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I.  INTRODUCTION 

 

This chapter discusses issues specific to the analysis of fMRI data. It extends the Generalized 

Linear Model (GLM) introduced in Chapter 7 to linear time-invariant (LTI) systems, in 

which the Blood Oxygentation Level Dependent (BOLD) signal is modelled by neuronal 

causes that are expressed via a haemodynamic response function (HRF). The first section 

introduces the concepts of temporal basis functions, temporal filtering of fMRI data and 

models of temporal autocorrelation. The second section describes the application of these 

ideas to event-related models, including issues relating to the temporal resolution of fMRI. 

The third section concerns the efficiency of fMRI experimental designs, as a function of the 

interstimulus interval and ordering of stimulus types. The final section illustrates some of the 

concepts introduced in the preceding sections with an example dataset from a single-subject 

event-related fMRI experiment. 

 

II.  FMRI TIMESERIES 

 

Unlike PET scans, it is important to order fMRI scans as a function of time, i.e. treat them as 

a timeseries. This is because the BOLD signal will tend to be correlated across successive 

scans, meaning that they can no longer be treated as independent samples. The main reason 

for this correlation is the fast acquisition time (TR) for fMRI (typically 2-4s, cf. 8-12 minutes 

for PET) relative to the duration of the BOLD response (at least 30s). Treating fMRI data as 

timeseries also allows us to view statistical analyses in signal-processing terms. 

 The GLM can be expressed as a function of time (Friston et al., 1994; cf. Equation [1] 

in Chapter 7): 

 

 y(t) = xc(t) βc+ ε(t)  ε(t) ~ N(0,σ2Σ)    [1] 

 

where the data y(t) comprise the fMRI timeseries (each timepoint representing one scan), the 

the explanatory variables, xc(t), c=1..Nc are now functions of time, βc are the Nc (time-

invariant) parameters, and Σ is the noise autocorrelation (see Section IIC below). Though y(t) 
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and xc(t) are discrete (sampled) timeseries (normally represented by the vector y and design 

matrix X respectively), we initially treat the data and model in terms of continuous time. 

 

A. Stimulus, Neural and Haemodynamic Models, and Linear Time-Invariance 

 

An explanatory variable x(t) represents the predicted BOLD response arising from a neural 

cause u(t). These neural causes (e.g., the local field potentials of an ensemble of neurons) 

normally follow a sequence of experimental stimulation, s(t). In SPM99, a distinction is 

made between neural activity that is impulsive (an “event”) and that which is sustained for 

several seconds after stimulation (an “epoch”). Both can be specified in terms of their onsets, 

but differ in the form of the neural model. For i=1..Ni experimental conditions, each 

consisting of j=1..Nj onset times oij, the stimulus model is: 

 

si(t) = Σj=1..Nj αij δ(t-oij)       [2] 

 

where αij is a scaling factor and δ(t) is the (Dirac) delta function. The vector αα i over the Nj 

replications of the ith condition corresponds to a “parametric modulation” of that condition 

(e.g, by behavioural data associated with each stimulus; see Section VB for an example).1 

Below we assume αij is fixed at 1. 

For events, the neural activity ui(t) is equated with si(t). For epochs, the neural 

activity, r(τ), is modelled by b=1..Nb temporal “basis functions”, gb(τ): 

 

r(τ) = Σb=1..Nb βb gb(τ)        [3] 

 

where τ indexes a finite peristimulus time (PST) over the epoch duration TE (and βb are 

parameters to be estimated).  Some example epoch response functions are shown in Figure 

1A. The simplest is a single “boxcar” or “tophat” function that assumes a constant level of 

neural activity during the epoch. This can be supplemented by a (mean-corrected) 

exponential decay (e.g, of form exp{-τ/(4TE)}) to capture adaptation effects within an epoch. 

                                                 
1 A polynomial expansion of αij can be used to test for higher order (nonlinear) dependencies of neural activity 

on the parametric factor.  
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Other examples include a half-sine, sin(πτ/TE), and a discrete cosine transform (DCT) set, 

gb(τ) = cos{(b-1)πτ/TE}. The latter can capture any shape of neural response up to frequency 

limit (Nb-1)/2TE. The neural activity then becomes (from [2] and [3]): 

 

ui(t) = si(t) ⊗ r(τ) = Σj=1..Nj Σb=1..Nb βb gb(t-oij)  

 

If we assume that the BOLD signal is the output of a linear time-invariant (LTI) system 

(Boynton et al., 1996) – i.e. that the form of the response is independent of time, and the 

responses to successive stimuli superpose in a linear fashion – then we can express xi(t) as 

the convolution of the neural activity with a haemodynamic response function (HRF), h(τ): 

 

 xi(t) = ui(t) ⊗ h(τ)        [4] 

 

where τ now indexes a finite period, TH, over which the BOLD response lasts (a “finite 

impulse response”). The HRF h(τ) is equivalent to the 1st-order Volterra kernel (see Chapter 

11).2 Figure 1B shows the BOLD signal predicted from convolution of an epoch, modelled 

by box-car and exponential decay response functions, with a “canonical” form for the HRF. 

Also shown in Figure 1C is the BOLD signal predicted for a series of rapid events (delta 

functions); note the near-equivalent BOLD signal obtained3 (provided the interevent interval 

is a few seconds or less).  

In other situations, we may not want to assume a fixed form for the HRF. Instead, we 

can allow for variability in its form by another expansion in terms of temporal basis 

functions, fk(τ):  

  

 h(τ) = Σk=1..Nk βk fk(τ)       [5] 

 

                                                 
2 It is also possible to model nonlinearites in the mapping from stimulus to neural activity in terms of a Volterra 

expansion (Josephs & Henson, 1999). However, because we normally only know the stimulus function (input) 

and the BOLD signal (output), we cannot attribute nonlinearites uniquely to the stimulus-to-neural or neural-to-

BOLD (or bloodflow-to-BOLD) mappings.  
3 bar a small shift in latency (Mechelli et al, in press-b) 



  5 

(see Section IIIC for some examples). For a sequence of events, the GLM then becomes 

(from [1], [2] and [4]): 

 

y(t) = Σi=1..Ni Σj=1..Nj Σk=1..Nk β ijk fk(t-oij)  +  ε(t)     

 

where β ijk are the parameters to be estimated. 

In practice, the above models are simulated in discrete time. Nonetheless, given that 

significant information may exist in the predicted signal at frequencies above that associated 

with typical TR’s, the simulations are performed in a timespace with multiple (T>1) 

timepoints per scan (i.e., with resolution, dt=TR/T seconds). This means, for example, that 

events do not need to be synchronised with scans (their onsets can be specified in fractions of 

scans). The high resolution timespace also ensures that a sequence of delta-functions (every 

dt seconds) becomes an adequate discrete-time approximation to a continuous boxcar 

function. To create the explanatory vectors, xc, in units of scans, the predicted BOLD signal 

is downsampled every TR (at a specified timepoint T0; Figure 2). In the general case, the 

number of columns in the design matrix will be Nc=NiNjNkNb. 

 

B. Highpass Filtering 

 

We can also view the frequency components of our timeseries y(t) via the Fourier transform. 

A schematic of the power spectrum (the modulus of the complex Fourier components), 

typical of a subject at rest in the scanner, is shown in Figure 3A. This “noise” spectrum is 

dominated by low-frequencies, and has been characterised by a 1/f form when expressed in 

amplitude (Zarahn et al., 1997). The noise arises from physical sources, sometimes referred 

to as “scanner drift” (e.g., slowly-varying changes in ambient temperature), from 

physiological sources (e.g., biorhythms, such as ~1Hz respiratory or ~0.25Hz cardiac cycles, 

that are aliased by the slower sampling rate), and from residual movement effects and their 

interaction with the static magnetic field (Turner et al., 1998). When the subject is 

performing a task, signal components are added that we wish to distinguish from this noise. 

Figure 3B, for example, shows the approximate signal spectrum imposed by an (infinite) 

squarewave stimulation of 32s-on/32s-off. When averaging over all frequencies, this signal 

might be difficult to detect against the background noise. However, by filtering the data with 

an appropriate highpass filter (Figure 3C), we can remove most of the noise. Ideally, the 
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remaining noise spectrum would be flat (i.e., “white” noise, with equal power at all 

frequencies, though see Section IIC).  

The choice of the highpass cut-off would ideally maximise the signal:noise ratio. 

However, we cannot distinguish signal from noise on the basis of the power spectrum of the 

data alone. One choice of cut-off is to minimise the loss of signal, the frequency components 

of which are inherent in the design matrix X. SPM99 will offer such a cut-off by default 

(based on twice the maximum interval between the most frequently occurring condition). 

However, if this cut-off period is too great, the gain in signal passed can be outweighed by 

the extra noise passed. Thus some loss of signal may be necessary to minimise noise4. 

Experimental designs should therefore not embody significant power at low frequencies (i.e, 

conditions to be contrasted should not live too far apart in time; see Section IVA). 

 In the time domain, a highpass filter can be implemented by a DCT with harmonic 

periods up to the cut-off. These basis functions can be made explicit as confounds in the 

design matrix; or they can be viewed as part of a temporal smoothing matrix, S (together 

with any lowpass filtering; Section IIC).5 This matrix is applied to both data and model:   

 

Sy = SXββ  + Sεε   εε  ~ N(0,σ2V)   V=SΣΣ ST   

 

(treating the timeseries as vectors), with the classical correction for the degrees of freedom 

lost in the filtering inherent in the equation for the effective df’s (Chapter 9): 

 

 v = trace{RV}2/trace{RVRV}  R = I – SX(SX)+   [6] 

 

 The effect of applying a highpass filter to real data (taken from a 42s epoch 

experiment; http://www.fil.ion.ucl.ac.uk/spm/data#fMRI_MoAEpilot) is illustrated in Figure 

3D. Figure 3E shows the fitted responses after the filter S is applied to two boxcar models, 

one with and one without convolution with the HRF. The importance of convolving the 

neural model with an HRF is evident in the residuals (Figure 3F). Had the explanatory 

variables been directly equated with the stimulus function, significant temporal structure 

                                                 
4 In our experience, the 1/f noise becomes appreciable at frequencies below approximately 1/120 Hz, though 

this figure may vary considerably across scanners and subjects. 
5 Though the matrix form expediates mathematical analysis, in practice highpass filtering is implemented by the 

computationally efficient subtraction of RRTy, where R is the residual-forming matrix associated with the DCT. 
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would remain in the residuals (e.g, as negative deviations at the start of each block, i.e, at 

higher frequency harmonics of the boxcar function). 

 

C Temporal Autocorrelation 

 

There are various reasons why the noise component may not be white even after highpass 

filtering. These include unmodelled neuronal noise sources that have their own 

haemodynamic correlates. Because these components live in the same frequency range as the 

effects of interest, they cannot be removed by the highpass filter. These noise sources induce 

temporal correlation between the residual errors, ε(t). Such autocorrelation is a special case 

of nonsphericity, which is treated more generally in Chapter 9. Here, we briefly review the 

various solutions to the specific problem of temporal autocorrelation in fMRI timeseries. 

 One solution proposed by Worsley and Friston (1995) is to apply a temporal 

smoothing. This is equivalent to adding a lowpass filter component to S (such that S, together 

with the highpass filter, becomes a “bandpass” filter). If the time-constants of the smoothing 

kernel are sufficiently large, the temporal autocorrelation induced by the smoothing can be 

assumed to swamp any intrinsic autocorrelation, ΣΣ , such that: 

 

 V = SΣΣ ST ~ SST 

 

and thus the effective degrees of freedom can be calculated (via Equation [6]) solely via the 

known smoothing matrix. Lowpass filters derived from a Gaussian smoothing kernel with 

FWHM of 4-6s, or derived from a typical HRF, have been suggested (Friston et al., 2000b).   

 An alternative solution is to estimate the intrinsic autocorrelation directly, which can 

be used to create a filter to “pre-whiten” the data before fitting the GLM. In other words, the 

smoothing matrix is set to S = K-1, where KKT is the estimated autocorrelation matrix. If the 

estimation is exact, then: 

 

 V = K-1ΣΣ (K-1)T = K-1KKT(K-1)T = I 

 

Two methods for estimating the autocorrelation are an autoregressive (AR) model (Bullmore 

et al, 1996) and a 1/f model (Zarahn et al., 1997). An AR(p) is a pth-order autoregressive 

model, having the time domain form: 
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 z(t) = a1z(t-1) + a2z(t-2)… + apz(t-p) + w => z = Az + w  w ~ N(0,σ2I) 

 

where A is a  (p+1)x(p+1) lower-triangular matrix of regression coefficients, ai, that can be 

estimated by ordinary least-squares. Several authors (e.g, Bullmore et al, 1996; Kruggel & 

von Cramon, 1999) use an AR(1) model, in which the autocorrelation (a1) and noise (σ2) 

parameters are estimated from the residuals (z=εε ) after fitting the GLM. These estimates are 

then used to create the filter S=(I-A)-1 that is applied to the data before re-fitting the GLM (a 

procedure that can be iterated until the residuals are white).  

 The 1/f model is a linear model with the frequency domain form: 

 

 g(f) = b1/f + b2  p(f)=g(f)2 

 

where p(f) is the power spectrum, the parameters of which, bi, can be estimated from the 

Fourier-transformed data. 

 The advantage of these methods is that they produce the most efficient estimation of 

the GLM parameters under Gaussian assumptions (corresponding to Gauss-Markov or 

“minimum variance estimators”; Chapter 7). Temporal smoothing is generally less efficient 

because it removes high frequency components, which may contain signal. The disadvantage 

of the temporal autocorrelation models is that they can produce biased parameter estimates if 

the autocorrelation is not estimated accurately (i.e, do not necessarily produce “minimum 

bias estimators”).  

 Friston et al. (2000b) argued that the AR(1) and 1/f models are not sufficient to 

estimate the typical autocorrelation in fMRI data. This is illustrated in Figure 4A, which 

shows the power spectra and “autocorrelation functions”6 for the residuals of an event-related 

dataset (that in Section V). It can be seen that the AR(1) model underpredicts the 

intermediate-range correlations, whereas the 1/f model overpredicts the long-range 

correlations. Such a mismatch between the assumed (KK�) and intrinsic (ΣΣ ) autocorrelation 

                                                 
6 An autocorrelation function plots the correlation, ρ(t), as a function of “lag”, t=0…n-1, and is simply the 

Fourier transform of the power spectrum, p(f), where f=2πi, i=1..n-1. 
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will bias the statistics resulting from pre-whitening the data.7 This mismatch can be 

ameliorated by combining bandpass filtering (Figure 4B) with modelling of the 

autocorrelation, in which case both models provide a reasonable fit (Figure 4C). Indeed, 

highpass filtering alone (with an appropriate cutoff) is normally sufficient to allow either 

model to fit the remaining autocorrelation (Friston et al, 2000b).  

 SPM99 offers both an AR(1) model and lowpass smoothing as options (in 

conjunction with highpass filtering). The AR(1) model parameters are estimated from the 

data covariance, rather than the residuals. This removes the potential bias resulting from 

correlation in the residuals induced by removing modelled effects (Friston et al., 2002)8, 

though it introduces potential bias resulting from signal and drifts in the data. The latter is 

ameliorated by pooling over voxels in the estimation of the AR(1) parameters, since only a 

minority of voxels typically contain signal. Another potential problem arises however if the 

temporal autocorrelation varies over voxels (Zarahn et al., 1997). For example, it has been 

argued to be higher in grey than white matter (Woolrich et al., 2001). This can be 

accommodated by estimating voxel-specific AR(p) parameters (possibly together with some 

spatial regularisation, Worsley et al, 2002), though it means that different voxels can have 

different effective degrees of freedom, which in strict terms violates the assumptions behind 

Gaussian Field Theory (Chapters 14-15). Such spatial variation is less of a problem for the 

temporal smoothing approach, which homogenises the autocorrelation across voxels. 

 A final problem with the above methods is that the model parameters and 

autocorrelation parameters are estimated separately, which requires multiple passes through 

the data and makes it difficult to properly accommodate the associated degrees of freedom. 

Iterative estimation schemes, such as Restricted Maximum Likelihood (ReML), allow 

simultaneous estimation of model parameters and autocorrelation (hyper)parameters, 

together with proper partitioning of the effective degrees of freedom (see Chapter 9 for more 

details). This method can be used with any temporal autocorrelation model. Friston et al. 

(2002) chose an “AR(1)+white noise” model: 

 

 y = Xββ  + z1 + z2       z1 = Az1 + w  w=N(0,σ1
2I)  z2=N(0,σ2

2I) 

                                                 
7 More complex models of the temporal autocorrelation have since been shown to minimise bias, such as Tukey 

tapers (Woolrich et al., 2001) and autoregessive moving average (ARMA) models, a special case of the latter 

being an AR(1)+white noise model (Burock & Dale, 2000; see below).  
8 though there are ways of reducing this bias (Worsely et al, 2002) 
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for which the autocorrelation coefficient a1 was fixed to exp(-1), leaving two 

hyperparameters (σ1
2 and σ2

2). The additional white-noise component (z2) contributes to the 

zero-lag autocorrelation, which in turn allows the AR(1) model to capture better the shape of 

the autocorrelation for longer lags. Note that this approach still requires a highpass filter to 

provide accurate fits (Figure 4D), though a subtle difference from the above residual-based 

approaches is that the highpass filter is also treated as part of the complete model to be 

estimated, rather than a pre-whitening filter. 

 Such iterative schemes are computationally expensive when performed at every 

voxel. One possible solution is to assume that the ratio of hyperparameters is stationary over 

voxels, which allows the data to be pooled over voxels in order to estimate this ratio. Spatial 

variability in the absolute autocorrelation can be accommodated by subsequently estimating a 

single voxel-specific scaling factor (see Friston et al, 2002, and Chapter 9 for further details). 

This scaling factor can be estimated in one-step (since no iteration is required for ReML to 

estimate a single hyperparameter). This ReML solution to modelling the autocorrelation 

therefore shares the efficiency of pre-whitening approaches, though with less potential bias, 

allows proper adjustment of the degrees of freedom, and makes some allowance for spatial 

variability in the temporal autocorrelation. This obviates the need for temporal smoothing, a 

consequence particularly important for event-related designs (below), in which appreciable 

signal can exist at high frequencies that would be lost by lowpass smoothing (see Figure 4D). 

This approach has been implemented in SPM2. 

 

III. EVENT-RELATED FMRI 

 

Event-related fMRI (efMRI) is simply the use of fMRI to detect responses to individual 

trials, in a manner analogous to the time-locked event-related potentials (ERPs) recorded 

with  EEG. The neural activity associated with each trial is normally (though not necessarily) 

modelled as a delta function – an “event” – at the trial onset.  

 

A. Advantages of efMRI 

 

The advent of event-related methods offers several advantages for experimental design. 

Foremost is the ability to intermix trials of different types (conditions), rather than blocking 
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them in the manner required for PET and initially adopted for fMRI (cf. Figures 5A and 5B). 

The counterbalancing or randomising of different trial-types, as is standard in behavioural or 

electrophysiological studies, ensures that the average response to a trial-type is not biased by 

a specific context or history of preceding trial-types. This is important because the 

(unbalanced) blocking of trial-types might, for example, induce differences in the cognitive 

‘set’ or strategies adopted by subjects. This means that any difference in the mean activity 

during different blocks might reflect such ‘state’ effects, rather than ‘item’ effects specific to 

individual trials (e.g., Rugg & Henson, 2002). Johnson et al. (1997) for example, provided 

direct evidence that the presentation format – intermixed or blocked – can effect the ERP 

associated with a trial-based memory effect.9 

 A second advantage of event-related methods is that they allow categorisation of trial-

types according to the subject’s behaviour. This might include separate modelling of trials 

with correct and incorrect task performance, or parametric modelling of trial-by-trial reaction 

times (modulations that are only possible indirectly when analysed at a block level). An 

appealing example of this facility occurs in “subsequent memory” experiments. In such 

experiments, subjects perform a simple “study” task on a series of items, followed by a 

surprise memory test. The latter allows the items in the study task to be categorised according 

to whether they were later remembered (a categorisation the researcher has little objective 

control over). Brain regions can then be isolated whose activity “predicts” subsequent 

memory (e.g., Henson et al., 1999). 

 A third advantage reflects the identification of events whose occurrence can only be 

indicated by the subject. An example of such an event is the spontaneous transition between 

the perception of ambiguous visual objects, as in the face-vase illusion (Kleinschmidt et al., 

1998), or between 2D and 3D perception of 2D stereograms (Portas et al., 2000); situations 

where the objective stimulation is constant. A fourth advantage is that event-related methods 

allow some experimental designs that cannot be easily blocked. One example is an “oddball” 

design, in which the stimulus of interest is one that deviates from the prevailing context, and 

therefore cannot be blocked by definition (Strange et al., 2000). 

                                                 
9 Note that there are also disadvantages associated with randomised designs. Foremost, such designs are 

generally less efficient for detecting effects than blocked designs (with short SOAs and reasonable block 

lengths; see section IVA below). In addition, some psychological manipulations, such as changes in selective 

attention or task, may exert stronger effects when blocked. 
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 A final advantage is that event-related methods potentially allow more accurate 

models of the data. Even when trial-types are blocked, for example, modelling the BOLD 

response to each trial within a block may capture additional variability that is not captured by 

a simple “box-car” neuronal model, particularly for intertrial intervals of more than a few 

seconds (Price et al., 1999; cf. Figures 5A and 5C). Furthermore, it is possible distinguish 

between state effects and item effects. Chawla et al. (1999), for example, investigated the 

interaction between selective attention (a state effect) and transient stimulus changes (an item 

effect) in a “mixed epoch/event” design. Subjects viewed a visual stimulus that occasionally 

changed in either colour or motion. In some blocks, they were required to detect the colour 

changes; in other blocks they detected the motion changes. By varying the interval between 

changes within a block, Chawla et al. were able to reduce the correlation between the 

corresponding epoch- and event-related regressors. Tests of the epoch-related effect showed 

that attending towards a specific visual attribute (e.g. colour) increased the baseline activity 

in regions selective for that attribute (e.g. V4). Tests of the event-related effect showed that 

the impulse response to the same objective change in visual attribute was augmented when 

subjects were attending to that attribute. These combined effects of selective attention – 

raising endogenous baseline activity and increasing the gain of the exogenous response – 

could not be distinguished in blocked designs (Figure 5D). 

 

B. The BOLD impulse response 

 

A typical BOLD response to an impulse stimulation (event) is shown in Figure 6A. The 

response peaks approximately 5 seconds after stimulation, and is followed by an undershoot 

that lasts approximately 30 seconds (at high magnetic fields, an initial undershoot can 

sometimes be observed, Malonek & Ginvald, 1996). Early event-related studies therefore 

used a long interstimulus interval (or more generally, Stimulus Onset Asynchrony, SOA, 

when the stimuli are not treated as delta functions) to allow the response to return to baseline 

between stimulations. However, although the responses to successive events will overlap at 

shorter SOAs, this overlap can be explicitly modelled (via an HRF). This modelling is 

simplified if successive responses can be assumed to add in a linear fashion (Section IA). 

Short SOAs of a few seconds are desirable because they are comparable to those typically 

used in behavioural and electrophysiological studies, and because they are generally more 

efficient from the statistical perspective (Section IVA).  
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 There is good evidence for nonlinearity in the BOLD impulse response as a function 

of SOA (Friston et al., 1998a; Miezin et al., 2000; Pollman et al., 1997).10 This nonlinearity 

is typically a “saturation” whereby the response to a run of events is smaller than would be 

predicted by the summation of responses to each event alone. This saturation is believed to 

arise in the mapping from bloodflow to BOLD signal (Friston et al., 2000a), though may also 

have a neural locus, particularly for very short SOAs (for biophysical models that such 

incorporate nonlinearities, see Chapter 11). It has been found for SOAs below approximately 

8s, and the degree of saturation increases as the SOA decreases. For typical SOAs of 2-4s 

however, its magnitude is small (typically less than 20%, Miezin et al., 2000).  

 Note that the dominant effect of increasing the duration of neural activity (up to 2-4 

seconds) in a linear-convolution model (Equation [4]) is to increase the peak amplitude of the 

BOLD response (Figure 6B). In other words, the BOLD response integrates neural activity 

over a few seconds. This is convenient because it means that neural activity can be 

reasonably modelled as a delta function (i.e., even though the amplitude of the response may 

vary nonlinearly with stimulus duration, Vasquez & Noll, 1998, the shape of the response 

does not necessarily change dramatically). The corollary however is that a difference in the 

amplitude of the BOLD impulse response (as conventionally tested) does not imply a 

difference in the mean level of neural activity: the difference could reflect different durations 

of neural activity at same mean level. One way to tease these apart is to test for subtle 

differences in the peak latency of the BOLD impulse response (Section IIF below), which 

will differ in the latter case but not former case (Figure 5C). 

 The general shape of the BOLD impulse response appears similar across early 

sensory regions, such as V1 (Boynton et al., 1996), A1 (Josephs et al., 1997) and S1 (Zarahn 

et al., 1997). However, the precise shape has been shown to vary across the brain, 

particularly higher cortical regions (Schacter et al., 1997), presumably due mainly to 

variations in the vasculature of different regions (Lee et al., 1995). Moreover, the BOLD 

response appears to vary considerably across people (Aguirre et al., 1998).11 These types of 

                                                 
10 Nonlinearites in the amplitude of the BOLD response are also found as a function of stimulus duration or 

stimulus magnitude (Vasquez & Noll, 1998). Nonlinearities also appear to vary considerably across different 

brain regions (Huettel & McCarthy, 2001; Birn et al. 2001). 
11 One possible solution is use subject-specific HRFs derived from a reference region known to respond to a 

simple task (e.g, from central sulcus during a simple manual task performed during a pilot scan on each subject, 
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variability can be accommodated by expanding the HRF in terms of temporal basis functions 

(Equation [5]). 

 

C. Temporal Basis Functions 

 

Several temporal basis sets are offered in SPM. The most general are the Finite Impulse 

Response (FIR) and Fourier basis sets, which make minimal assumptions about the shape of 

the response. The FIR set consists of Nk contiguous box-car functions of PST, each of 

duration TH/Nk seconds (Figure 7A), where TH is the maximum duration of the HRF. The 

Fourier set (Figure 7B) consists of Ns sine and Ns cosine functions of harmonic periods TH, 

TH/2 … TH/Ns, (i.e., Nk=2Ns+1 basis functions, where the last is the mean of the basis 

functions over TH).12 Linear combinations of the (orthonormal) FIR or Fourier basis 

functions can capture any shape of response up to a specified timescale (TH/Nk in the case of 

the FIR) or frequency (Ns/TH in the case of the Fourier set).13  

In practice, there is little to choose between the FIR and Fourier sets: The Fourier set 

may be better suited when the PST sampling is non-uniform (Section IIE); whereas the 

parameter estimates for the FIR functions have a more direct interpretation in terms of 

“averaged” PST signal (effecting a linear “deconvolution”). Indeed, in the special case when 

TH/Nk=TR, the FIR functions are delta functions: 

 

h(τ) = Σk=1..Nk δ(τ-k-1) 

 

over the Nk poststimulus scans, and the design matrix for events onsetting at scan oij is: 

 

 xtc = Σi=1..Ni Σj=1..Nj Σk=1..Nk δ(t-(oij+k-1)) 

 

                                                                                                                                                       

Aguirre et al, 1998). However, while this allows for inter-subject variability, it does not allow for inter-regional 

variability within subjects (or potential error in estimation of the reference response, Friston et al., 2002).  
12 Since the HRF is assumed to be bounded at zero for τ<=0 and τ>=TH, the Fourier basis functions can also be 

windowed (e.g, by a Hanning window) within this range. 
13 In practice, there is little point in making TH/Nk smaller than the effective PST sampling interval, Ts, (Section 

IIE) or specifying Ns/TH higher than the Nyquist limit 1/(2Ts). 
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where t indexes scans and c indexes the column for the kth basis function of the jth event of 

the ith type (Ollinger et al., 2001; see Figure 16A, for an example). For the special case of 

non-overlapping responses (i.e., that oij+k ≠ ouv+w for all i≠u, j≠v and k≠w), the estimates β ik 

of the FIR parameters are equivalent to the simple trial-averaged data: 

 

β ik = Σj=1..Nj y(oij+k-1) / Nj   

 

This estimation also approximates the HRF when the event-types are fully counterbalanced 

(such that the number of occasions when oij+k = ouv+w is constant for all i≠u, j≠v and k≠w, 

which is approached when events are randomised and Nj is large14), a procedure that has 

been called “selective averaging” (Dale & Buckner, 1997). It is equivalent to noting that the 

covariance matrix XTX (sometimes called the “overlap correction matrix”, Dale, 1999) 

approaches the identity matrix (after mean-correction), such that the ordinary least-squares 

estimates become: 

 

 ββ  = (XTX)–1XTy ≅ XTy 

 

Note that such counterbalancing is not required by the full pseudoinverse estimation used by 

SPM (though there may still be important psychological reasons for counterbalancing). 

 More parsimonious basis sets can be chosen that make various assumptions about the 

shape of the HRF.15 One popular choice is the gamma function: 

 

 f(τ) = ((τ-o)/d)(p-1) e-(τ-o)/d / (d(p-1)!)      [7] 

 

where o is the onset delay, d is the time-scaling, and p is an integer phase delay (the peak 

delay is given by pd, and the dispersion by pd2). The gamma function has been shown to 

provide a reasonably good fit to the impulse response (Boynton et al., 1996), though it lacks 

an undershoot (Fransson et al., 1999; Glover, 1999).  The first TH seconds of a set of Nk 

                                                 
14 In strict terms, this also means an equal number of occasions (scans) when event-types co-occur (i.e are 

conincident), which is not normally the case.  
15 Unlike the Fourier or FIR sets, this set is not strictly a “basis” set in that it does not span the space of possible 

responses within the response window TH, but we maintain the term here for convenience.  
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gamma functions of increasing dispersions can be obtained by incrementing p=2..Nk+1 

(Figure 7C), which can be orthogonalised with respect to one another (as in SPM). This set is 

more parsimonious in that fewer functions are required to capture the typical range of 

impulse responses than are required by the Fourier or FIR sets, reducing the degrees of 

freedom used in the design matrix and allowing more powerful statistical tests. 

 An even more parsimonious basis set, suggested by Friston et al. (1998), is based on a 

“canonical HRF” and its partial derivatives (Figure 7D). The canonical HRF is a “typical” 

BOLD impulse response characterised by two gamma functions, one modelling the peak and 

one modelling the undershoot. The canonical HRF is parameterised by an onset delay of 0s, 

peak delay of 6s, peak dispersion of 1, undershoot delay of 16s, undershoot dispersion of 1 

and a peak:undershoot amplitude ratio of 6; values that were derived from a principal 

component analysis of the data reported in Friston et al. (1998a). To allow for variations 

about the canonical form, the partial derivatives of the canonical HRF with respect to, for 

example, its peak delay and dispersion parameters can be added as further basis functions. By 

a first-order multivariate Taylor expansion (cf. Equation [8] below), the temporal derivative 

can capture differences in the latency of the peak response, while the dispersion derivative 

can capture differences in the duration of the peak response.16 

 

D. Statistical Tests of Event-related Responses, and Which Basis Set? 

 

Inferences using multiple basis functions are generally made with F-contrasts (Chapter 8). 

An example F-contrast that tests for any difference in the event-related response to two trial-

types modelled by an FIR set is shown in Figure 16B. Further assumptions about the shape of 

the response (or nature of differences between responses) can also be entered at the contrast 

level (Burock & Dale, 2000; Henson et al., 2001a). One might restrict differential contrasts to 

a limited set of FIR time-bins for example. In the extreme case, setting the contrast weights 

for an FIR set to match an assumed HRF shape will produce a parameter estimate for the 

contrast proportional to that obtained by using that HRF as a single basis function (assuming 

that FIR timebins are sampled uniformly at each effective sampling interval). 

                                                 
16 A similar logic can be used to capture different latencies of epoch-related responses, viz. by adding the 

temporal derivatives of the (HRF-convolved) epoch response functions. Note that variations in the HRF can 

also be accommodated by nonlinear, iterative fitting techniques (Section IIIF; see Hinrichs et al, 2000, for a 

combination of nonlinear estimation of HRF shape together with linear deconvolution of responses). 
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However, when the real response resembles an assumed HRF, tests on a model using 

that HRF as a single basis function are more powerful (Ollinger et al., 2001). In such cases, t-

tests on the parameter estimate for a canonical HRF for example can be interpreted in terms 

of the “amplitude” of the response. However, when the real response differs appreciably 

from the assumed form, tests on the HRF parameter estimates are biased (and unmodelled 

structure will exist in the residuals). In such cases, a canonical HRF parameter estimate can 

no longer necessarily be interpreted in terms of amplitude (see Chapter 8). The addition of 

partial derivatives of the HRF (see above) can ameliorate this problem: the inclusion of a 

temporal derivative for example can reduce the residual error by capturing systematic delays 

relative to the assumed HRF.17 Nonetheless, for responses that differ by more than 1s in their 

peak latency (i.e, when the first-order Taylor approximation fails), different canonical HRF 

parameters will be estimated even when the responses have identical peak amplitudes.  

An important empirical question then becomes: How much variability exists around 

the canonical form? Henson et al. (2001b) addressed this question in a dataset involving 

rapid motor responses to brief presentations of faces across 12 subjects (the superset of the 

data in Section V). By modelling the event-related response with a canonical HRF, its partial 

derivatives and an FIR basis set, the authors assessed the contribution of the different basis 

functions by a series of F-contrasts. Significant variability was captured by both the temporal 

derivative and dispersion derivative, confirming that different regions exhibited different 

shaped responses. Little additional variability was captured by the FIR basis set however, 

suggesting that the canonical HRF and its two partial derivatives were sufficient to capture 

the majority of experimental variability (at least in regions that were activated in this task).  

This sufficiency may be specific to this dataset, and reflect the fact that neural activity 

was reasonably well modelled by a delta function. It is unlikely to hold for more complex 

experimental trials, such as working memory trials where information must be maintained for 

                                                 
17 Note that the inclusion of the partial derivatives of an HRF does not necessarily affect the parameter estimate 

for the HRF itself, since the basis functions are orthogonal (unless correlations between the regressors arise 

owing to under-sampling by the TR or by temporal correlations between the onsets of events of different types). 

In other words, their inclusion does not necessarily affect second-level t-tests on the HRF parameter estimates 

alone. Note also that t-tests on the partial derivatives are not meaningful in the absence of information about the 

HRF parameter estimate: the derivative estimates depend on the size (and sign) of the HRF estimate (Section 

IVF), and are unlikely to reflect plausible impulse responses (versus baseline) in the absence of a significant 

HRF parameter estimate. 
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several seconds (e.g, Ollinger et al., 2001). Nonetheless, such trials may be better 

accommodated by more complex neural models, expanding u(t) in terms of multiple 

events/epochs (cf. Equation [3]), while still assuming a fixed form for the HRF. This allows 

more direct inferences about stimulus, response and delay components of a trial for example 

(Zarahn, 2000). More generally, the question of which basis set to use becomes a problem of 

model selection (Chapter 7). 

 A problem arises when one wishes to use multiple basis functions to make inferences 

in second-level analyses (e.g., in “random effects” analyses over subjects; see Chapter 12). 

Subject-specific “beta images” created after fitting an FIR model in a first-level analysis 

could, for example, enter into a second-level model as a peristimulus time factor (differential 

F-contrasts on which would correspond to a condition-by-time interaction in a conventional 

repeated-measures ANOVA). However, the parameter estimates are unlikely to be 

independent or identically-distributed over subjects, violating the sphericity assumption of 

univariate tests (Chapter 9).18 One solution is to use multivariate tests (Henson, et al., 2000), 

though these are generally less powerful (by virtue of making minimal assumptions about the 

data covariance). The use of ReML or “Parametric Empirical Bayes” methods to estimate the 

hyper-parameters governing constraints placed on the covariance matrix (Friston et al., 2002; 

Chapter 9) resolves this problem. 

  

E. Timing Issues: Practical 

 

There are both practical and theoretical issues pertaining to the timing of BOLD responses. 

Two practical issues concern the effective sampling rate of the response and the different 

acquisition times for different slices (using EPI).  

 It is possible to sample the impulse response at post-stimulus intervals, Ts, shorter 

than the interscan interval TR by jittering event onsets with respect to scan onsets (Josephs et 

al. 1997). Jittering can be effected by ensuring the SOA is not a simple multiple of the TR, or 

by adding a random trial-by-trial delay in stimulus onsets relative to scan onsets (Figure 8). 

In both cases, different PSTs are sampled over trials (the main difference between the two 

methods being whether the SOA is fixed or random). For example, an effective PST 

                                                 
18 This is one reason why researchers have tended to stick with t-tests on (contrasts of) the parameter estimate 

for a single canonical HRF at the second-level, at the expense of generality (potentially missing responses with 

a non-canonical form).  
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sampling of 0.5Hz can be achieved with an SOA of 6s and a TR of 4s; or by adding a delay of 

0 or 2s randomly to each trial (producing SOAs of 4-8s, with a mean of 6s). While effective 

sampling rates higher than the TR do not necessarily affect response detection for typical TRs 

of 2-4s (since there is little power in the canonical response above 0.2Hz; see Figure 6A), 

higher sampling rates are important for quantifying the response shape, such as its latency 

(Miezin et al, 2000; Section IVF).  

 Jittering event onsets with respect to scan onsets does not help the second practical 

issue concerning different slice acquisition times. This “slice-timing” problem (Henson et al., 

1999) refers to the fact that, with a descending EPI sequence for example, the bottom slice is 

acquired TR seconds later than the top slice. If a single basis function (such as a canonical 

HRF) were used to model the response, and onset times were specified relative to the start of 

each scan, the data in the bottom slice would be systematically delayed by TR seconds 

relative to the model.19 This would produce poor (and biased) parameter estimates for later 

slices, and mean that different sensitivities would apply to different slices.20 There are two 

main solutions to this problem: to interpolate the data in each slice as if the slices were 

acquired simultaneously, or use a basis set that allows for different response onset latencies. 

 Temporal interpolation of the data (using a full sinc interpolation) is possible during 

preprocessing of images in SPM99. For sequential acquisition schemes, temporal 

interpolation is generally better when performed after spatial realignment, since the timing 

error for a voxel re-sliced to nearby slices will be small relative to the potential error for a 

voxel that represents different brain regions owing to interscan movement. (This may not be 

true for interleaved acquisition schemes, for which temporal interpolation might be better 

before spatial realignment). The data are interpolated by an amount proportional to their 

sampling time relative to a reference slice (whose data are unchanged). The event onsets can 

then be synchronised with the acquisition of the reference slice. In SPM, this is equivalent to 

maintaining event onsets relative to scan onsets, but setting the timepoint T0 in the simulated 

timespace of T time-bins (Section IIA), from which the regressors are sampled, to: 

 

                                                 
19 One solution would be to allow different event onsets for different slices. SPM however assumes the same 

model (i.e. onsets) for all voxels (i.e. slices) in order to equate the degrees of freedom (e.g. residual 

autocorrelation) across voxels required for GFT (Chapters 14-15). Moreover, slice-timing information is lost as 

soon as images are re-sliced relative to a different orientation (e.g. during spatial normalisation).   
20 This is less of a problem for low-frequency responses, such as those induced by epochs of tens of seconds.   
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 T0 = round{nT/ Ns} 

 

where the reference slice is the nth slice acquired of the Ns slices per scan. 

 A problem with slice-timing correction is that the interpolation will alias frequencies 

above the Nyquist limit 1/(2TR). Ironically, this means that the interpolation accuracy 

decreases as the slice-timing problem (ie TR) increases. For short TRs < 2-3s, the 

interpolation error is likely to be small. For longer TRs, the severity of the interpolation error 

depends on whether appreciable signal power exists above the Nyquist limit (which is more 

likely for rapid, randomised event-related designs; see below). 

 An alternative solution to the slice-timing problem is to include additional basis 

functions that can accommodate timing errors. The Fourier basis set for example does not 

have a slice-timing problem (i.e, it is phase-invariant). For more constrained sets, the 

addition of the temporal derivatives of the functions may be sufficient. The parameter 

estimates for the derivatives will vary across slices, to capture shifts in the data relative to the 

model, while those for the response functions can remain constant (up to a first-order Taylor 

approximation). The temporal derivative of the canonical HRF for example (Figure 7D) can 

accommodate slice-timing differences of approximately +/-1s (i.e, TR’s of 2s, when the 

model is synchronised to the middle slice in time). A problem with this approach is that slice-

timing differences are confounded with latency differences in the real response. This means 

that response latencies cannot be compared across different slices (see below).  

 

F. Timing Issues: Theoretical 

 

Assuming that the data are synchronised with the event onsets, there may be theoretical 

reasons for investigating aspects of the BOLD response latency (as well as its amplitude). 

For example, BOLD responses arising from blood vessels (e.g. veins) tend to have longer 

latencies than those from parenchyma (Saad et  al., 2001). Though absolute differences in 

response latency across brain regions are unlikely to be informative regarding underlying 

neural activity, since they may simply reflect differences in vasculature21, differences in the 

relative response latencies in different conditions may inform theories about the separate 

                                                 
21 Miezin et al (2000), for example, showed that the peak response in motor cortex preceded that in vis ual cortex 

for events in which the motor response succeeded visual stimulation. 



  21 

stages of underlying neural processes. Latency estimates may also correlate better with some 

behavioural measures, such as reaction times (Kruggel et al., 2000). 

 For periodic responses, latency can be estimated easily using Fourier (Rajapakse et al, 

1998) or Hilbert (Saad et al. 2001) transforms. For nonperiodic responses, the simplest 

approach is to construct a measure of latency from the trial-averaged response, such as the 

linear intercept to the ascending region of the peak response (using a very short TR, Menon et 

al, 1998), or the peak of a spline interpolation through the data (Huettel & McCarthy, 2001). 

Other approaches estimate the latency directly from a parameterised HRF, using either linear 

or nonlinear (iterative) fitting techniques.  

 A linear method for estimating latency within the GLM was proposed by Friston et al. 

(1998b). Using a first-order Taylor expansion of the response, these authors showed how the 

standard error of a fitted response can be estimated from the temporal derivative of an HRF. 

This approach was extended by Henson et al. (2002a) in order to estimate response latency 

directly. If the real response, r(τ), is a scaled (by α) version of an assumed HRF, h(τ), but 

shifted by a small amount dτ, then: 

 

 r(τ) = α h(τ + dτ) ≅ α h(τ) + α h�(τ) dτ     [8] 

 

where h�(τ) is the first derivative of h(τ) with respect to τ. If h(τ) and h�(τ) are used as two 

basis functions in the GLM to estimate the parameters β1 and β2 respectively, then: 

 

 β1 = α  β2 = αdτ  => dτ = β2 / β1 

 

In other words, the latency shift can be estimated by the ratio of the derivative to HRF 

parameter estimates  (a similar logic can be used for other parameters of the HRF, such as its 

dispersion). The first-order approximation holds when dτ is small relative to the time-

constants of the response (see Liao et al, 2002, for a more general treatment, using the first 

and second derivatives of a parameter representing the scaling of τ). When using SPM’s 

canonical HRF and temporal derivative for example, the approximation is reasonable for 

latency of shifts of ±1s relative to the canonical HRF. Whole-brain SPMs of differences in 
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response latencies can be constructed simply by comparing the ratios (e.g, over subjects) of 

the temporal derivative to canonical HRF parameter estimates at every voxel (Figure 9A).22  

 Other methods use nonlinear (iterative) fitting techniques. These approaches are more 

powerful (e.g., can capture any size latency shift), but computationally expensive (and hence 

often restricted to regions of interest). Various parameterisations of the HRF have been used, 

such as a Gaussian function parameterised by amplitude, onset latency and dispersion 

(Kruggel et al., 1999) or a gamma function parameterised by amplitude, onset latency and 

peak latency (Miezin et al., 2000). Henson & Rugg (2001) used SPM’s canonical HRF with 

the amplitude, onset latency and peak latency parameters free to vary.23 The latter was 

applied to a rapid event-related experiment in which an FIR basis set was used to first 

estimate the mean event-related response to first and second presentations of faces in a 

fusiform “face area”. A subsequent nonlinear fit of the canonical HRF to these deconvolved 

data revealed significant differences (over subjects) in the amplitude and peak latency 

parameters, but not in the onset latency parameter (Figure 9B). The most parsimonious 

explanation for this pattern is that repetition of a face decreased the duration of underlying 

neural activity (assuming a linear convolution model; see Figure 6C). 

 A problem with unconstrained iterative fitting techniques is that the parameter 

estimates may not be optimal (because of local minima in the search space). Parameters that 

have correlated effects compound this problem (e.g., situations can arise in noisy data where 

the estimates of onset and peak latency take implausibly large values of opposite sign). One 

solution is to put priors on the likely parameter distributions in a Bayesian estimation scheme 

(Chapter 11) to “regularise” the solutions (see Gossl et al, 2001, for an example).  

 

IV. EFFICIENCY AND OPTIMISATION OF EXPERIMENTAL DESIGN 

  

This section is concerned with optimising experimental designs in order to detect particular 

effects. The aim is to minimise the standard error of a contrast, cT ββ  (i.e. the denominator of a 

                                                 
22 To allow for voxels in which the approximation breaks down (e.g., for canonical HRF parameter estimates 

close to zero), Henson et al. (2002) applied a sigmoidal squashing function to constrain the ratio estimates.  
23 The advantage of a Gaussian HRF is that its onset delay and dispersion are independent, unlike a gamma 

HRF (Equation [7]). A problem however is that a Gaussian HRF is not bounded for τ<0, and does not allow for 

the asymmetry typically found in the BOLD response. A problem with both a Gaussian HRF and a single 
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t-statistic, Chapter 8), given a contrast matrix c and parameter estimates ββ , whose variance is 

(Friston et al, 2000b): 

 

 Var{cT ββ } = σ2 cT  (SX)+ SVST (SX)+T c     [9] 

 

We want to minimise [9] with respect to the design matrix, X, assuming that the filter matrix 

S, noise autocorrelation matrix V and noise variance σ2 are constant (though the 

autocorrelation and noise may in fact depend on the design; see below). If we incorporate S 

into X, and assume V=I, then this is equivalent to maximising the “efficiency”, e, of a 

contrast,  defined by: 

 

 e(c,X) = (σ2 cT  (XTX)-1 c)-1       [10] 

 

This equation can be split into the “noise variance”, σ2, and the “estimator variance”, XTX 

(Mechelli et al., in press-a).24 If one is interested in multiple contrasts, expressed in a matrix 

C, and assume σ2 is constant, then the efficiency of a design can be defined as (Dale, 1999): 

 

 e(X) ∝ trace{CT(XTX)-1C}-1       [11]  

 

A. Single Event-type Designs  

 

For a single event-type, the space of possible experimental designs can be captured by two 

parameters: the minimal SOA (SOAm) and the probability, p, of an event occurring at every 

SOAm (Friston et al, 1999a). In “deterministic” designs, p=1 every fixed multiple of SOAm, 

and p=0 otherwise (i.e. a series of events with fixed SOA; Figure 10A). In “stochastic” 

designs, 0<=p<=1 (producing a range of SOAs). For “stationary” stochastic designs, 0<p<1 

is constant, giving an exponential distribution of SOAs; for “dynamic” stochastic designs, p 

is itself a function of time. The temporal modulation of p(t) in dynamic stochastic designs 

might be sinusoidal, for example, or a squarewave, corresponding to a blocked design. Also 

                                                                                                                                                       

gamma HRF is that they do not allow for a post-peak undershoot. A problem with the double (canonical) 

gamma HRF used by Henson & Rugg (2001) is that the onset latency and peak latency are correlated.  
24 Note that this measure of efficiency is not invariant to the scaling of the contrast vectors c, which should 

therefore be normalized. 
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shown in Figure 10A is the efficiency of each design (to detect a basic impulse response, i.e, 

C=[1], assuming a canonical HRF). For short SOAm, the blocked design is most efficient, 

and the deterministic design least efficient. For stochastic designs, efficiency is generally 

maximal when the SOAm is minimal and the (mean) p=0.5 (Friston et al, 1999a). 

 Efficiency can also be considered in signal-processing terms (Josephs & Henson, 

1999). In the frequency domain, the HRF can be viewed as a filter. The most efficient 

contrast is one that passes maximum “neural signal” power at the dominant frequency of the 

HRF. Since the dominant frequency of a canonical HRF is approximately 30s (Figure 6A), a 

blocked design with minimal SOAm (large power) and a cycling frequency close to this 

figure (e.g, 15s on; 15s off) is very efficient. (Indeed, the most efficient design in this case 

would be a continuous sinusoidal modulation of neural activity with period of 30s, 

corresponding to a delta function at 0.033Hz). The effect of bandpass filtering can also be 

viewed in these terms. Since the HRF and S matrix convolutions are commutative, a single 

equivalent filter can be calculated (the “effective HRF”, Josephs & Henson, 1999). Blocked 

designs with long cycling periods are undesirable since the majority of the induced variance 

is not passed by the highpass filter (i.e, will be indistinguishable from low-frequency noise). 

Deterministic single-event designs with a short SOAm will induce high frequency neural 

variance that is not passed by the HRF (or lowpass filter). Stochastic designs however induce 

variance over a range of frequencies, so can be reasonably efficient with a short SOAm. 

 A distinction has been made between “detection power” and “estimation efficiency” 

(Liu et al, 2001; Birn et al, 2002). The former refers to the ability to detect a significant 

response; the latter refers to the ability to estimate the shape of the response. The above 

examples, which assume a canonical HRF, relate to “detection power”. The concept of 

“estimation efficiency” can be illustrated simply by considering a more general basis set, 

such as an FIR. Multiple parameters now need to be estimated (X has multiple columns, 

Figure 10B), and efficiency is maximal (Equation [11]) when the covariance between the 

columns of X is minimal. In this case (with contrast C=I), blocked designs are less efficient 

than randomised designs (Figure 10C, since the FIR regressors are highly correlated in 

blocked designs). This is the opposite of the situation with a single canonical HRF, for which 

blocked designs are more efficient than randomised designs. An alternative perspective is 

that the FIR basis functions have more high frequency components, and therefore “pass” 

more signal at the higher frequencies that arise from randomised designs (Figure 10D).  
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Thus the different considerations of detecting a response versus characterising the 

form of that response require different types of experimental design. Hagberg et al. (2001) 

considered a range of possible SOA distributions (bimodal in the case of blocked designs; 

exponential in the case of fully randomised designs) and showed that “long-tail” distributions 

combine reasonable detection power and estimation efficiency (though uniform distributions, 

such as those based on a Latin Square, did as well on empirical data). 

 

 B. Multiple Event-type Designs  

 

For multiple event-types, the space of possible designs can be characterised by SOAm and a 

“transition matrix” (Josephs & Henson, 1999). For Ni different event-types, a Ni
m by Ni 

transition matrix captures the probability of an event being of each type, given the history of 

the last 1..m event-types (some examples are shown in Figure 11). A fully randomised design 

with two event-types (A and B) has a simple first-order transition matrix in which each 

probability is 0.5. The efficiencies (detection power) of two contrasts – [1 1], the main effect 

of A and B (versus baseline), and [1 -1], the differential effect – are shown as a function of 

SOAm in Figure 12A. The optimal SOA for the main effect under these conditions (for a 

finite sequence) is approximately 20s. The efficiency of the main effect decreases for shorter 

SOAs, whereas the efficiency of the differential effect increases. The optimal SOA thus 

depends on the specific contrast of interest.25 Both patterns arise because of the increased 

summation of successive responses at shorter SOAs, producing greater overall signal power. 

In the case of the main effect however, this power is moved to low-frequencies that are not 

passed by the effective HRF (the signal simply becomes a “raised baseline” that is removed 

by the highpass filter, Figure 13A). For the differential effect, the extra power is maintained 

at higher frequencies because of the random modulation of the event-types (i.e., greater 

experimentally-induced variability about the mean signal over time, Figure 13B).  

 Various experimental constraints on multiple event-type designs can also be 

considered. In some situations, the order of event-types might be fixed, and the design 

question relates to the optimal SOA. For an alternating A-B design (where A and B might 

reflect transitions between two perceptual states for example), the optimal SOA for a 

                                                 
25 The main effect, which does not distinguish A and B, is of course equivalent to a deterministic design, while 

the differential effect is equivalent to a stochastic design (from the perspective of any one event-type). 
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differential effect is 10s (Figure 12B, i.e, half of that for the main effect).26 In other 

situations, experimental constraints may limit the SOA, to at least 10s say, and the design 

question relates to the optimal stimulus ordering. An alternating design is more efficient than 

a randomised design for such intermediate SOAs (since randomisation induces more low-

frequency power that is lost to the highpass filter; cf Figures 13B and 13C). However, an 

alternating design may not be advisable for psychological reasons (subjects’ behaviour might 

be influenced by the predictable pattern). A permuted design (with second-order transition 

matrix shown in Figure 11) may be a more suitable choice (Figure 12B). Such a design is 

random (counterbalanced) to first order (though fully deterministic to second-order). 

 A further design concept concerns “null events” (or “fixation trials”). These are not 

real events, in that they do not differ from the interevent baseline and are not detectable by 

subjects (and hence are not modelled in the design matrix), but were introduced by Dale & 

Buckner (1997) to allow selective averaging (see Section IIIC). In fact, they are simply a 

convenient means of creating a stochastic design by shuffling (permuting) a certain 

proportion of null events among the events of interest (and correspond to transition matrices 

whose columns do not sum to one, Figure 11). From the perspective of multiple event-type 

designs, the reason for null events is to buy efficiency to both the main effect and differential 

effect at short SOAm (at a slight cost to the efficiency for the differential effect; Figure 12C). 

In other words, they provide better estimation efficiency in order to characterise the shape of 

the response at short SOAm (by effectively producing an exponential distribution of SOAs).  

The efficiencies show in Figure 12 are unlikely to map simply (e.g. linearly) onto the 

size of the t-statistic. Nonetheless, if the noise variance (Equation [9]) is independent of 

experimental design, the relationship should at least be monotonic (i.e. provide a rank 

ordering of the statistical power of different designs). Mechelli et al. (in press-a) showed that 

the noise variance differed significantly between a blocked and a randomised design (both 

modeled with events, cf. Figures 5B and 5C). This suggests that the stimulus ordering did 

affect unmodelled psychological or physiological effects in this dataset, contributing to the 

residual error (noise). When the data were highpass filtered however, the noise variance no 

longer differed significantly between the two designs. In this case, the statistical results were 

in agreement with the relative efficiencies predicted from the estimation variances. 

                                                 
26 This is the extreme case of a blocked design, with the alternation of longer runs of A and B becoming more 

efficient as the SOA decreases (Figure 12D; i.e, the reason for blocking diminishes as the SOA increases). 
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Finally, note that the predictions in Figure 12 are based on the LTI model; 

nonlinearities ensure that the efficiency of the differential effect does not increase 

indefinitely as the SOA tends to zero. In fact, the inclusion of nonlinearities in the form of 

the second-order Volterra kernel derived from one dataset (Friston et al., 1998a; Chapter 11) 

suggests that efficiency continues to increase down to SOAs of 1s (after which it reverses), 

despite the presence of nonlinearities for SOAs below approximately 8s (Figure 12A inset). 

Nonetheless, differential responses have been detected with SOAs as short as 0.5s (Burock et 

al, 1998). 

  

V. WORKED EXAMPLE 

 

In this section, some of the above ideas are illustrated in a single-session event-related fMRI 

dataset derived from one of the 12 subjects reported in Henson et al. (2002b), and freely 

available from the SPM website http://www.fil.ion.ucl.ac.uk/spm/data/#SPM00AdvEFMRI. 

Events were 500ms presentations of faces, to which the subject made a famous/nonfamous 

decision with the index and middle fingers of their right hand. One half of the faces were 

famous; one half were novel (unfamiliar), and each face was presented twice during the 

session, producing a 2x2 factorial design consisting of first and second presentations of novel 

and famous faces (conditions N1, N2, F1 and F2 respectively, each containing Nj=26 events). 

To these 104 events, 52 null events were added and the whole sequence permuted. This 

meant that the order of novel/famous faces was pseudorandomised (given the finite 

sequence), though the order of first and second presentations, while intermixed, was 

constrained by the fact that second presentations were necessarily later than first 

presentations on average. SOAmin was 4.5s, but varied near-exponentially over multiples of 

SOAmin owing to the null events. The timeseries comprised 351 images acquired 

continuously with a TR of 2s. The images were realigned spatially, slice-time corrected to the 

middle slice, normalised with a bilinear interpolation to 3x3x3mm voxels (Chapter 3) and 

smoothed with an isotropic Gaussian FWHM of 8mm. The ratio of SOAmin to TR ensured an 

effective peristimulus sampling rate of 2Hz. 

 Analyses were performed with SPM99. Events were modelled with Nk=3 basis 

functions consisting of the canonical HRF, its temporal derivative and its dispersion 

derivative. The resolution of the simulated BOLD signal was set to 83ms (T=24) and the 

event onsets synchronised with the middle slice (T0=12). Also included in each model were 
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6 user-specified regressors derived from the rigid-body realignment parameters (3 

translations and 3 rotations) to model residual (linear) movement effects.27 A highpass filter 

with cutoff 120s was applied to both model and data, together with an AR(1) model for the 

residual temporal autocorrelation (Section IIC). No global scaling was used. Two different 

models are considered below: a “categorical” one and a “parametric” one. In the categorical 

model, each event-type is modelled separately (Ni=4). In the parametric model, a single 

event-type representing all faces is modulated by their familiarity and the “lag” since their 

last presentation.  

 

 A. Categorical Model 

 

The design matrix for the Categorical model is shown in Figure 14A. A (modified) effects-

of-interest F-contrast, corresponding to a reduced F-test on the first 12 columns of the design 

matrix (i.e., removing linear movement effects), is shown in Figure 14B and the resulting 

SPM{F} in Figure 14C. The associated degrees of freedom [9,153] derive from the 

autocorrelation estimated from the AR(1) model28. Several regions, most notably in bilateral 

posterior inferior temporal, lateral occipital, left motor and right prefrontal cortices, show 

some form of reliable response to the events (versus baseline). Note that these responses 

could be activations (positive amplitude) or deactivations (negative amplitude), and may 

differ across the event-types. A T-contrast like that inset in Figure 14B would test a more 

constrained hypothesis, namely that the response is positive when averaged across all event-

types, and is a more powerful test for such responses (producing many more significant 

voxels in this dataset). Also inset in Figure 14C is the SPM{F} from an F-contrast on the 

realignment parameters, in which movement effects can be seen at the edge of the brain. 

 The parameter estimates (plotting the modified effects-of-interest contrast) and best-

fitting event-related responses for a right fusiform region (close to what has been called the 

                                                 
27 One might also include the temporal derivatives of the realignment parameters, and higher-order interactions 

between them, in a Volterra approximation to residual movement effects (regardless of their cause). Note also 

that the (rare) events for which the fame decision was erroneous could be modelled as a separate event-type 

(since they may involve physiological changes that are not typical of face recognition). This was performed in 

the demonstration on the website, but is ignored here for simplicity 
28 Applying a lowpass HRF smoothing instead (Section IIC) resulted in degrees of freedom [10,106] and fewer 

significant voxels, while using a ReML estimation of an AR(1)+white noise model resulted in degrees of 

freedom [11,238] and a greater number of significant voxels. 
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“Fusiform Face Area”, Kanwisher et al, 1997) are shown in Figure 15A and 15B. First 

presentations of famous faces produced the greatest response. Furthermore, responses in this 

region appear to be slightly earlier and narrower than the canonical response (indicated by 

the positive parameter estimates for the temporal and dispersion derivatives).29   

 There are three obvious further effects of interest: the main effects of familiarity and 

repetition, and their interaction. The results from an F-contrast for the repetition effect are 

shown in Figure 15C, after inclusive masking with the effects-of-interest F-contrast in Figure 

14C. This mask restricts analysis to regions that are generally responsive to faces (without 

needing a separate face-localiser scan, cf. Kanwisher et al, 1997), and could be used for a 

small-volume correction (Chapter 14). Note that this masking is facilitated by the inclusion 

of null events (otherwise the main effect of faces versus baseline could not be estimated 

efficiently, Section IVB). Note also that the efficiency of the repetition effect is 

approximately 85% of that for the familiarity and interaction effects (using Equation [11] for 

the corresponding F-contrasts). This reflects the unbalanced order of first and second 

presentations, meaning that more low-frequency signal power is lost to the highpass filter. 

Incidentally, the inclusion of the movement parameters reduced the efficiency of these 

contrasts by only 97%. 

 The contrast of parameter estimates and fitted responses for the single right posterior 

occipitotemporal region identified by the repetition contrast are shown in Figure 15D. 

Differential effects were seen on all three basis functions, and represent decreased responses 

to repeated faces.30 

 Figure 16A shows the design matrix using a more general FIR basis set of Nk=16, 2s 

timebins. The effects-of-interest contrast (Figure 16B) reveals a subset of the regions 

identified with the canonical basis set (cf. Figures 16C and 14C). The absence of additional 

regions using the FIR model suggests that no region exhibited a reliable event-related 

response with a noncanonical form (though this may reflect lack of power). Figure 16D 

shows the parameter estimates from the right fusiform region, which clearly demonstrate 

canonical-like impulse responses for the four event-types. No right occipito-temporal region 

was identified by an F-contrast testing for the repetition effect (inset in Figure 16C) when 

                                                 
29 Indeed, several occipitotemporal regions were identified by an F-contrast on the temporal derivative alone, 

demonstrating the importance of allowing for variability about the canonical form (reducing the residual error). 
30 Note that the difference in the temporal derivative parameter estimates does not imply a difference in latency, 

given the concurrent difference in canonical parameter estimates (Henson et al, 2002; Section IVF). 
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using the FIR basis set. This reflects the reduced power of this unconstrained contrast. Note 

that constraints can be imposed on the contrasts, as illustrated by the T-contrast inset in 

Figure 16B, which corresponds to a canonical HRF. 

 

 B. Parametric Model 

 

In this model, a single event-type was defined (collapsing the onsets for the four event-types 

above), which was modulated by three parametric modulations (Section IIA). The first 

modelled how the response varied according to the recency with which a face had been seen  

(a suggestion made by Karl Friston, offering a continuous perspective on “repetition”). This 

was achieved by an exponential parametric modulation of the form: 

 

 αj1 =  e-Lj/50 

 

where Lj is the “lag” for the jth face presentation, defined as the number of stimuli between 

that presentation and the previous presentation of that face.31 Thus, as lag increases, the 

modulation decreases. For first presentations, Lj=∞ and the modulation is zero32 (though it 

becomes negative after mean-correction).  

 The second parametric modulation had a binary value of 1 or –1, indicating whether 

the face was famous or novel; the third modulation was the interaction between face 

familiarity and lag (i.e, the product of the first and second modulations, after mean-

correction). Each modulation was applied to the three temporal basis functions, producing the 

design matrix in Figure 17A. The F-contrast for the main effect of faces versus baseline 

(upper contrast in Figure 17B) identified regions similar to those identified by the effects-of-

interest contrast in the Categorical model above (since the models span similar spaces). As 

expected, the F-contrast for the lag effect (lower contrast in Figure 17B), after masking with 

the main effect, revealed the same right occipitotemporal region (Figure 17C) that showed a 

main effect of repetition in the Categorical model. The best-fitting event-related parametric 

                                                 
31 The choice of an exponential function (rather than, say, a polynomial expansion) was based simply on the 

observation that many biological processes have exponential time-dependency. The half-life of the function (50) 

was somewhat arbitrary; ideally it would be derived empirically from a separate dataset. 
32 This was for both famous and novel faces, though face familiarity could also be modelled this way by setting 

Lj=∞ for N1, and Lj=M for F1, where M is a large number (or some subjective recency rating).  
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response in Figure 17D shows that the response increases with lag, suggesting that the 

repetition-related decrease observed in the Categorical model may be transient (consistent 

with the similar lag effect found when a parametric modulation was applied to second 

presentations only; Henson et al, 2000b). 
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Figure Legends 

 

Figure 1 

Stimulus, neural and haemodynamic models. (A) Stimulus model, s(t), for squarewave 

stimulation (32s on, 32s off) convolved with one of several possible epoch response function 

sets, r(τ), offered by SPM99 (clockwise: boxcar, boxcar plus exponential decay, halfsine and 

DCT; boxcar plus exponential decay chosen here) to produce the predicted neural signal u(t). 

(B) Neural signal convolved with a canonical HRF, h(τ), to produce the predicted BOLD 

signal, x(t). (C) An alternative model of squarewave stimulation in terms of delta functions 

every 2s (green) predicts a BOLD response similar to a boxcar epoch-response (blue) after 

scaling. 

 

Figure 2 

Creation of regressors for design matrix. Predicted BOLD signal x(t) from Figure 1B, 

simulated every dt=TR/T seconds, is downsampled every TR at timepoint T0 to create the 

columns x1 (boxcar) and x2 (exponential decay) of the design matrix (together with the mean 

or constant term x3). Two possible sample points are shown: at the middle and end of a 2s 

scan. 

 

Figure 3 

Power spectra, highpass filtering and HRF convolution. Schematic power spectrum and 

timeseries (inset) for (A) subject at rest, (B) after squarewave stimulation at 32s on, 32s off 

(C) after highpass filtering with cutoff 64s (D). Real data (blue) and low-frequency drift 

(black) fitted by DCT highpass filter matrix S (cutoff 168s) derived from the global 

maximum in a 42s on; 42s off auditory blocked design (TR=7s). (E) Fits of a boxcar epoch 

model with (red) and without (black) convolution by a canonical HRF, together with the data, 

after application of the highpass filter. (F) Residuals after fits of models with and without 

HRF convolution: note large systematic errors for model without HRF convolution (black) at 

onset of each block, corresponding to (nonwhite) harmonics of the stimulation frequency in 

the residual power spectrum (inset). 

 

Figure 4 
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Models of fMRI temporal autocorrelation. Power spectra and autocorrelation functions for: 

(A) data (solid black), derived from an AR(16) estimation of the mean, globally-normalised 

residuals from one slice (z=0) of an event-related dataset (described in Section V), together 

with fits of an AR(1) model (dashed blue) and 1/f amplitude model (dashed red); (B) high- 

(dot-dash) and low- (dotted) pass filters, comprising a bandpass filter (dashed); (C) data and 

both models after bandpass filtering (note that bandpass filter characteristics in (B) would 

also provide a reasonable approximation to residual autocorrelation); (D) data (solid black) 

and ReML fit of AR(1)+white noise model (dashed blue) after highpass filtering (also shown 

is the bandpass filter power spectrum, demonstrating the high frequency information that 

would be lost by lowpass smoothing). 

 

Figure 5 

Blocked and Randomised designs. Simulated data (black), neural model (blue) and schematic 

fitted response (red) for two event-types (A and B) presented with SOA=5s for (A) Blocked 

design and boxcar epoch model; (B) Randomised design and event-related model; (C) 

Blocked design and event-related model; (D) Blocked design and response from a boxcar 

epoch model, neural model illustrates that equivalent response to A and B blocks does not 

distinguish item (event-related) effects from state (epoch-related) effects.  

 

Figure 6 

The BOLD response. (A) Typical (canonical) impulse response (power spectrum inset). (B) 

BOLD signal predicted from linear convolution by canonical impulse response of 

squarewave neural activity of increasing durations 200ms to 16s. (C) BOLD signal predicted 

for two event-types (red and blue) with squarewave neural activities of different (top-to-

bottom) magnitude, onset, duration with same integrated activity, and duration with same 

mean activity. Vertical lines show peak of resulting BOLD response. 

 

Figure 7 

Temporal basis functions offered by SPM, TH=32s: (A) FIR basis set, Nk=16; (B) Fourier 

basis set, Ns=8; (C) Gamma functions, Nk=3. (D) Canonical HRF (red) and its temporal 

(blue) and dispersion (green) derivatives. The temporal derivative is approximated by the 

orthogonalised finite difference between canonical HRFs with peak delay of 7s versus 6s; the 
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dispersion derivative is  approximated by the orthogonalised finite difference between 

canonical HRFs with peak dispersions of 1 versus 1.01. 

 

Figure 8 

Effective Sampling Rate. Schematic (left) of stimulus event onsets relative to scan onsets 

(tall vertical lines represent first slice per scan; shorter lines represent subsequent slices) and 

resulting peristimulus sampling points (right). 

 

Figure 9 

Estimating BOLD impulse response latency. (A) Top left: The canonical HRF (red) together 

with HRFs shifted 1s earlier (green) or later (yellow) in time. Top Right: The canonical HRF 

and its temporal derivative. Middle Left: Parameter estimates for canonical (ß1) and 

derivative (ß2) associated with fit to HRFs above. Middle Right: Right fusiform region 

showing differential latency when tested across subjects (Henson et al, 2002, the superset of 

data in Section V). Bottom Left: relationship between the latency difference relative to the 

canonical HRF (dt) and the ratio of derivative:canonical parameter estimates (ß2/ß1). Bottom 

Right: Canonical and derivative parameter estimates from right fusiform region above for 

first (F1) and second (F2) presentations of famous faces. (B) Event-related data (top) 

sampled every 0.5s from maximum of right fusiform region (+48, -54, -24) in (A) for F1 

(solid) and F2 (dotted), fitted by HRF parameterised by peak amplitude, peak delay and onset 

delay (inset) using Nelder-Mead iterative search, to give fitted responses (bottom) in which 

amplitude and peak latency, but not onset latency, differ significantly following repetition 

(using nonparametric tests across subjects, Henson & Rugg, 2001). 

 

Figure 10 

Efficiency for a single event-type. (A) Probability of event each SOAmin (left column) and 

efficiency (right column, increasing left-to-right) for a deterministic design with SOA=8s (1st 

row), a stationary stochastic (randomised) design with p=0.5 (2nd row) and dynamic 

stochastic designs with modulations of p(t) by different sinusoidal frequencies (3rd to 5th 

rows) and in a blocked manner every 32s (6th row). (B) Design matrices for randomised 

(Ran) and blocked (Blk) designs modelled with an FIR basis set (FIR, binsize=4s) or 

canonical response function (Can), mean p=0.5, SOAmin=2s, TR=1s, block length=20s. (C) 
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Efficiencies for the four models (note change of scale between Can and FIR models). (D) 

Power spectra for the four models (note change of scale between Ran and Blk models). 

 

Figure 11 

Example transition matrices. 

 

Figure 12 

Efficiency for two event-types. Efficiency is expressed in terms of “estimated measurable 

power” (EMP) passed by an effective HRF, characterised by a canonical HRF, highpass filter 

with cutoff period of 60s and lowpass smoothing by a Gaussian 4s FWHM, as a function of 

SOAmin for main (solid) effect ([1 1] contrast) and differential (dashed) effect ([1 –1] 

contrast). (A) Randomised design. Inset is the efficiency for the differential effect with 

nonlinear saturation (solid) predicted from a second-order Volterra expansion (Friston et al, 

1998). (B) Alternating (black) and Permuted (blue) designs. (C) With (green) and without 

(red) null events. (D) Blocked designs with runs of one (dotted), two (dot-dash) or four 

(dashed) stimuli, e.g., ABABABAB…, AABBAABB… and AAAABBBB respectively. 

 

Figure 13 

Frequency perspective on efficiency for two event-types. Timeseries and power spectra, after 

canonical HRF convolution, with SOAs of 2s (left) and 16s (right), for (A) main effect, (B) 

differential effect in randomised design, (C) differential effect in an alternating design. 

Highpass filter indicated as black dotted line in power spectra. 

 

Figure 14 

Categorical Model: effects of interest. (A) Design matrix. (B) F-contrast for effects of 

interest (inset is T-contrast that tests for positive mean parameter estimate for canonical 

HRF).  (C) SPM{F} MIP for effects of interest F-contrast, thresholded at p<.05 whole-brain 

corrected, together with SPM tabulated output (inset is SPM{F} for contrast on movement 

parameters, also at p<.05 corrected).  

 

Figure 15 

Categorical Model: repetition effect. (A) Parameter estimates (scale arbitrary) from local 

maximum in right fusiform (+45, -48, -27), ordered by condition - N1, N2, F1, F2 -  and 
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within each condition by basis function - canonical HRF, temporal derivative and dispersion 

derivative. (B) Fitted event-related responses (solid) and adjusted data (dots) in terms of 

percentage signal change (relative to grand mean over space and time) against PST for N1 

(red), N2 (blue), F1 (green) and F2 (cyan). (C). SPM{F} MIP for repetition effect contrast 

(inset), thresholded at p<.001 uncorrected, after inclusive masking with effects of interest 

(Figure 12) at p<.05 corrected. (D) Contrast of parameter estimates for repetition effect 

(difference between first and second presentations) in right occipitotemporal region (+45 -63 

-15) for canonical HRF, temporal derivative and dispersion derivative, together with fitted 

responses (solid) ± one standard error (dashed). 

 

Figure 16 

Categorical Model: FIR basis set. (A) Design Matrix. (B) Effects of interest F-contrast 

(canonical HRF weighted T-contrast inset). (C) SPM{F} MIP for effects of interest, 

thresholded at p<.05 whole-brain corrected, together with SPM tabulated output (inset is 

SPM{F} for unconstrained repetition effect F-contrast, thresholded at p<.005 uncorrected). 

(D) Parameter estimates for effects of interest from right fusiform region (+45, -48, -27), as 

in Figure 15A, ordered by condition - N1, N2, F1, F2 -  and within each condition by the 16 

basis functions (i.e., mean response every 2s from 0-32s PST). 

 

Figure 17 

Parametric Model (A) Design Matrix, columns ordered by basis function – canonical HRF, 

temporal derivative, dispersion derivative – and within each basis function by parametric 

effect – main effect, lag, familiarity, lag-x-familiarity. (B) F-contrasts for main effect (top) 

and lag effect (bottom). (C) SPM{F} MIP for lag effect, together with SPM tabulated output, 

thresholded at p<.005 uncorrected, after inclusive masking with main effect at p<.05 

corrected. (D) Parametric plot of fitted response from right occipitotemporal region (+45 -60 

-15), close to that in Figure 15C, in terms of percentage signal change versus PST and Lag 

(infinite lag values for first presentations not shown). 
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Design Transition Matrix Example Sequence 
     
  A B  
A. Randomised A 0.5 0.5 ABBBAABABAAAAB.... 
 B 0.5 0.5  
     
B. Alternating A 0 1 ABABABABABABAB.... 
 B 1 0  
     
C. Permuted AA 0 1 ABBABAABBABABA.... 
 AB 0.5 0.5  
 BA 0.5 0.5  
 BB 1 0  
     
D. “Null events” A 0.33 0.33 ABB--B-A---AABA--B.... 

 B 0.33 0.33  
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