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The labile brain. lll. Transients
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In this paper we consider an approach to neuronal transients that is predicated on the information they
contain. This perspective is provided by information theory, in particular the principle of maximum
information transfer. It is illustrated here in application to visually evoked neuronal transients. The recep-
tive fields that ensue concur with those observed in the real brain, predicting, almost exactly, functional
segregation of the sort seen in the visual system. This information theoretical perspective can be recon-
ciled with a selectionist stance by noting that a high mutual information among neuronal systems and the
environment has, itself, adaptive value and will be subject to selective pressure, at any level one cares to

consider.
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1. INTRODUCTION

This paper is concerned with the information conveyed
by a neuronal transient and the implications for the
temporal structure of neuronal processing (e.g. perceptual
synthesis) and unit responses (e.g. spatio-temporal recep-
tive fields). In §2, we consider the constraints on, and
implications of, distributing information over time in
neuronal transients, while § 3 demonstrates the predictive
validity of the transient hypothesis by showing how func-
tional segregation in extrastriate cortex (the spatio-
temporal receptive fields of units in secondary visual area
V2) emerges spontancously when the principle of
maximum information transfer is applied to neuronal
transients.

2. INFORMATION AND NEURONAL TRANSIENTS

If the diversity of transients depends on nonlinear or
asynchronous coupling, it follows that this coupling is
fundamental because it is the genesis of information that
is embodied in the dynamics of integrated neuronal popu-
lations. This suggests there must be a proper balance
between synchronous and asynchronous coupling. The
information theoretical analysis presented in this section
leads to an obvious but interesting view of neuronal tran-
sients that points to some characteristic time-scales for
neuronal processing that depend on the coupling among
neuronal populations.

(a) An uncertainty principle for the brain
The wuncertainty principle states that there is an
inherent trade-off between the certainty with which one
can specify the energy (or momentum) of a small particle
and the time (position) at which it was observed. This
follows from the fact that the energy (or momentum) is
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related to the frequency of the ‘wave’ describing the
particle. Clearly one cannot know both the exact
frequency and the exact point in time that a frequency is
expressed. In a similar vein, one cannot know the exact
form of a neuronal transient and the exact time that it
occurred (it takes a finite amount of time for its form to
become apparent). This trade-off can be expressed more
formally in terms of the entropy. The entropy is the
average information about which neuronal transient has
occurred. Under Gaussian assumptions (Jones 1979) for a
time-window of 7 observations (i.e. a temporal uncer-
tainty of 7) the entropy of a transient sampled at these
times 1s

H{x(t)} = log (2me"det{R})/2, (1)

where R is the (7 x 1) autocorrelation matrix of the
neuronal process x({). As the temporal uncertainty
increases, the average information obtained by actually
observing the transient increases. In short, we can either
know which particular transient is being currently
expressed or when it is expressed but not both at the same
time. Clearly the relationship implied by equation (1) will
be subject to the constraints of the neuronal system in
question, imposed by the form of R. These constraints are
in turn determined by the Volterra kernels, or effective
connectivity, that mediate the dynamics. Figure 1 shows
the average information obtained by using estimates of R
based on the neuromagnetic data used in Iriston (paper 1,
this issue) sampled every 4 ms. The critical thing to note
is that there is an almost linear relationship between the
duration of a transient and the average information one
obtains on knowing its form. This is an important point
and simply states that the information in the history of
some neuronal dynamics increases in proportion to the
depth of that history. A time-frequency analysis of a single
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Figure 1. Entropy of a single MEG time-series expressed as a
function of window length. The entropies were based on the
appropriate correlation matrices estimated from a 2'*ms
epoch of MEG data (that from the prefrontal region shown in
figure 3 of Friston, paper 1, this issue) sampled every 4 ms.

time-series emulates a multiplexing over frequencies. The
longer the transient the greater the number of (low)
frequencies that can be estimated.

(b) Short or long transients?

If there is more information available in a long tran-
sient, relative to a short one, is this a sufficient motivation
for the brain to use long transients? The answer to this
question lies in the nature of the ‘motivation’ and how the
brain can ‘use a transient’. The ‘motivation’ reduces to
selective pressure at a neuronal or evolutionary time-scale
and the ‘use’ of a transient is operationally defined by the
Volterra kernels that mediate between a transient input to
a neuronal population and the ensuing response. The
useful duration of a transient is determined by the
temporal extent of the Volterra kernels or effective
connectivity. If these kernels are temporally protracted
(i.e. can sample inputs from the distant past) then the
information inherent in longer transients will available
for shaping the population’s response. This in turn will
lead to richer, more diverse responses that are more sensi-
tive to the temporal context in which they occur. Is this
generally adaptive? From an evolutionary point of view,
not necessarily.

Consider small adaptive neuronal systems such as the
nervous systems of insects. Assuming that the small trans-
mission delays, implied by the physical size of insect
brains, renders the temporal extent of the Volterra kernels
comparatively small, then the information that can be
sampled from any transient will be limited, as will the
corresponding repertoire of context-sensitive neuronal
responses. Consider now larger animals, such as man,
where the temporal extent of the kernels may exceed, say,
500 ms. Here the responses of any neuronal population
will be predicated on a much more information-rich
history of inputs and therefore have the potential to be
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Figure 2. One of the eight natural scenes used to identify the
spatio-temporal receptive fields according to the principles
described in the main text.

more adaptive, but at a price. The price relates to the speed
at which inputs are transformed into outputs. For the
nsect, a new transient is available, say, every 10 ms or so,
whereas for systems with kernels that cover 500 ms, a tran-
sient is only refreshed a couple of times a second. From the
point of view of the insect, the man will respond in an
incomprehensively complex way but intolerably slowly.
Conversely from the man’s point of view the world (of
insects) will rush past very fast but in a simple and predict-
able fashion. Which is most adaptive? Clearly both are
adaptive. The more important point here is that there is a
trade-off between the complexity and context sensitivity of
neuronal responses and the characteristic time constants
of these responses.

The anecdotal example above used small and large
brains but there are likely to be many analogous examples
within one nervous system (e.g. reflexes versus cognitive
operations). These arguments speak to the notion that any
neuronal system can be characterized in terms of the
temporal extent of its underlying Volterra kernels. Long
kernels will engender more complex dynamics and will
extract more information from afferent transients. The
price paid for this is that the neuronal moment is
suspended in time, rendering any particular instant inac-
cessible. This inaccessibility is due to the fact that the
neuronal response to any instantaneous event is inevitably
conflated with the history that precedes it. In other
words, neuronal systems with long Volterra kernels can
never ‘represent’ instants in time because the neuronal
representation of these instants always reflects the context
in which they occur. In short, for complex systems the
‘moment’ that is represented is necessarily inflated to
preclude a representation of the sensorium that retains an
instantaneous temporal acuity.

Although it is not easy to relate these arguments to
perception, they do suggest that what we perceive may be
temporally divorced from what we sample with our
sensory receptors and that perceptual synthesis may
necessarily involve a loss of temporal precision. The
compelling experiments of Moutoussis & Zeki (1997) on
perceptual asynchrony in vision speak exactly to this
temporal dislocation, where different attributes of the
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Figure 3. The spatio-temporal receptive fields obtained from
one of the 50 ICA analyses described in the main text. The ith
receptive field corresponds to the kernels /;(u) of the spatio-
temporal ‘un-mixing matrix’ defining the independent
components. j indexes the spatial location and wavelength
and u time. These receptive fields are arranged according to
their spatial location at three time-points in the recent history
of the retinal transients they sample (i.e. £;(60 ms), /;(80 ms)
and /;(90 ms)). Kernel coeflicients were normalized such that
max (abs(f;(u))) =0.5 and 0.5 was added to each coeflicient.
The resulting values for each of the three wavelengths were
used to specify the colour, in terms of red, green and blue at
each location in the receptive field. This display format
accommodates negative connection strengths to a particular
wavelength, at a particular location and time and renders
zero connectivity an intermediate grey.

visual scene, presented at the same instant, become
temporally dispersed at a perceptual level.

(c) Empirical estimates
What are the likely time-frames involved for sensory
systems? The entropy (figure 1) can be thought of as an
upper bound on the information about the environment
available in a transient (see below). The actual informa-
tion in the responses of a neuronal population would
depend on the Volterra kernels that effect a nonlinear
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transformation of this input. Say we had to differentiate
between 32 different visual objects. We would then need
log,(32) =5 bits of information. This would only be avail-
able after sampling a transient for at least 10 ms. Interest-
ingly this is the same conclusion reached by Tovee et al.
(1993), who used information theory to analyse the spike-
trains elicited by several faces, in different locations, in
the temporal cortex of rhesus monkeys. In these experi-
ments most of the information pertaining to a 500 ms
transient (the first principal component of many trials)
was available in the first 20-50 ms of activity. de Ruyter
van Steveninck et al. (1997) reached similar conclusions
using a different approach to measuring entropy, based
on a discrete event space of firing sequences. They esti-
mate that the average information in a 30 ms window,
with a time-resolution of 3 ms, was about 5 bits. The
convergence between these analyses of spike-trains and
our magnetoencephalography (MEG) analysis should not
be overinterpreted because entropy is not scale invariant
(note the entropies in figure 1 were based on correlation
matrices) and spatially integrated neuromagnetic signals
cannot be compared easily to spike-trains. Furthermore,
there are some special issues to be considered when trying
to characterize the information in spike-trains. An excel-
lent discussion can be found in Rolls & Treves (1997).
This section observed that transients contain more infor-
mation than instantaneous codes. By virtue of the fact that
the transient neuronal responses of any neuronal popula-
tion are constructed by a nonlinear (Volterra) convolution
of its inputs, these responses will reflect the history of
neuronal activity elsewhere. This precludes any representa-
tion of an instant in time that is not incorporated into its
immediate history. The form of the Volterra kernels,
mediating the influence one population exerts over
another, will determine the degree of this temporal embed-
ding. The principles that underpin the ‘best” kernels remain
to be elucidated. However, there is one situation in which
the optimum kernels may be defined and that is in early
sensory cortices. Here there should be the highest degree of
predictability of the evoked transients, given the sensory
inputs causing them. In §3, we pursue this information-
theoretical approach to transients and show that some
remarkable predictions can be made by simply considering
what 1s the best way for the brain to extract information
from visually evoked transients in early visual processing.

3. TRANSIENTS AND FUNCTIONAL SEGREGATION

(a) V2 as afunctional segregator

This section concerns the principles that underlie func-
tional specialization in visual cortex and, in particular,
how the principle of maximum information transfer,
paired with the notion of neuronal transients, predicts
some fundamental features of segregation in early visual
processing. Functional specialization depends on extrinsic
and intrinsic connections within and among cortical units,
populations and subareas, whose convergent and divergent
architecture underlie the segregation of features in the
visual field (Zeki 1990). This segregation is reflected in the
emergence of distinct spatio-temporal receptive fields of
units at various stages of the visual pathways. In this
section we will focus on V2 as the final common stage in
the segregation of retinal input. In what follows we will use
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a framework of functional segregation that is extremely
well synthesized and described in Zeki (1993).

One of the most fundamental features of segregation in
the visual brain is a successive bifurcation of visual
processing pathways that is apparent at a number of
levels. In terms of projections from the retina to the
lateral geniculate nuclei (LGN), there is a distinction
between the magnocellular and the parvocellular path-
ways, projecting to the lower two and upper four layers of
the LGN, respectively. The magnocellular pathway origi-
nates in the M ganglion cells of the retina and is relayed
though the LGN to layer 4B of VI and on to the thick
stripes of V2. These M pathways can be regarded as
undergoing a second bifurcation, sending efferents to the
motion sensitive area V5 (the motion pathway) and V3
(dynamic form). The parvocellular pathway has its origin
in the P ganglion cells and ultimately divides to give a
colour pathway and a form pathway based on colour.
From the P layers of LGN the pathways are relayed to
layers 2 and 3 of V1 where they feed the blobs (colour
pathway) and interblobs (form from colour). These two
subdivisions are relayed to V4 through the thin and inter-
stripe structures of V2, respectively.

It can be seen that V2 1s a critical point of divergence,
representing the last stage of the visual hierarchy that
retains a full complement of functionally selective cells
(although there are also direct connections from V1 to V3,
V4, and V5). The physiology of V2 (Hubel & Wiesel 1977;
Zeki 1993) shows that V2 contains functionally hetero-
genous populations of cells, i.e. orientation-selective,
direction-selective and wavelength-selective units are all
found within its subareas. The thick stripes of V2 receive
their input from layer 4B of V1, where orientation and
direction cells predominate and mediate motion or
dynamic form processing through their connections to V5
and V3, respectively. Not surprisingly, direction-selective
cells are concentrated in the thick stripes of V2. The thin
stripes of V2 receive their input from the blobs of VI,
where the majority of cells are not orientation selective
but many are wavelength selective. Finally the interstripes
receive input from the interblobs and show orientation-
but not wavelength-selective responses (Shipp & Zeki
1985; De Yoe & Van Essen 1985; Hubel & Livingstone
1987). In summary, thick stripes contain orientation- and
direction- but not wavelength-selective units. Thin stripes
contain wavelength- but not orientation- and direction-
selective units and the interstripes contain orientation-
but not direction- or wavelength-selective units. Clearly
this is a gross simplification but a useful one and leads to
a clear trichotomy of selective spatio-temporal responses
mnVa2.

Could this unique parsing of orientation, direction and
wavelength selectivity have been predicted on the basis of
theorizing alone? It could have been at a heuristic level:
if one considers the brain as an inferential machine (see
Dayan et al. 1995), a system that is trying to capture,
represent or model the wunderlying causes in the
sensorium, then an elemental visual event can have,
among others, three causes. It could be caused by light
with a particular wavelength composition, reflected from
a visual feature that may or may not be moving and that
may or may not be orientated. Clearly the wavelength
composition is not determined by the motion or spatial
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form of the event, leading to cells that extract this cause
(1.e. wavelength selective but not orientation or direction
selective). The spatial structure of a small patch of retinal
input is not necessarily dependent on its wavelength or
motion (leading to orientation- but not wavelength- or
direction-selective cells) and finally the motion of the
patch is not a function of its colour but is necessarily
dependent on some spatial structure that is moving
(leading to orientation and direction selectivity in the
absence of wavelength selectivity).

The above analysis depends on the assumption that the
brain is an inferential device that tries to extract the
underlying causes of the input it receives as efliciently as
possible. In what follows we make this line of reasoning
more precise by framing it in terms of information theory.
The critical aspect, from the point of view of this paper,
is that to make any meaningful inferences about events,
particularly those involving motion, one needs to consider
the information embodied in neuronal transients—in this
instance the transients evoked at a retinal level by visual
events. In terms of unit responses in V2, this translates
into an analysis of the predicted spatio-temporal receptive
fields and the underlying Volterra kernels used to
construct the responses.

In what follows it will be shown that, by combining
neuronal transients and the principle of maximum infor-
mation transfer, not only does response selectivity
emerge spontaneously, but the segregation of selectivity
described above is emulated exactly, leading to predic-
tions about receptive field properties that are borne out
by electrophysiological and neuroanatomical studies of
V2 (Hubel & Wiesel 1977; Shipp & Zeki 1985; De Yoe &
Van Essen 1985, Hubel & Livingstone 1987). First we
will discuss the principle of maximum information
transfer and its relationship to efficient coding and
redundancy. We will then consider neuronal transients
and their implications for the dynamical aspects of
receptive fields. In particular, transients are used to
motivate a characterization of spatio-temporal receptive
fields, which includes the time domain. This characteri-
zation is provided by the Volterra kernels, or effective
connections, that specify a unit’s responses to its inputs.
By applying the principle of maximum information
transfer, in a way that explicitly accommodates the time
dimension, we can determine an ‘optimum’ set of recep-
tive fields (i.e. Volterra kernels). The spatio-temporal
fields that ensue can then be characterized, in terms of
their selectivity, to see if they fall into the groups
suggested by the empirical evidence above.

(b) Efficiency, redundancy and the principle of
information maximization

The principle of maximum information transfer (e.g.
Linsker 1988; Atick & Redlich 1990; Bell & Sejnowski
1995) has proved extremely powerful in predicting some
of the basic receptive field properties of cells involved in
early visual processing (e.g. Olshausen & Field 1996).
This principle represents a formal statement of the
common-sense notion that neuronal dynamics in sensory
systems should reflect, efficiently, what is going on in the
environment (Barlow 1961). Whether this principle holds
at higher levels of sensorimotor integration and cognition
remains an open question. However, it is clear that
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Figure 4. Tuning curve and selectivity analysis of an orientation selective receptive field. (4) The upper-three inserts depict the
receptive field in question and conform to the display format adopted in figure 3. The lower insert shows the orientation of the
preferred stimulus (that eliciting the greatest response). The preferred velocity is indicated by the small pointer to the right
(non-existent in this case because the preferred velocity was zero). The two images (¢, ¢) correspond to arrays of tuning curves
(obtained by computing the response to simulated bar stimuli of different orientations, wavelengths, scale, eccentricity, etc.).

(¢) depicts velocity tuning as a function of orientation (or vice versa) and (¢) wavelength tuning as a function of scale (or vice
versa). By taking the maximal difference in evoked responses, the selectivity for each attribute was computed as a function of the
other (shown in the four graphs (a, d, f, g) aligned with the two images). Velocity selectivity (a) is decomposed into speed (with
responses averaged over both directions, dashed line) and direction (averaged over speeds, dot—dash line). (4) The selectivity
profile summarizes these data, showing the response differential in relation to the maximum response elicited. In this instance the
receptive field shows clear orientation selectivity, and only orientation selectivity, responding to bars at about 45° at all

wavelengths, scales and over a broad range of speeds.

adaptive responses at any level necessitate a high degree
of mutual information between the dynamics of visual
cortex and changes in the visual world as sampled at the
retina. In the present context the principle of maximum
information transfer suggests that the receptive fields of
visual neurons should be configured in a way that maxi-
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mizes the mutual information between the neuronal
activity that they engender and the sensory inputs on
which they are contingent. This maximization is usually
considered in the light of some sensible constraints, for
example, the presence of noise in the sensory input (Atick
& Redlich 1990) or dimension reduction (Oja 1989),
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Figure 5. Tuning curve and selectivity analysis of a direction selective receptive field. For the format of this figure, see the
legend to figure 3. This ‘cell’ prefers upwards moving horizontal bars and evidences a substantial amount of speed, direction and
orientation selectivity but is relatively indifferent to wavelength or scale.

implicit in the fact that there are a smaller number of
divergent outputs from a neuronal population than
convergent afferents (Friston et al. 1992).

This principle is closely related to the idea of efficient
coding. It is sometimes difficult to see the close relation-
ship among all the various perspectives taken on (and
terms used) by different authors. Generally speaking the
principles of maximum information transfer, sparse
coding, redundancy minimization and efficient coding
are all variations on the same theme. We will spend some
time trying to relate these perspectives and show that the
only thing that really distinguishes among them is the
nature of the constraints under which the most informa-
tion is extracted. For a deterministic system, in other
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words, one in which noise can be disregarded, the mutual
information between the input and the output reduces to
the average information or entropy of the output.
Consider again the Volterra series as a model for the
dependency of activity in a population of units in visual
cortex (o) on activity in a retinotopically corresponding
population in the retina (x):

0;,(1) = Q[x(O)]+ 2 [x(O] + ... + 2,[x(D)]+ ... . (2)

Tor any given input x, we want to maximize the mutual
information between x and the output o. The mutual
information is given by

Hox} = Hfo} — H{o|x}, (3)
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Figure 6. The responses of the direction selective ‘cell’
depicted in figure 5 to identical bar stimuli (lower insert in
(b)) moving in opposite directions. The attenuated response
in the null direction (dashed line) can be attributed to the
nonlinearities implicit in equation (5).

where H{o|x} is the conditional entropy or uncertainty in
the outputs, given the inputs. For a deterministic system
there 1s no such uncertainty and H{o|x} can be discounted
(see Bell & Sejnowski 1995). It follows that maximizing
the output entropy is the same as maximizing the mutual
information. The efficiency of a neuronal system can be
considered as the complement of redundancy, the less
redundant, the more efficient a system will be. More
formally

efficiency ~ I = H{o} — TH{o,}, (4)

(cf. Gawne & Richmond 1993) where o; are the consti-
tuent units in the output population. [/ is sometimes
referred to as simply the ‘information’ in a system and is
ubiquitous in the independent component analysis and
related literature as the objective function that is maxi-
mized. Equation (4) says that efliciency is the difference
between the joint entropy and the sum of the entropies of
the individual units (componential entropies). Intuitively
this makes sense if one considers that the variability in
activity of any one unit corresponds to its entropy. There-
fore an efficient system, embodying a fixed H{o}, does so
with the minimum changes in firing. It also follows that,
subject to the constraint that the componential entropies
Y H{o;} are the same, increasing the efficiency increases
the mutual information between input and output though
maximizing H{o}. Maximizing H{o} usually involves
removing correlations or mutual predictability among the
output units. This is equivalent to ensuring that the
output ‘selectivities’ are as dissimilar as possible.
Approaches that seek to maximize the joint entropy of the
outputs include principle component analysis (PCA)
learning algorithms, which sample the subspace of the
inputs that have the highest entropy, and independent
component analysis (ICA), which finds nonlinear func-
tions of the inputs that maximize the entropy subject to
different but appropriate constraints (see §3(c); Bell &
Sejnowski 1995). In PCA, the componential entropies, or
variances of the individual units, are constrained by
setting limits on the weights used to linearly transform
the inputs (so that they have unit sum of squares). In
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ICA, the outputs are constrained to lie in some bounded
range by the application of a nonlinear squashing func-
tion to compounds of the inputs. In both PCA and ICA,
the output entropy is maximized, explicitly in ICA, and
by ensuring the outputs are orthogonal and account for
the largest variance in PCA.

The alternative approach to increasing efficiency is to
minimize the componential entropies while ensuring the
joint entropy remains high. The latter 1s assured as long
as the outputs can reliably predict the inputs. This mini-
mization is generally associated with sparse encoding of
salient features of the inputs. In other words, a unit that
only fires infrequently will generally be not firing.
Because of this, its state is quite predictable and H{o;} will
be small. This approach is illustrated nicely in Olshausen
& Field (1996).

In this work, we consider that the ‘best’ set of receptive
fields, associated with a point in retinotopic space, corre-
sponds to a set of nonlinear functions (Volterra operators)
of wvisually evoked retinal dynamics that has the
maximum joint entropy. This ensures efficient coding and
conforms to the principle of maximum information
transfer.

(¢) Neuronal transients and maximizing
information transfer

Perhaps the simplest examples of neuronal transients
are the self-limiting dynamics that are elicited by salient
events as seen in evoked potential studies. In the current
context, the importance of neuronal transients is that the
pattern of activity elicited by a visual stimulus in retinal
or geniculate units has an explicit temporal domain. This
1s crucial when considering the responses of individual
neurons higher in the visual system. The response of a
particular unit, say in V2, is a function not only of the
retinal activity at that time, but the recent history of
retinal dynamics mediated by polysynaptic relays. This is
a consequence of (i) lateral interactions, mediated by
intrinsic connectivity, and (i1) recurrent interactions
among reciprocally linked populations in the visual path-
ways, mediated by extrinsic connectivity. The response of
a unit at any time will be a highly nonlinear function of
inputs from extrinsic afferents from lower areas, lateral
inputs from within the unit’s area and re-entrant inputs
from higher areas. These will be a function of activity
patterns at some earlier time. By recursion, it follows that
the response to retinal inputs at the current time also
includes components that are due to retinal inputs at all
previous times. In short, any neuron has a receptive field
that embraces not only all the presynaptic afferents it
receives, but the activity in those afferents now and in the
recent past. Given that the time taken for activity to be
propagated along recurrent forward and backward
connections could be in the order of tens of milliseconds,
the temporal extent of a unit’s spatio-temporal receptive
field could be as large as 100 ms or more. Therefore, to
determine the unit’s response on the basis of retinal input,
one would need to know the neuronal transient that has
just been expressed at a retinal level.

This perspective offered by neuronal transients leads
to a picture of selective responses and receptive field
configurations that is much less hierarchical than in
conventional formulations. Although more complicated
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Figure 7. Segregation of selective responses. These results constitute a meta-analysis of the selectivity profiles of all ‘cells’ over
all ICA analyses. The selectivities for orientation (or), speed (speed), direction (dir) and wavelength (wave) were subject to a
PCA (after mean correction and Euclidean normalization). The resulting eigenvalue spectrum and first two eigenvectors (i.e.
principal components) are shown in (a). These suggest that the main axis of segregation is between ‘cells’ showing wavelength
selectivity and those that do not. The second axis of segregation pertains to direction selectivity. The interrelationships between
these selectivities are shown directly () by plotting the three attributes (wavelength, direction and orientation) against each
other. The segregation into three selectivity groupings is evident using a principal coordinate analysis (¢) in which the first two
principal component scores of each ‘cell’ are plotted against each other.

receptive fields may be assembled from simpler receptive
fields at lower levels, a more dynamical view suggests that
unit responses at every level in the early visual pathways
have access to information from all other levels, and at
previous times, mediated by abundant backwards connec-
tions. For example given that the LGN receives more
afferents from the cortex than it does from the retina,
does it make sense to consider the LGN as a ‘lower’ visual
station than the cortex? In other words, by virtue of the
recurrent and embedded loops arising from backwards
connections is it appropriate to place any component of
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the loop as ‘higher’ in relation to another component?
Although an interesting perspective, this view should be
moderated by noting that the visual pathways have to
extract the causes of changes in the visual field by
constructing highly nonlinear functions of visual inputs in
accord with equation (2). To construct these functions it
has to use a series of nonlinear transformations that are
constrained by the neuronal infrastructure available. To
get a sufficiently nonlinear transformation it may require
several weakly nonlinear stages, implemented at each
synaptic relay, or area, in a polysynaptic chain. If this is
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Figure 8. Mean selectivity profiles for the three groups of
segregation identified in figure 7. The smallest group (a) has,
almost exclusively, wavelength selectivity (cf. cells in the thin
stripes of V2). The largest group (b) is direction-, speed- and
orientation-selective (cf. cells in thick stripes). The cells in the
intermediate group (¢) show substantial orientation and scale
selectivity (cf. cells in the interstripes).

the case, a hierarchy might be a natural consequence of
the fairly stereotyped response properties of neurons
themselves. This again highlights the importance of
constraints when considering how principles like informa-
tion maximization might be instantiated in the brain.

In principle, a Volterra expansion of retinal input could
accommodate all the lateral and backwards modulatory
effects alluded to above if the only cause (i.e. input) of the
V2 responses (output) was retinal. In this instance the
Volterra kernels are ‘standing in’ for all the polysynaptic
transformations and effects of recurrent loops that
mediate V2 responses to retinal changes. These responses,
and implicitly the kernels, define the receptive fields.
Motivated by the importance of constraints and some
recent mathematical advances, let us assume a fairly
simple form for this Volterra series equation (2), which
describes the nonlinear transformation between retinal
inputs and unit responses in retinotopically equivalent
points in V2.
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0,(t) =0 Z/hw) x x;(t — u)du o, (5)

where of-} is a nonlinear sigmoid or squashing function
(the logistic function) that ensures the outputs lie in the
range 0 to 1. The receptive fields of unit 7 in V2 are
determined by the coefficients /). These can be thought
of as the time-dependent effective connectivity between
the jth unit in the retina and the :th unit in V2. The time-
dependent or dynamic connection strengths define the
spatio-temporal receptive field of the simulated V2 units.
Strictly speaking, the inputs should include any unit that
can exert an influence, directly or through polysynaptic
relays. In this paper, we ignore spatial integration and
top-down influences of an unspecified nature and just
consider the inputs deriving from a small patch of the
retina. Equation (5) has high-order terms by virtue of the
sigmoid squashing function and is a simple variant of
time-delayed neural networks as considered by Wray &
Green (1994) in the context of Volterra series. Intuitively
it says that the activity of any V2 unit can be modelled as
a nonlinear function of inputs, where these inputs are the
activities of retinal units over the recent past, convolved
or weighted over space and time by some input-specific
kernel.

To apply the principle of maximum information transfer
we have to find the dynamic connection strengths ;) that
define the unit’s spatio-temporal receptive field. In other
words, we have to find /() that maximizes H{o} where

H{o} = H{x} + (In (F(x(1)))), (6)

where 7 is the Jacobian associated with equation (5) and is
a function of 4;(u). Given that the entropy of the inputs is
fixed we have maximize the right-hand term in
equation (6). Fortunately this can be achieved with
relative ease using ICA. Indeed ICA has been applied in
the context of static receptive fields (i.e. ignoring the
temporal domain) with compelling results (Bell &
Sejnowski 1997, Van Hateren & Van der Schaaf 1998). If
one could find the dynamic connections /;{), then the
corresponding spatio-temporal receptive fields would
maximize the mutual information, not between the
outputs and the inputs at any one time, but between the
outputs and the inputs over the recent past. In other
words, the receptive fields are construed as mediating
responses to salient visual events as opposed to spatial
patterns. By trying to solve this more complicated, but
biologically more pertinent, problem, we hypothesized
that the ensuing receptive fields would conform closely to
those actually observed in the real brain. In particular we
would expect to see the selectivity and segregation of
selective responses of the sort described above.

In summary, assuming a model like equation (5), the
coeflicients /;@) that maximize output entropy, and
implicitly information transfer, can be identified using
techniques developed for independent component
analysis (ICA) for any retinal input sequence. By
scanning natural scenes and transforming the data into
simulated retinal responses, one can identify optimum
dynamic connections /;() and implicitly the associated
response properties or spatio-temporal receptive fields.
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Figure 9. Schematic adapted from Zeki (1993) summarizing the anatomy and functional segregation of processing pathways and
the relationship of receptive fields to the stripe structures in V2. LGN, lateral geniculate nucleus; P, parvocellular pathway; M,
magnocellular pathway. The receptive fields come from the analysis presented in figure 3.

One can then perform simulated experiments, using
conventional bar or grating stimuli, to characterize the
selectivity of these receptive fields and compare the
ensuing profiles with those observed empirically. An
example of this approach is presented below.

(d) Stmulations using natural images
In the simulations reported here, retinal inputs were
simulated by sampling natural coloured images with a
16 x 16 pixel array moved in little ‘sweeps’ over the images
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at an average rate of one pixel per iteration (an example of
one of these scenes 1s given in figure 2). In these simulations,
a pixel corresponds to about 0.1° and one iteration to 10 ms,
giving an average velocity of about 10°s™!. The resulting
nput vectors comprised 16 voxels x 16 voxels X 16 time-
steps for each primary colour (1.6°x1.6°x160ms
x 3 wavelengths). To emulate retinal responses the tristi-
mulus values obtained from the red, green and blue image
components were transformed to a retinal cone colour
coordinate system according to Pratt (1978) and log
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transformed (a small constant of 0.05 was added prior to
transformation to avoid logs of zero). This input to the
simulation can be thought of as a time-series of instanta-
neous activity profiles, evoked by moving natural images,
in three (colour channel-specific) sets of retinotopically
organized photoreceptors.

Each input was reduced using 192 spatio-temporal
basis functions (a three-dimensional discrete sine set
(4x4x3), windowed in the spatial dimensions with a
Hanning function). The coefficients /;@) underlying the
hypothesized receptive fields of 12 units in V2 were
determined wusing ICA to maximize the entropy
according to equation (6). Because the algorithm used
only returns outputs that lie in the subspace spanned by
the initial weight matrix, we used an initial weight
matrix that corresponded to the first 12 principal compo-
nents of the spatio-temporal inputs. This number typi-
cally accounts for about 80% of the variance in the
simulated retinal dynamics. We used eight different
natural scenes sampled with 4096 sweeps of random
direction (uniform) and velocity (Gaussian) for each
ICA analysis. This was repeated 50 times to ensure stabi-
lity of the results. The choice of 12 units was motivated
by noting that this was the maximum number that gave
unequivocally stable results, in terms of the ensuing
receptive fields.

The results of a typical analysis (one of the 50) are
shown in figure 3, where, for each of the 12 units, the
connection strengths are plotted, at three points in time,
in the appropriate retinotopic position and colour. It is
immediately obvious that these receptive fields fall into
two classes. One class shows marked wavelength selec-
tivity (units 1 and 7) whereas the other does not. The blue
hue of receptive field 1 reflects the prevalence of sensitivity
to short wavelength inputs and not to long (green and
red) wavelengths and corresponds roughly to a blue—
yellow axis. The red-purple hue of receptive field 7
indicates a sensitivity to long but not intermediate (green)
wavelengths, 1.e. a red—green axis.

This coloured-grey dichotomy over receptive fields is
the first indication that the distinction between wave-
length selective responses and non-selective responses is
an emergent phenomena. It is quite remarkable that some
units are wavelength selective and others are not. If we
had selected the coefficients %;u) at random then the
probability of getting even one uniformly grey receptive
field (i.e. no wavelength selectivity) would have been
exceedingly small.

Note furthermore that, with the exception of receptive
field 2, all the grey fields show some orientated structure,
in contradistinction to the coloured fields. This suggests
that units showing no wavelength selectivity may well be
orientation selective. Some of the fields seem to be static
(e.g. field 11), whereas others evidence dynamic changes
in the receptive field that might belie motion or direction
selectivity (e.g. field 6).

Our predictions were that the wavelength-selective
cells would not show orientation or direction selectivity
(cf. thin stripes in V2) and conversely wavelength-
insensitive units may (thick stripes) or may not (inter-
stripes). 1o test this hypothesis explicitly, we character-
1zed the receptive field properties of our simulated V2
cells by presenting moving, monochromatic bar stimuli
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and measuring the simulated responses. Receptive field
selectivity was assessed in the following way. Each
stimulus comprised a bar with a Gaussian profile that
was characterized by five parameters: (1) the orientation
of the bar (from 0 to 7 radians), (ii) the velocity of the
bar (from —20 to 20°s™!); (iii) the monochromatic
wavelength employed (from 400 to 700 nm); (iv) the
scale or width of the bar (0.1 to 0.3°); and (v) its eccen-
tricity, defined as the displacement from centre at the
midpoint of presentation (from —0.4 to 0.4°). The
responses of each simulated unit to stimuli of 160 ms
duration were computed according to equation (5) using
the estimates of /4;@) from each ICA analysis. The
response was taken to be that immediately following the
stimulus presentation. Responses were evaluated over all
possible stimulus-event configurations resulting in a five-
dimensional array of responses. The mode or maximum
of this response profile represents the preferred stimulus
for the unit in question. Figure 4 shows some typical
results, in this instance from receptive field 12 in
figure 3. Figure 44 shows the receptive field and the
preferred stimulus. Figure 4¢ shows the response profile
over orientation and velocity at the preferred wave-
length, scale and eccentricity. This image can be thought
of as a collection of orientation tuning curves (obtained
at different velocities) or equivalently, as velocity tuning
curves at different orientations. It is clear that maximal
responses are obtained with static stimuli at about 45°
orientation. From this profile we can compute an orien-
tation selectivity at each velocity (figure 4d). Selectivity
was simply defined as the difference between the
maximum and minium responses. Clearly this selectivity
is high and relatively insensitive to the stimulus’s velocity.
Similarly we computed the velocity selectivity as a func-
tion of orientation (figure 4a). Velocity has two compo-
nents, the speed and direction. For the purposes of
further analysis we decomposed velocity selectivity into
speed selectivity (maximal differences in responses aver-
aged over both directions) and direction selectivity
(maximal differences in responses averaged over all
speeds). This cell clearly shows only moderate direction
selectivity, even at the preferred orientation. The lower
image shows the response profile over wavelength and
scale. In this instance the responses are almost uniform
suggesting very little wavelength (figure 4g) or scale
(figure 4/) selectivity. In short, this receptive field shows
orientation selectivity but not wavelength or direction
selectivity. This is apparent if one plots the selectivity for
each attribute when using the preferred stimulus para-
meters for this cell (figure 4#£). This selectivity profile
was computed for each cell in all the ICA analyses.
Figure 5 shows the results for receptive field 6 in
figure 3. This cell shows a moderate amount of orienta-
tion selectivity and is very direction selective. An alter-
native demonstration of this selectivity is presented in
figure 6, where the dynamic responses from equation (5)
are plotted as a function of time for two bar stimuli that
were identical other than in their direction of motion. It
can be seen that there is a vigorous response following
stimulation with the preferred direction. However, there is
a greatly attenuated response for the same stimulus moving
in the null direction. It should be noted that these two
stimuli were presented for the same duration, with the
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same luminance and covered the same points in retinotopic
space. The only difference was the order or direction in
which the retinal inputs were stimulated and yet there is a
profound difference in the evoked transient.

(e) Functional segregation

It now remains to show that the selectivity of the simu-
lated spatio-temporal receptive fields segregate as one
might predict on the basis of electrophysiological studies.
To characterize this segregation the selectivity profiles of
each unit, from all the ICA analyses, were pooled,
normalized and subject to a PCA (figure 74). The first
principal component or eigenvector showed that the main
difference among selectivities was a wavelength versus
non-wavelength selectivity. This fits pleasingly with the
fundamental dichotomy suggested by the response profiles
of cells in the parvocellular and magnocellular pathways.
The second principal component suggested that the next
most important distinction is between those cells that
show direction-selective responses and those that do not.

The interrelationships, among the selectivities for
different attributes, are shown by plotting them against
each other in figure 7. It is clear that directionally selec-
tive cells are not wavelength selective and vice versa
(figure 756(1)), similarly for orientation and wavelength
selectivity (figure 76(i1)). However, many orientation-
selective cells are, not surprisingly, directionally sensitive.
The underlying grouping or segregation of selective
responses is revealed more clearly by plotting each unit’s
scores on the first and second principal components
against each other. This is known as principal coordinates
analysis. In this space it can be seen that units fall
roughly into one of three groups, denoted by the circles in
figure 7c.

The mean selectivity of units within each of these
groups 1s shown in figure 8 and conforms exactly to what
was predicted above. Namely a small group of cells that
show wavelength selectivity but minimal direction or
orientation selectivity. This group corresponds, in our
conceptual model, to the units one might typically find in
the thin stripes of V2. The largest group shows direction
and orientation selectivity but little wavelength selectivity
and represents the sorts of response properties found in
the thick stripes of V2. An intermediate-sized group,
corresponding to the interstripes, shows pronounced
orientation selectivity but little direction selectivity and
minimal wavelength selectivity. It is pleasing that the size
of each group corresponds roughly to the size of the
stripe structures actually observed in V2.

Figure 9 is a schematic, based on Zeki (1993), which
depicts the relationship between the receptive fields,
predicted by neuronal transients and information theory,
and the functional architecture of visual processing that is
predicated on a synthesis of electrophysiological and
anatomical evidence (e.g. Shipp & Zeki 1985; De Yoe &
Van Essen 1985; Hubel & Livingstone 1987).

(f) Temporal convergence and divergence
The above analysis identified nonlinear transforma-
tions of neuronal transients that maximize the mutual
information between an input that is temporally extended
and the information at a single point in time. In this way,
spatio-temporal receptive fields can be considered as
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mediating a convergence of temporal information, in this
case coercing 160 ms worth of information into an instant
of time. However, transient dynamics in V2 have a
temporally extended domain and will themselves be
subject to this sort of compression. This begs the question
‘Is it sufficient to maximize the entropy of V2 dynamics
at one point in time or should the entropy of V2 transi-
ents themselves be maximized?’ This question relates to
the pioneering work of Optican & Richmond (1987) and
the powerful inferences (de Ruyter van Steveninck et al.
1997) that have been made through analysing the infor-
mation in stimulus-locked spike-trains over extended
periods of time.

4. CONCLUSION

The main points made in this paper can be summar-
ized as follows.

(i) The upper limit of information contained in a
neuronal transient is proportional to its length.

(i1) The length of a neuronal transient depends on the
temporal extent of the Volterra kernels that mediate
the response of a population to its inputs.

(111) The existence of a Volterra series formulation of
coupled neuronal populations places constraints on
the temporal acuity of neuronal responses in that
they are necessarily conflated with the recent history
of activity in the brain. Temporally extended kernels
confer greater context sensitivity but preclude the
‘pure’ representation of a instantaneous event.

(iv) If Volterra kernels are temporally extended then

carly should have a
pronounced spatio-temporal structure in their recep-
tive fields. A test of this hypothesis obtains by
applying the principle of maximum information
transfer to estimate the optimum kernels, to confirm
that they emulate the selectivity seen in the real
brain.

(v) Applying the information theoretic principles to
simulated retinal transients yields kernels (simulated
spatio-temporal receptive fields) whose selectivity
profiles resemble almost exactly those seen in the
real brain.

units in visual cortex

This and Friston (paper 1 and paper 2, this issue) have
presented the case for neuronal transients as a metric of
brain dynamics and Volterra kernels as a characterization
of the effective connectivity among neuronal populations
that mediate them. Empirically, we have seen that asyn-
chronous coupling between anterior and posterior brain
areas can be extremely significant. This form of asynchro-
nous coupling, which involves correlations among different
frequencies, follows naturally from the coexpression of
asynchronous transients in the two brain areas. The
importance of neuronal transients, as a general frame-
work for characterizing neuronal interactions, is that they
embrace both synchronous and asynchronous coupling.
Synchronization, as implied by temporal codes framed in
terms of oscillations and phase-locking, or indeed non-
oscillatory synchronized firing, can be thought of as a
special case of transient coding. The reason it is important
to consider asynchronous interactions is that they imply
nonlinear coupling and it is this sort of integration that
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provides for the diverse and context-sensitive expression
of transients. As demonstrated, this nonlinear coupling
can supervene in terms of its magnitude and significance
in relation to linear or synchronized interactions.

The successive expression of diverse transients is related
to dynamic correlations and more directly to dynamic
instability. Dynamic instability may be crucial for adaptive
brain function from two perspectives. The first is from the
point of view of neuronal selection and self-organizing
systems. If selective mechanisms underpin the emergence
of adaptive neuronal responses, then dynamic instability
1s, itself, necessarily adaptive. This is because dynamic
instability is the source of diversity on which selection acts,
and 1s therefore subject to selective pressure. The second
perspective is provided by information theory, in parti-
cular the principle of information maximization. By
applying the principle of maximum information transfer
to neuronal transients, receptive fields emerge that are
reminiscent of those found in the real brain. A contribution
of this component was to extend information maximiza-
tion approaches to the temporal domain. Implicit in this
extension 1s the idea that extrinsic and intrinsic connec-
tions have been selected, both on an evolutionary and
somatic time-scale, such that they extract the most infor-
mation from the sensorium. By virtue of the fact that this
information pertains to an instant in time, this can be seen
as a temporal convergence or ‘compression’ of information
over time, or as a dilation of the neuronal moment in
which representations of an ‘instant’ are lost forever. This
may represent a fundamental aspect of neuronal dynamics
and a perspective on temporal integration in the brain.

Finally it should be asked ‘why all this is important?’
Perhaps the most general and useful answer is that if one
is trying to relate behavioural, psychophysical or other
measures of brain function to the underlying neurophy-
siology then it is important to use the ‘right’ neurophysio-
logical measures. The conclusions from these papers point
to neuronal transients, if they can be measured.
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