature- 
specific image pairs to estimate the best spatial transfor- 
mation. This extension depends on the fact that the 
fx{.} has a simple form. A more general extension of 
this sort is presented in the discussion. 

The following example is meant to illustrate this 
idea more clearly. In matching two homologous struc- 
tural (Tl-weighted) MRI images from different sub- 
jects, one might simply use Equation (7) and proceed 
in an analogous way to the PET-PET normalization in 
the previous section. However, in so doing one would 
be implicitly matching white matter to white matter 
(because in T1-weighted images white/nonwhite 
boundaries dominate). A useful extension would be to 
segment the images into gray matter and white matter 
and match gray matter to gray matter and white to 
white. This can be effected simultaneously with Equa- 
tion (10) and is simply implemented by chosing yi{.} to 
perform a (crude) segmentation. In the present ex- 
ample we used: 

yi[n(x)} = c(x) * exp(-(R(x) - V ~ ) ~ / Z ~ )  (11) 

where v1 corresponds to the average gray matter 
intensity levels (0.52 of the image maximum) and v, 
corresponds to white matter levels (0.86 of the image 
maximum). (r controls the width of the "segmentation 
window" (we used 0.3). c(x) was a convolution kernel 
of full width at half maximum (FWHM) 4 voxels to 
ensure that smoothness constraints were met. Note 
that this "segmentation" is not very rigourous but is 
sufficiently good for the current purposes. 

The results of this analysis are shown in Figure 8. 
The object image (that to be spatially transformed) is 
seen in the upper left panel and the reference image is 
seen in the upper right panel. The lower panels show 
the transformed object image (lower left) and the 
same superimposed on the reference image (lower 
right panel). The reshaping of the object image is 
particularly pronounced in the bottom right (occipital) 
region (Fig. 8, lower left). The two segmentation 
functions were applied to both the spatially normal- 
ized object image and the reference MRI images 
(omitting the convolution) to reveal the conjoint 
spatial matching of gray matter (Fig. 9, upper panels- 
transformed object and reference images) and white 
matter (lower panels). Generalization to three dimen- 
sions is only a question of computer resources; how- 
ever, the resources required to manipulate volumetric 
high resolution MRI data should not be underesti- 
mated. 
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Figure 8. 
Matching MRI to MRI. The object images before (upper left) and after (lower left) spatial trans- 
formation. The reference image that has been spatially approximated (upper right). The spatially 
transformed object and reference images have been superimposed to  illustrate the coregistration 
(lower right). All images have been scaled to their maximum. 

Between modality, within subjects 

This section is concerned with the problem of cross- 
modality registration. The importance of this problem 
lies in relating anatomy to functional organization in 
the brain. Structure-function relationships are being 
elucidated with increasing precision by mapping data 
from functional time-series onto an individual's high 
resolution MRI image. The problem considered here is 
to match a PET image to a transverse high resolution 
MRI scan obtained from the same subject. This prob- 
lem, once solved (in three dimensions), uniquely 
specifies the orthogonal transformation which brings 
the MRI and PET data into alignment. 

In this section we concentrate more on the intensity 
transformation (the expansion of fx{.]). In previous 
sections this expansion was trivial because the images 
were acquired with the same modality and a simple 
relationship could be assumed. In this section there is 
no simple relationship between MRI and PET voxel 
values even if the images were congruent. Indeed, not 
only is this relationship highly nonlinear, it is also 
likely to be highly nonmonotonic and nonstationary. 
There are many forms that the expansion of fx{ .) could 
take. We present here an expansion designed specifi- 
cally for the current application and which uses the 
same linearizing device (Taylor's theorem and a first 
order approximation) as for the spatial transformation. 

4 178 



+ Spatial Registration and Normalization of Images + 

object - gray reference - gray 

object - white reference - white 

Figure 9. 
The efficacy of the spatial transformation in terms of the (crudely) segmented MRI images. Grey 
matter segmented images following spatial normalization of the object image (upper left) and the 
reference image (upper right). Lower left and right: Equivalent images segmented for white 
matter. All images have been scaled t o  their maximum. 

If one accepts the conjecture that the source of the 
PET signal is predominantly from gray matter, then 
the intensity transformation that maps an MRI image 
t(x) onto a PET image Cl(q(x)) would involve grey 
matter segmentation s,(t(x),v(x)), nonstationary scal- 
ing, and convolution into the resolution of the PET 
image. Mathematically one could express this as: 

where 

s,(t(x), v(x)) = exp(-(t(x) - (vg + v(x)})’/2d) (15) 

where c(x) is a convolution kernel, uo(x) is a nonstation- 
ary but smoothly varying scaling coefficient, u is the 
”standard deviation” of the segmentation kernel, vg is 
the fixed estimate of gray matter intensity, and v(x) is 
the deviation from this estimate at a particular point in 
the brain x. Equation (12) is not in a form that permits 
a linear least squares solution for the unknowns uo(x) 
and v(x). In order to make Equation (12) amenable to a 
least squares analysis, one can adopt the same ap- 
proach used for the spatial transformation in Equation 
(3), namely, using a first order approximation of the 
Taylor series. In this case the derivatives are not with 
respect to spatial distortions but the derivative of the 
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segmentation function with respect to small devia- 
tions in the grey matter intensity [ds(t(x),O)/av(x)]. 

As usual we can expand the nonstationary coef- 
ficients uu and u1 in terms of basis functions ui(x) = 
z uij~f(x),  giving, in matrix notation: 

f,(t(x)) = [c.diag(t).pf ~.diag(ds/dv).f3~].[u~ uJT. (13) 

The important thing to note here is that the form of 
the "segmentation function" fx(t(x)) is the same every- 
where but the actual function can vary from place to 
place. This is important because one cannot guarantee 
exactly the same relationship between MRI and PET 
voxel values in every part of the image (e.g., lesions, 
focal activations, and field heterogeneities will intro- 
duce nonstationariness into the relationship). 

Because this section deals with within subject trans- 
formations the spatial component is a rigid body 
transformation with six parameters. The simultaneous 
solution for both intensity and spatial transformations 
is given by the solution of: 

(14) 

for ug u, and q. d 0 / d q  was estimated directly as in the 
section on realignment of fMRI time series. Because 
the effective resolution of the MRI image is approxi- 
mated by its voxel dimensions and that of the PET 
image was about 8 mm, we chose c to correspond to a 
two-dimensional convolution with a Gaussian filter 
with FWHM 8 mm. vg was set at 0.52 of the MRI image 
maximum and (T was 0.3. 

The results of this analysis, for roughly homologous 
slices, are presented in Figure 10, which shows the 
object image (best guess transverse slice from the PET 
volume-top left) and the reference image (an arbi- 
trary slice from a volume MRI image of the same 
subject-top right). The lower image is the PET slice 
following spatial transformation. The congruence is 
demonstrated on the lower right where the spatially 
transformed PET image and the reference MRI image 
are superposed. In fact, the registration here was 

already quite good and the spatial normalisation 
involved only a small translation and rotation. Of 
greater interest is the solution for the MRI intensity 
transformation. 

The intensity transformation 

Here we consider the intensity transformation that 
is implicitly applied to the MRI image in Equation (14). 
Hitherto this component of the solution has not been 
very interesting, but in between modality applications 
the transformation can be considered of primary 
importance and the spatial component of secondary 
interest (see applications section in discussion). The 
intensity transformed MRI image that best matches (in 
a least squares sense) the spatially transformed PET 
image is given by Equation (13). This estimate is 
shown in Figure 11 (bottom left) and can be thought of 
as an MRI image emulating a PET image. The corre- 
spondence with the real PET image (above) is appar- 
ent and remarkably good considering we made the 
somewhat unreasonable assumption that all the PET 
signal came from grey matter. 

The intensity transformed MRI image obtained 
before convolution [setting c = I in Eq. (13)] is seen in 
Figure 11 on the right. This is the "best" distribution of 
functional activity that could explain the observed 
PET scan before convolution with the point spread 
function, where the distribution is constrained by 
structural information in the MRI image. Equivalently, 
this is a least squares solution for the distribution of 
functional activity based on the underlying anatomy. 
We expand on the potential importance of this "vir- 
tual modality" in the discussion. 

The actual solution for fx(.) in Equation (13) clearly 
depends on position in the image. Two examples are 
given in Figure 12 according to the estimates obtained. 
The examples come from cortical and subcortical grey 
matter voxels indicated by black dots in the left lateral 
secondary sensory cortex and the left thalamus. The 
corresponding cortical (solid line) and subcortical 
(broken line) functionals fcortlcal( .) and fSubcnrtlcal( .} are 
shown on the right of Figure 12. It is immediately 
obvious that the cortical grey matter activity is greater 
than the subcortical estimate. The fact that this relative 
difference is reversed in the PET image is due to par- 
tial voluming effects on signals from the cortical sheet. 
More importantly, the grey matter intensity values for 
the cortical MRI voxels were lower than for the sub- 
cortical voxels, i.e., the peak of fcnrtical{ .} corresponds to 
a lower MRI voxel intensity than the fsubcortical( .) peak. 

In this section we have presented a simple (but still 
effective) example of PET to MRI matching. One could 
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spatially transformed coregistration 

Figure 10. 
Cross-modality spatial transformations. Transverse PET slices before (upper left) and after (lower 
letk) spatial normalization to a reference MRI image (upper right). Lower right: The coregistration. 
All images have been scaled to their maximum. 

easily generalize the approach to include white matter 
contributions or indeed make the form of the segmen- 
tation kernel more general using a greater number of 
parameters. 

In this example we have deliberately degraded the 
MRI data by resampling to render voxel size the same 
as the PET data. Here the spatial transformation is not 
constrained to be affine and Equation (14) has to be 
generalized to 

Between modality, between subjects 
[c.diag(t).p' c.diag(ds/dv).p' 

This final section is included for completeness. Here 
we match (t) a transverse MRI slice from the indi- 
vidual used in the previous sections and (R) the 
corresponding transverse section from the MRC li- 
brary of PET templates used in the section on PET to 
PET normalization. This is the most general problem 
considered in this paper and requires a solution for 
the transformation coefficients with no simplifications. 

-diag(dQ.dx).pq].[u, u1 qIT = R. (15) 

The basis functions (p' and pq) for intensity and 
spatial transformations were the same as in previous 
sections (Fig. 4). The expansion of fx(x) was in terms of 
a Gaussian segmentation kernel as in the previous 
section. c corresponded to a two-dimensional convolu- 
tion with a Gaussian kernel of FWHM of 8 mm. 
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intensity transformed MRI 

convolved MRI 

Figure I I. 
Cross-modality intensity transformations. Upper left. Spatially transformed PET image (as in Fig. 10, 
lower left). Right: The intensity transformed MRI image without convolution. After convolution 
(lower left) this image approximates the PET image in a least squares sense. All images have been 
scaled to their maximum. 

The results of this analysis are presented in Figures 
13 and 14 using a similar format as in the previous 
section (Figs. 10, 11). The spatial congruence of the 
MRI image and transformed PET image and delimita- 
tion of gray matter in the MRI image are evident. The 
technique appears to be fairly resistant to the degrada- 
tion of the MRI images. 

DISCUSSION 

This paper has presented a generic approach to the 
spatial transformation of image processes. The ap- 
proach is automatic (is noninteractive), finds explicit 
solutions (is noniterative), and solves general prob- 
lems (is nonlinear). The technique depends on parti- 

tioning the differences between an object image and a 
reference image into two components. The first compo- 
nent is due to differences that remain after discount- 
ing the effects of image misregistration or noncongru- 
ence. The second source of differences results from 
spatial translations, rotations, and distortions. Both 
types of difference are modeled with expansions in 
terms of basis functions, polynomials, and Taylor 
series using low order approximations in such a way 
as to render the problem linear. The requisite spatial 
and image transformations are then solved for in a 
least squares sense. 

In this paper we have focused on the realignment of 
neuroimaging time-series, spatial normalization re- 
quired for voxel-based analysis of activation studies, 
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Figure 12. 
The transformation functions for two gray matter voxels in the MRI image. Left: The position of the 
two voxels in cortical and subcortical regions (black dots). Right: The corresponding intensity 
transformation functions. Solid line. cortical voxel: broken line. subcortical voxel. 

cross-modality registration, and spatial normalization 
of images from different modalities. The nature of the 
transformation is defined by the constraints under 
which the transformation is applied. These constraints 
are embodied in the operational equations described. 
The minimal constraints adopted in this work pertain 
to the preservation of local contiguities and the local 
stationariness of operators which map one modality 
into another. These constraints can be framed in terms 
of smoothness, namely, the spatial transformation 
represents a smooth mapping and the coefficients of 
any intensity transformation (functionals) change 
slowly with position. Smoothness is imposed by using 
smooth basis functions. 

We have presented a series of ideas and techniques 
some of which are fundamental and some of which 
are not. We consider the following points to be 
important aspects of the approach: 

1. Reliability takes precedence over validity. This 
requires a non-label-based approach that, in this 
instance, minimizes the sum of squares between 
two image processes. 

2. The differences between two images can be 
attributed to 1) noncongruence and 2) differ- 

ences extant when the images are in perfect 
register. 

3. The transformations which minimize these differ- 
ences (in a least square sense), namely the spatial 
transformation and intensity transformation, are 
solved for simultaneously. 

4. Both transformations are defined in the space of 
some basis functions. The nature of the basis func- 
tions (e.g., smoothness) embodies the constraints 
under which the transformations are effected. 

5. The minimal constraints on the basis functions 
relate to preservation of local contiguity relation- 
ships and the local stationariness of the intensity 
transformation. This is equivalent to using smooth 
basis functions. 

6. The solution for the spatial and voxel value 
transformations can, if appropriate, be formu- 
lated in linear terms, permitting an explicit least 
squares solution. Taylor series and other expan- 
sions are particularly useful in this regard. If they 
are not appropriate, standard nonlinear minimi- 
zation or gradient descent techniques can be used. 

Although possibly nonoptimal, Fourier basis func- 
tions are efficient in that they do not require empirical 
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Figure 13. 
As for Figure 10 but in this instance the PET and MRI images are subject to nonlinear spatial trans- 
formations because they did not derive from the same subject. All images have been scaled to their 
maximum. 

characterization of the spatial autocovariance func- 
tions (c.f. the Karhunen Loeve expansion or SVD). 

Applications 

The applications of spatial and intensity transforma- 
tions are numerous. We have demonstrated applica- 
tions to the realignment problem and spatial normali- 
sation. Here we consider other applications and 
extensions. Applications can be classified according to 
the goal of the transformation. The objectives of most 
transformations fall under three general headings: 1) 
reducing differences of a specific sort to facilitate 
comparison among images, 2) characterisation of dif- 
ferences in spatial topography, and 3) image restora- 
tion and segmentation. 

The examples in this paper have focused on the first 
class of applications in the sense that image realign- 
ment and normalisation are usually implemented as a 
prelude to comparison among scans. The second class 
of applications asks ”what are the important modes of 
anatomical (topographic) variation?” or “what are the 
anatomical differences between one set of scans and 
another?” The answers to both these questions de- 
pend on a complete specification of the spatial topog- 
raphy of each image. We propose that this specifica- 
tion could be in terms of the spatial distortion required to 
map an arbitrary image onto some reference. For example, 
the topography of an image can be characterized in 
terms of the coefficients corresponding to the spatial 
basis functions. This simple list of coefficients, taken in 
conjunction with the reference image, is a complete 
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original MRI 
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Figure 14. 
As for Figure I I but in this instance the PET and MRI images are subject to nonlinear spatial 
transformations because they did not derive from the same subject and the original MRI image is 
shown on the top left. 

specification of the topography of the origmal image 
(down to the resolution imposed by the basis func- 
tions). The importance of this observation is that 
anatomical topography can be characterized by a 
multivariate measure (the coefficients) and is subject 
to conventional multivariate statistics. 

Important examples of this characterization could 
include the normal modes of anatomical variability 
defined on a series of MRI scans from normal subjects. 
The exciting concept here is that once normal modes 
of anatomical variation are established they can then be 
used as the basis functions in the transformations. The 
charm of this “bootstrapping” is in constraining the 
transformations to lie in the space of normal anatomi- 
cal variability. This would increase the face validity of 
the transformation and probably reduce the number 

of basis functions considerably. This is the subject of 
current work. Alternatively, important neurodevelop- 
mental modes can be identified using MRI scans 
obtained during development (Nick Lange, personal 
communication). These modes are simply defined by 
SVD of the spatial transformations (or the coefficients 
of the spatial basis functions). 

The third set of applications was referred to in the 
first section on PET-MRI matching. In this section we 
solved simultaneously for a spatial transformation and 
an intensity transformation that jointly matched a PET 
scan and an MRI scan from the same subject. The 
intensity transformation, considered in isolation, as- 
signs functional (PET) values to structural objects in 
the MRI image. This transformation can be appreci- 
ated from two points of view: 1) it is a functional 
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categorization of anatomical structures of the sort 
implied by image segmentation, and alternatively, 2) 
the intensity transformed MRI image represents a 
least squares solution for the underlying flow distribu- 
tion seen in the PET image. In this sense the trans- 
formed MRI image emulates a "restored" PET image, 
where the restoration embodies anatomical informa- 
tion (from the MRI). This second perspective suggests 
it may be possible to analyze single subject functional 
time-series (e.g., PET activation studies) using not the 
original functional data but the transformed MRI 
images. This multimodality application is currently 
being explored. 

Extensions 

There is a potentially important extension to the 
technique that we did not demonstrate. This exten- 
sion involves solving for the spatial and intensity 
transformations simultaneously for the images and 
the images convolved with any number of convolu- 
tion kernels. This is simply effected by stacking the 
matrices in Equation (5) on top of each other after 
premultiplying by the appropriate convolution ma- 
trix. For example, if we take an arbitrary convolution 
matrix § then from Equation (5) 

§.[c.diag(f'(t)).p'c.diag(f'(t)).p'. ' ' -diag(dWax).pql.[uo u1 . . . q]' = 5 .  C1 

so for a series of convolution matrices gi: 

So.c.diag(f"(t)).pf So.c.diag(f'(t)).pf. . . -§o.diag(a~/ax).Bq.[uU u1: qlT = 

Sz.c.diag(fo(t)).Pf Sz.c.diag(fl(t)).Bf. . -Szdiag(iWdx).Pq = §Jl (16) 

and so on. 
For example, So could represent the identify matrix 

and a differential operator. In this case the transfor- 
mation solutions would simultaneously approximate 
the original images (Q and t) and their first derivatives 
(dQ/dx and dt/dx). The constraints on Si are that it 
should not make the first order approximation of the 
effect of spatial transformations unreasonable. This 
means the result of convolving Q should still be 
smooth. 

Limitations 

The limitations of the technique described here 
relate to the "reasonableness" of the first order approxi- 
mation in Equation (3) and any other constraints 

imposed by expanding in terms of basis functions, 
Taylor series, or polynomials. The first order approxi- 
mation [Eq. (3)] is only a good one when the spatial 
distortions are small relative to smoothness. In a sense 
this is not a fundamental limitation because 1) the 
images can always be made sufficiently smooth using 
the formalism of the previous section [Eq. (16)], or 2) 
spatial differences can be successively reduced using 
the linear piece-wise approximation to a nonlinear 
search, as implemented in the recursive application 
(see above). Because the initial mismatch between 
object and reference should be small (relative to 
smoothness), whenever two images are matched the 
image with the poorer spatial resolution can be consid- 
ered as Q. Clearly one should start with the "best 
guess" registration. 

Missing data appears to be handled in a reasonably 
graceful fashion as long as the least squares solution is 
restricted to voxels at which data exists for both image 
processes. This is no problem in image registration 
because the affine transformations specified for one 
part of the image exactly specify the transformations 
everywhere. For nonlinear transformations if one part 
of the image is missing no solution can be obtained for 
the homologous part of the other image. In this sense 
it is advisable to ensure that the reference image is 
more "complete" than the object image. 

One potentially important limitation of smooth 
basis functions is that they are not always necessarily 
appropriate. For example, at the apposition of the 
cortices in the interhemispheric fissure there is spatial 
proximity but contiguity across the falx cerebri is a 
biological impossibility. In this instance basis functions 
that are smooth over the midsagittal plane may not be 
appropriate. In practice we have never found this to 
be a problem at the resolutions with which we com- 
monly work. If it were a problem then the basis 
functions could be redesigned, or, equivalently, each 
hemisphere could be normalized separately. 

One practical limitation is the amount of working 
memory available to compute the least squares solu- 
tion. This can severely compromise the volume of data 
that can be dealt with and the number of basis 
functions (or the order of other expansions) that can 
be used. It should be noted that the actual software 
implementation does not adhere to the matrix equa- 
tions above. For example, one would never actually 
construct diag(t) but would emulate the required 
matrix operation with the equivalent element by 
element operations (unless one had a software environ- 
ment that could handle sparse matrices). In dealing 
with nonlinear spatial normalization of large volume 
data sets we have found the following strategy useful: 
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1) three-dimensional affine and nonlinear transforma- 
tions based on sparse sampling (i.e., subsampling) 
followed by 2) two-dimensional or piece-wise (e.g., 
slice) nonlinear deformations with complete sampling. 

Issues of validity 

The criteria for "good' spatial transformations can 
be framed in terms of validity, reliability, and compu- 
tational efficiency. The validity of a particular transfor- 
mation device is not easy to define or measure and 
indeed varies with the application. For example, an 
orthogonal transformation may be perfectly valid for 
realignment but not for spatial normalization of an 
arbitrary brain into a standard stereotactic space. In 
general, the sorts of validity that are important in 
spatial transformations can be divided into 1) face 
validity, established by demonstrating the transforma- 
tion does what it is supposed to, and 2) construct 
validity, assessed by comparison with other techniques 
or constructs. In functional mapping face validity is a 
complex issue. At first glance face validity might be 
equated with the coregistration of anatomical homo- 
logues in two images. This would be complete and 
appropriate if the biological question referred to struc- 
tural differences or modes of variation. In other circum- 
stances, however, this definition of face validity is not 
appropriate. For example, the purpose of spatial nor- 
malization (either within or between subjects) in 
functional mapping studies is to maximize the sensitiv- 
ity to neurophysiological change elicited by experimen- 
tal manipulation of sensorimotor or cognitive state. In 
this case the better definition of a valid normalization 
is that which maximizes condition-dependent effects 
with respect to error (and, if relevant, intersubject) 
effects. This will probably be effected when functional 
anatomy is congruent. This may or may not be the 
same as reptering structural anatomy. 

In the present work we have addressed validity at a 
number of levels. In the first section we established 
face validity with respect to known simulated move- 
ment and construct validity with respect to another 
approach [Woods et al., 19921. Another aspect of face 
validity was addressed by showing that the algorithm 
removed a component from the functional variance 
that could be attributed to movement artifact. In the 
second section we examined construct validity in 
terms of standard nonlinear minimization and trajecto- 
ries on an error surface. 

Finally, with reference to the construction of "vir- 
tual modalities" using intensity transformations, we 
emphasise that the validity of this "modality" de- 
pends on the validity of the forms of the relationship, 

between voxel values in both modalities, that are 
assumed in the least squares solution. 

In conclusion, we hope to have presented a reason- 
able solution to a fairly simple problem: how to match 
one image to another reliably, quickly, automatically, 
and with some degree of validity. 

Note 

Many of the algorithms presented in this paper 
have been implemented in MATLAB (Mathworks Inc., 
Sherborn, MA, USA) as part of the SPM (Statistical 
Parametric Mapping) package. The spatial normalisa- 
tion component developed for PET uses a 12-param- 
eter affine-six-parameter nonlinear transformation in 
three dimensions to match an individual's image to a 
library template. Our ASCII files (which are inter- 
preted by MATLAB) are available from the authors. 
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APPENDIX 

This appendix contains nothing new for the general 
reader. It is included for those who wish to verify the 
derivations in detail and/or implement the matrix 
equations in an application. 

Consider the general problem of spatially transform- 
ing one image so that it matches another. The differ- 
ences between the object image a(x)  and the reference 
image t(x) can be attributed to 1) differences in 
intensity (given that the images are spatially congru- 
ent) and 2 )  differences due to a spatial distortion of 
one image relative to the other. Let the first, generally 
nonlinear, relationship between voxel values from the 
same point (x) in both images be denoted by the 
operator fx(.} and the distortion by q(x) such that: 

where e(x) is a normally distributed error term with 
zero mean. For clarity we will omit the error term and 
deal with one-dimensional images (generalizing to 
three-dimensional images at the end of the appendix). 
Images are assumed to be good lattice representations 
of the continuous processes Q(x) and t(x) in a Euclid- 
ean space x .  

The problem of spatial transformation reduces to 
finding approximate solutions for fx(.) and q(x) subject 
to reasonable constraints. The constraint on the opera- 
tor f,(.} is one of local-stationariness, in the sense that 
fx(.} does not change very much in a local regon. [fx{.} 
is allowed to vary between remote regions of the 

images.] The minimal constraint on the spatial transfor- 
mation q(x) is assumed to be a preservation of local 
contiguity relationships [i.e., q(x) is a smooth and the 
associated Jacobian is positive]. We will deal here with 
the most general case of these minimal constraints. 

At first glance Equation (a.1) may appear so ill posed 
as to make any explicit solution impossible. However, 
if we assume the images are smooth (or that they can 
be rendered smooth-see main text) then a first order 
approximation of Equation (a.1) can be constructed in 
which both the operator fx{.) and q(x) have a least 
squares solution. The remainder of this section de- 
scribes how this is done. 

First decompose fx{.} into a convolution and a 
functional: 

where * denotes convolution. c(x) is a kernel or differ- 
ential point spread function. Without loss of gen- 
erality one can take some expansion of yx{.) = 

C ui(x).fi(t(x)} where fi{.) could correspond to terms in 
a polynomial, a Taylor series, a Fourier series, and so 
on. The local-stationariness constraint on fx{.} can be 
implemented by expanding the coefficients of fi{ .} [i.e., 
ui(x)] in terms of some "smooth' spatial basis func- 
tions @x): 

Uj(X) = c ujj p;(x). (a.3) 

q(x) can be similarly expanded in terms of x and some 
smooth basis functions pz(x): 

and 

Using these expansions Equation (a.1) becomes: 

If R(x) is smooth the effects of small distortions q k  
Q ( x )  will not interact to a significant degree and we 
can expand the right-hand side of eqn(a.6) using 
Taylor's theorem where, ignoring high order terms: 

Equation (a.7) is asymptotically true for small qk and 
reasonably true, if a(x) is smooth, for larger qk. The 
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right-hand side of Equation (a.7) can be expressed di- 
rectly in terms of qk by noting that from Equation (a.5): 

unknown coefficients. R and aR/ax are column vec- 
tors with one element per voxel. Let: 

i.e., 

- 

( a 4  
Then from Equation (a.11) 

A.[uo u1 . . . qlT = R 

This first order approximation [Equations (a.7) or (a.9)] 
is substituted into Equation (a.6): [uo u1 . . . qIT = (AT.A)-'AT.R. (a.12) 

Equation (a.12) represents the least squares solution of 

of these vectors specify the approximations of f,{.} and 
q(x) in the space defined by the (generally nonlinear) 
basis functions. The corresponding expressions in 
three dimensions (x, y, and z) are: 

A = [c.diag(fo(t)).pf c.diag(f1(t)).Pf. . . 

c(x) * Ex [fi(t(x)).uiiPf(X)I - qkP8x).an(x)/ax the unknown coefficients [uo u1 . . . . q]T. The elements 

(a.10) 

Given the "good lattice" assumption, Equation (a.10) 
can be expressed in matrix notation as: 

[c.diag(fo(t)).pf c.diag(f'(t)).p' . . . - diag(dR/dx).pq] -diag(dR/dy).pq 
-diag(dR/dx).f3q].[u0 u1 . . . qIT = R - diag(dR/dz).pq] 

or and 

[c.diag(fo(t)).pf c.diag(fl(t)).pf. . . [U v qx qy qZlT = (A~ .A) - 'A~ .R 

where [c.f. Equation (a.4)]: -aR/dq].[uo u1 . . . qIT =: R (a.11) 

where c is a Toeplitz matrix of the convolution kernel 
c(x). diag(fi(t)) represents a diagonal matrix with 
leading diagonal elements fi(t(x)) at the location of all 
voxels. The matrix pf and pq contain a basis function in 
each column and have the same number of rows as 
voxels analyzed. ui and q are row vectors of the 

q(x) = x + pq.4, (a.13) 

and similarly for q(y) and q(z). The spatially normal- 
ized image Rn(x, y, z) is simply: 

%(xt yt Z) = R(q(x)t q(Y)t q(z)). (a.14) 
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