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|. INTRODUCTION

This chapter discusses issues specific to the analyss of fMRI data It extends the Generdized
Liner Modd (GLM) introduced in Chapter 7 to linear time-invariant (LTI) sysems in
which the Blood Oxygentation Level Dependent (BOLD) sgnd is modeled by neurond
causes that are expressed via a haemodynamic response function (HRF). The first section
introduces the concepts of tempord bass functions tempord filtering of fMRI daa and
models of tempora autocorrelaion. The second section describes the gpplication of these
ideas to event-rdlated models, including issues reaing to the tempord resolution of fMRI.
The third section concerns the efficiency of fMRI experimentd desgns, as a function of the
interdimulus intervad and ordering of gimulus types The find section illustrates some of the
concepts introduced in the preceding sections with an example dataset from a single-subject
event-related fMRI experiment.

[I. FMRI TIMESERIES

Unlike PET scans, it is important to order fMRI scans as a function of time, i.e. treat them as
a timeseries. This is because the BOLD sgnd will tend to be corrdated across successve
scans, meaning that they can no longer be treated as independent samples. The main reason
for this corrdation is the fast acquidtion time (Tg) for fMRI (typically 24s, cf. 812 minutes
for PET) reative to the duration of the BOLD response (at least 30s). Treeting fMRI data as
timeseries dso dlows us to view Satistical andysesin sgnd-processing terms.

The GLM can be expressed as a function of time (Friston et a., 1994; cf. Equation [1]

in Chapter 7):
(O = X(t) bt e(t) e(t) ~N(0;s°S) [1]

where the data y(t) comprise the fMRI timeseries (each timepoint representing one scan), the
the explanatory variables, x:(t), c=1..N. ae now functions of time b. are the N, (time-

invariant) parameters, and S is the noise autocorrdation (see Section [IC below). Though y(t)



and Xx(t) are discrete (sampled) timeseries (normally represented by the vector y and design
metrix X respectively), weinitidly treet the data and model in terms of continuous time.

A. Stimulus, Neural and Haemodynamic Models, and Linear Time-Invariance

An explanatory variable x(t) represents the predicted BOLD response arisng from a neurd
cause u(t). These neurd causes (eg. the locd fidd potentids of an ensemble of neurons)
normdly follow a sequence of experimentd dimulaion, qt). In SPM99, a didinction is
made between neura activity thet is impulsve (an “event”’) and tha which is sustained for
severd seconds after gimulation (an “epoch”). Both can be specified in terms of their onsets,
but differ in the form of the newra modd. For i=1.N; experimenta conditions, each
congsting of j=1..N; onset times o;j, the Simulus modd is:

s = Si1j aj d(t-0y) [2]

where ajj is a scaing factor and d(t) is the (Dirac) delta function. The vector a; over the N
replications of the ith condition corresponds to a “parametric modulation” of that condition
(eg, by behaviourd data associated with each simulus, see Section VB for an example).!
Below we assume a jj isfixed at 1.

For events, the neurd activity u(t) is equated with s(t). For epochs, the neura
activity, r(t), ismodelled by b=1..Ny, tempora “bass functions’, gy(t):

rt) = Sh-1.n6 b G(t) [3]

where t indexes a finite perigimulus time (PST) over the epoch duraion Tg (and by are
parameters to be edtimated). Some example epoch response functions are shown in Figure
1A. The smplest is a single “boxca” or “tophat” function that assumes a constant level of
neura activity during the epoch. This can be supplemented by a (meancorrected)
exponential decay (eg, of form exp{-t/(4Tg)}) to capture adaptation effects within an epoch.

L A polynomial expansion of ajj can be used to test for higher order (nonlinear) dependencies of neural activity
on the parametric factor.



Other examples include a hdf-gne, dn(pt/Tg), and a discrete cosine transform (DCT) <,
o(t) = cos{(b-1)pt/Te}. The latter can capture any shape of neural response up to frequency
limit (N,-1)/2Tg. The neurd activity then becomes (from [2] and [3)):

u(t) =s(t) A r(t) = Sj:l_.Nj Sb:l..Nb b g(t-0ij)

If we assume that the BOLD dgnd is the output of a linear time-invariant (LTI) system
(Boynton et d., 1996) — i.e. that the form of the response is independent of time, and the
responses to successve simuli superpose in a linear fashion — then we can express x(t) as
the convolution of the neurd activity with a haemodynamic response function (HRF), h(t):

x(t) = u(t) A hit) [4]

where t now indexes a finite period, Ty, over which the BOLD response ladts (a “finite
impulse response’). The HRF h(t) is equivaent to the F-order Volterra kernel (see Chapter
11).2 Figure 1B shows the BOLD signd predicted from convolution of an epoch, modelled
by box-car and exponentid decay response functions, with a “canonical” form for the HRF.
Also shown in Figure 1C is the BOLD dgnd predicted for a series of ragpid events (deta
functions); note the near-equivdent BOLD signa obtained® (provided the interevent interval
isafew seconds or less).

In other Stuaions, we may not want to assume a fixed form for the HRF. Instead, we
can dlow for vaiability in its foom by another expanson in tems of tempord bass
functions, fi(t):

h(t) = Seernk bi f(t) [5]

2 1t is also possible to model nonlinearites in the mapping from stimulus to neural activity in terms of a Volterra
expansion (Josephs & Henson, 1999). However, because we normally only know the stimulus function (input)
and the BOLD signal (output), we cannot attribute nonlinearites uniquely to the stimulus-to-neural or neural-to-
BOLD (or bloodflow-to-BOL D) mappings.

3 bar asmall shift in latency (Mechelli et al, in press-b)



(see Section 11IC for some examples). For a sequence of events, the GLM then becomes
(from[1], [2] and [4]):

y® = Sictni Sj=tni Sketnk bijk fi(t-05) + e(t)

where bjjx are the parameters to be estimated.

In practice, the above modds are smulated in discrete time. Nonetheless, given that
ggnificant information may exis in the predicted sgnad a frequencies above that associated
with typicd Tr's, the gmulaions ae peformed in a timespace with multiple (T>1)
timepoints per scan (i.e, with resolution, dt=Tgr/T seconds). This means, for example, that
events do not need to be synchronised with scans (their onsets can be specified in fractions of
scans). The high resolution timespace dso ensures that a sequence of deta-functions (every
dt seconds) becomes an adequate discrete-time gpproximation to a continuous boxcar
function. To create the explanatory vectors, X, in units of scans, the predicted BOLD sgnd
is downsampled every Tr (at a specified timepoint TO; Figure 2). In the genera case, the
number of columnsin the design matrix will be Ne=N;N;NkNj,.

B. Highpass Filtering

We can dso view the frequency components of our timeseries y(t) via the Fourier transform.
A schemdic of the power spectrum (the modulus of the complex Fourier components),
typicd of a subject a rest in the scanner, is shown in Fgure 3A. This “noisg’ spectrum is
dominated by low-frequencies, and has been characterised by a 1/f form when expressed in
amplitude (Zarahn et d., 1997). The noise arises from physicad sources, sometimes referred
to as “scawne dift” (eg., dowly-vaying changes in ambient temperature), from
physiologica sources (e.g., biorhythms, such as ~1Hz respiratory or ~0.25Hz cardiac cycles,
that are diased by the dower sampling rate), and from resdud movement effects and ther
interaction with the doatic magnetic fidd (Turner e a., 1998). When the subject is
peforming a task, sgna components are added that we wish to diginguish from this noise
Figure 3B, for example, shows the gpproximate sgna spectrum imposed by an (infinite)
uarewave simulation of 32s-on/32s-off. When averaging over dl frequencies, this sgnd
might be difficult to detect againgt the background noise. However, by filtering the data with
an gppropriate highpass filter (Figure 3C), we can remove mos of the noise. Idedly, the



remaning noise soectrum would be fla (i.e, “whiteg’ noise, with equa power a al
frequencies, though see Section 11C).

The choice of the highpass cut-off would idedly maximise the sgnd:noise ratio.
However, we cannot digtinguish signa from noise on the basis of the power gectrum of the
data done. One choice of cut-off is to minimise the loss of sgnd, the frequency components
of which ae inherent in the desgn matrix X. SPM99 will offer such a cut-off by default
(based on twice the maximum interva between the most frequently occurring condition).
However, if this cut-off period is too great, the gain in sgna passed can be outweighed by
the extra noise passed. Thus some loss of signd may be necessary to minimise noise’.
Experimental designs should therefore not embody sgnificant power a low frequencies (i.e,
conditions to be contrasted should not live too far gpart in time; see Section IVA).

In the time domain, a highpass filter can be implemented by a DCT with harmonic
periods up to the cut-off. These bads functions can be made explicit as confounds in the
desgn matrix; or they can be viewed as pat of a tempord smoothing matrix, S (together
with any lowpass filtering; Section 11C).°> This matrix is gpplied to both data and mode!:

Sy =SXb + Se e ~N(0,s%V) V=SSS!

(tresting the timeseries as vectors), with the classcd correction for the degrees of freedom
logt in the filtering inherent in the equation for the effective df’ s (Chapter 9):

v = trace{ RV} */trace{ RVRV} R =1 -SX(SX)* [6]

The effect of applying a highpass filter to red daa (teken from a 42s epoch
experiment;  http:/Amww fil.ion.ud.ac.uk/spm/datatfMRI_MoAEpilot) is illustrated in Figure
3D. Figure 3E shows the fitted responses after the filter S is applied to two boxcar models,
one with and one without convolution with the HRF. The importance of convolving the
neurd mode with an HRF is evident in the resduds (Figure 3F). Had the explanaory
vaiables been directly equated with the simulus function, dSgnificant tempord sructure

“* In our experience, the 1/f noise becomes appreciable at frequencies below approximately 1/120 Hz, though
thisfigure may vary considerably across scanners and subjects.

® Though the matrix form expediates mathematical analysis, in practice highpass filtering is implemented by the
computationally efficient subtraction of RR'y, where R is the resi dual-forming matrix associated with the DCT.



would remain in the resduds (eg, as negdive deviations a the start of each block, i.e a
higher frequency harmonics of the boxcar function).

C Temporal Autocorrelation

There are various reasons why the noise component may not be white even after highpass
filtering. These incdude unmoddled neurond noise sources that have their own
haemodynamic correates. Because these components live in the same frequency range as the
effects of interedt, they cannot be removed by the highpass filter. These noise sources induce
tempora correlatiion between the resddud erors, e(t). Such autocorreation is a specia case
of nonsphericity, which is treated more generdly in Chapter 9. Here, we briefly review the
various solutions to the specific problem of tempord autocorrdation in fMRI timeseries.

One solution proposed by Wordey and Friston (1995) is to apply a tempora
gmoothing. This is equivaent to adding a lowpass filter component to S (such that S, together
with the highpass filter, becomes a “bandpass’ filter). If the time-congtants of the smoothing
kernd are sufficiently large, the tempord autocorrdation induced by the smoothing can be
assumed to swamp any intringc autocorrelation, S, such that:

V =SSS"~ssT

and thus the effective degrees of freedom can be caculated (via Equetion [6]) soldy via the
known smoothing matrix. Lowpass filters derived from a Gaussan smoothing kernd with
FWHM of 4-6s, or derived from atypical HRF, have been suggested (Friston et a., 2000b).

An dternaive solution is to estimate the intrindc autocorreaion directly, which can
be used to create a filter to “pre-whiten” the data before fitting the GLM. In other words, the
smoothing matrix is set to S= K™, where KK is the estimated autocorrdation matrix. If the
edimetion is exact, then:

V=KISKH = KIKK(KYH =]
Two methods for estimating the autocorrelation are an autoregressve (AR) mode (Bullmore

et d, 1996) and a 1/f modd (Zarahn et d., 1997). An AR(p) is a pth-order autoregressive
modd, having the time domain form:



2(t) = az(t-1) + &z(t-2)... + dz(t-p) +W  =>z=Az+w w~ N(0,s2)

where A is a (p+1)x(p+l) lower-triangular matrix of regresson coefficients, &, that can be
edimated by ordinary least-squares. Severd authors (eg, Bullmore et a, 1996; Krugge &
von Cramon, 1999) use an AR(1) model, in which the autocorrdation (a) and noise (s2)
parameters are estimated from the resduds (z=e) &fter fitting the GLM. These estimates are
then used to creste the filter S=(1-A)™ that is applied to the data before re-fitting the GLM (a
procedure that can be iterated until the resduas are white).

The 1/f modd isalinear mode with the frequency domain form:

g(f) = bu/f + by p(h=0(f)?

where p(f) is the power spectrum, the parameters of which, b, can be estimated from the
Fourier-transformed data.

The advantage of these methods is that they produce the most efficient estimation of
the GLM parameters under Gaussian assumptions (corresponding to Gauss-Markov  or
“minimum vaiance edimaors’; Chepter 7). Tempora smoothing is generdly less efficient
because it removes high frequency components, which may contain signad. The disadvantage
of the tempora autocorreation modes is that they can produce biased parameter estimates if
the autocorrdation is not estimated accurately (i.e, do not necessarily produce “minimum
bias estimators’).

Frison et d. (2000b) argued that the AR(1) and Lf models are not sufficient to
edimate the typicd autocorrdation in fMRI data This is illudrated in Figure 4A, which
shows the power spectra and “autocorrelation functions'® for the residuds of an event-related
dataset (that in Section V). It can be seen that the AR(1) modd underpredicts the
intermediate-range  corrdations, whereas the 1/f modd overpredicts the long-range
corrdatiions. Such a mismatch between the assumed (KK ) and intringc (S) autocorrelation

® An autocorrelation function plots the correlation, r (t), as a function of “lag”, t=0...n-1, and is simply the

Fourier transform of the power spectrum, p(f), where f=2pi, i=1..n-1.



will hiss the daisics resulting from pre-whitening the data’ This mismach can be
andioratied by combining bandpass filtering (Figure 4B) with moddling of the
autocorreation, in which case both modds provide a reasonable fit (Figure 4C). Indeed,
highpass filtering aone (with an appropriste cutoff) is normaly sufficient to dlow ether
modé to fit the remaining autocorrelation (Friston et a, 2000b).

SPM99 offers both an AR(1) modd and lowpass smoothing as options (in
conjunction with highpass filtering). The AR(1) moded parameters are edimated from the
daa covaiance, rather than the resduds. This removes the potentid bias resulting from
correlation in the residuas induced by removing modeled effects (Friston et ., 2002)%,
though it introduces potentia bias resulting from dgnad and drifts in the data The later is
amdiorated by pooling over voxds in the edimation of the AR(1) parameters, snce only a
minority of voxds typicadly contain sgnd. Another potential problem arises however if the
tempord autocorrelation varies over voxels (Zarahn et d., 1997). For example, it has been
agued to be higher in grey than white matter (Woolrich et d., 2001). This can be
accommodated by estimating voxel-specific AR(p) parameters (possibly together with some
gpatid regularisation, Wordey e d, 2002), though it means that different voxes can have
different effective degrees of freedom, which in drict terms violates the assumptions behind
Gaussan Feld Theory (Chapters 14-15). Such spatid variation is less of a problem for the
tempora smoothing approach, which homogenises the autocorrelation across voxes.

A find problem with the &bove methods is that the modd parameters and
autocorrdlation parameters are estimated separately, which requires multiple passes through
the data and makes it difficult to properly accommodate the associated degrees of freedom.
lterative edimation schemes, such as Redricted Maximum Likeihood (ReML), dlow
gdmultaneous esimation of modd parameters and autocorredation  (hyper)parameters,
together with proper partitioning of the effective degrees of freedom (see Chapter 9 for more
detals). This method can be used with any temporad autocorrdation modd. Frison et 4.
(2002) chose an “ AR(1)+white noisg” mode!:

y=Xb +z+2 a=Az+w w=N(0,51%1) 2=N(0,s,%)

" More complex models of the temporal autocorrelation have since been shown to minimise bias, such as Tukey
tapers (Woolrich et al., 2001) and autoregessive moving average (ARMA) models, a specia case of the latter
being an AR(1)+white noise model (Burock & Dale, 2000; see below).

8 though there are ways of reducing this bias (Worsely et al, 2002)
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for which the autocorrdation coefficient & was fixed to exp(-1), leaving two
hyperparameters (s1% and s,%). The additiond white-noise component () contributes to the
zero-lag autocorrdation, which in turn alows the AR(1) modd to capture better the shape of
the autocorrdation for longer lags. Note that this gpproach ill requires a highpass filter to
provide accurate fits (Figure 4D), though a subtle difference from the above residua-based
gpproaches is that the highpass filter is dso trested as pat of the complete model to be
estimated, rather than a pre-whitening filter.

Such iterative schemes are computationdly expensve when peformed a every
voxel. One possible solution is to assume that the ratio of hyperparameters is sationary over
voxels, which dlows the data to be pooled over voxels in order to edtimate this ratio. Spatia
variability in the absolute autocorration can be accommodated by subsequently estimating a
sangle voxd-specific scaling factor (see Friston et a, 2002, and Chapter 9 for further details).
This scding factor can be etimated in one-step (since no iteration is required for ReML to
edimate a dngle hyperparameter). This ReML solution to modeling the autocorreation
therefore shares the efficiency of pre-whitening approaches, though with less potentid bias,
dlows proper adjustment of the degrees of freedom, and makes some dlowance for spatia
vaiadility in the tempora autocorrdation. This obviates the need for tempora smoothing, a
consequence particularly important for event-related designs (below), in which gppreciable
ggnd can exig a high frequencies that would be lost by lowpass smoothing (see Fgure 4D).
This gpproach has been implemented in SPM2.

I1l. EVENT-RELATED FM RI

Evet-rdated fMRI (efMRI) is smply the use of fMRI to detect responses to individud
trids in a manner andogous to the time-locked event-related potentias (ERPs) recorded
with EEG. The neurd activity associated with each trid is normdly (though not necessarily)
modeled as addtafunction — an “event” — at the trial onset.

A. Advantages of efMRI

The advent of event-related methods offers severd advantages for experimentad design.
Foremogt is the ability to intermix trids of different types (conditions), rather than blocking
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them in the manner required for PET and initidly adopted for fMRI (cf. Figures 5A and 5B).
The counterbdancing or randomising of different tria-types, as is standard in behavioura or
electrophysiologica studies, ensures that the average response to a trid-type is not biased by
a gspecific context or hisory of preceding trid-types. This is important because the
(unbalanced) blocking of trid-types might, for example, induce differences in the cognitive
‘set’ or draegies adopted by subjects. This means that any difference in the mean activity
during different blocks might reflect such ‘date effects, rather than ‘item’ effects specific to
individud trids (eg., Rugg & Henson, 2002). Johnson et d. (1997) for example, provided
direct evidence that the presentation format — intermixed or blocked — can effect the ERP
associated with a tria- based memory effect.’

A second advantage of event-reated methods is that they dlow categorisation of trid-
types according to the subject’'s behaviour. This might include separate modelling of trids
with correct and incorrect task performance, or parametric modelling of tria-by-trid reaction
times (modulaions that are only possble indirectly when andysed & a block leve). An
gopeding example of this facility occurs in “subsequent memory” experiments. In such
experiments, subjects perform a smple “sudy” task on a series of items, followed by a
aurprise memory test. The latter dlows the items in the study task to be categorised according
to whether they were later remembered (a categorisation the researcher has little objective
control over). Bran regions can then be isolated whose activity “predicts’ subsequent
memory (e.g., Henson et d., 1999).

A third advantage reflects the identification of events whose occurrence can only be
indicated by the subject. An example of such an event is the spontaneous trandtion between
the perception of ambiguous visud objects, as in the face-vase illuson (Kleinschmidt et d.,
1998), or between 2D and 3D perception of 2D stereograms (Portas et d., 2000); situations
where the objective simulation is congant. A fourth advantage is tha event-related methods
alow some experimental designs that cannot be easily blocked. One example is an “oddball”
desgn, in which the simulus of interest is one that deviates from the prevailing context, and
therefore cannot be blocked by definition (Strange et d., 2000).

° Note that there are also disadvantages associated with randomised designs. Foremost, such designs are
generally less efficient for detecting effects than blocked designs (with short SOAs and reasonable block
lengths; see section IVA below). In addition, some psychological manipulations, such as changes in selective

attention or task, may exert stronger effects when blocked.
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A find advantage is tha event-rdaied methods potentialy dlow more accurate
models of the data Even when trid-types are blocked, for example, moddling the BOLD
response to each trid within a block may capture additiona varigbility that is not captured by
a dmple “box-ca” neurond modd, paticularly for intertrid intervals of more than a few
seconds (Price e d., 1999; cf. Figures 5A and 5C). Furthermore, it is possible distinguish
between date effects and item effects. Chawla et d. (1999), for example, invesigated the
interaction between sdective atention (a date effect) and trangent simulus changes (an item
effect) in a “mixed epoch/event” desgn. Subjects viewed a visud simulus that occasondly
changed in either colour or motion. In some blocks, they were required to detect the colour
changes, in other blocks they detected the motion changes. By varying the interva between
changes within a block, Chawla e a. were able to reduce the corrdation between the
corresponding epoch- and event-related regressors. Tests of the epoch-related effect showed
that attending towards a specific visud dtribute (e.g. colour) increased the basdine activity
in regions selective for tha attribute (eg. V4). Tedts of the event-related effect showed that
the impulse response to the same objective change in visud dtribute was augmented when
subjects were atending to that attribute. These combined effects of sdective attention —
rasing endogenous basdine activity and increesng the gain of the exogemous response —
could not be distinguished in blocked designs (Figure 5D).

B. TheBOLD impulseresponse

A typicd BOLD response to an impulse simulation (event) is shown in Figure 6A. The
response pesks gpproximatdy 5 seconds after simulation, and is followed by an undershoot
that lasts approximady 30 seconds (at high magnetic fields, an initid undershoot can
sometimes be observed, Mdonek & Ginvad, 1996). Early event-rdated studies therefore
used a long interstimulus intervd (or more generdly, Stimulus Onset Asynchrony, SOA,
when the stimuli are not treasted as delta functions) to dlow the response to return to basdine
between simulations. However, dthough the responses to successive events will overlgp a
shorter SOAs, this overlap can be explicity moddled (via an HRF). This moddling is
amplified if successve responses can be assumed to add in a linear fashion (Section 1A).
Short SOAs of a few seconds are desrable because they are comparable to those typicaly
used in behavioural and dectrophysiologicd sudies, and because they are generdly more
efficient from the Satistical perspective (Section IVA).
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There is good evidence for nonlinearity in the BOLD impulse response as a function
of SOA (Friston et a., 1998a; Miezin et a., 2000; Rllman et d., 1997).2° This nonlinearity
is typicdly a “sauration” whereby the response to a run of events is smdler than would be
predicted by the summation of responses to each event done. This saturation is believed to
aise in the mgpping from bloodflow to BOLD sgnd (Friston et d., 2000a), though may aso
have a neurd locus, paticularly for very short SOAs (for biophysicd modds that such
incorporate nonlinearities, see Chapter 11). It has been found for SOAs below approximately
8s, and the degree of saturation increases as the SOA decreases. For typicd SOAs of 24s
however, its magnitude is smal (typicaly less than 20%, Miezin et d., 2000).

Note that the dominant effect of increasing the duration of neurd activity (up to 24
seconds) in a linear-convolution model (Equetion [4]) is to increase the pesk amplitude of the
BOLD response (Figure 6B). In other words, the BOLD response integrates neurd activity
over a few seconds. This is convenient because it means that neurd activity can be
reasonably modelled as a ddta function (i.e, even though the amplitude of the response may
vay nonlinearly with stimulus duration, Vasquez & Noll, 1998, the shape of the response
does not necessarily change dramaticaly). The corollary however is that a difference in the
amplitude of the BOLD impulse response (as conventiondly tested) does not imply a
difference in the mean levd of neurd activity: the difference could reflect different durations
of neurd activity a same mean levd. One way to tease these agpart is to tet for subtle
differences in the pesk latency of the BOLD impulse response (Section IIF below), which
will differ in the latter case but not former case (Figure 5C).

The generd shape of the BOLD impulse response gppears Smilar across early
sensory regions, such as V1 (Boynton et al., 1996), A1l (Josephs et d., 1997) and S1 (Zarahn
et a. 1997). However, the precise shape has been shown to vary across the bran,
paticularly higher corticd regions (Schacter et d., 1997), presumably due manly to
variations in the vasculaiure of different regions (Lee et d., 1995). Moreover, the BOLD
response appears to vary considerably across people (Aguirre et d., 1998).1 These types of

10 Nonlinearites in the amplitude of the BOLD response are also found as a function of stimulus duration or
stimulus magnitude (Vasquez & Noll, 1998). Nonlinearities also appear to vary considerably across different
brain regions (Huettel & McCarthy, 2001; Birn et a. 2001).

11 One possible solution is use subject-specific HRFs derived from a reference region known to respond to a

simple task (e.g, from central sulcus during a simple manual task performed during a pilot scan on each subject,
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variability can be accommodated by expanding the HRF in terms of tempora basis functions
(Equation [9]).

C. Temporal Bass Functions

Severd tempord bads sets are offered in SPM. The most generd are the Finite Impulse
Response (FIR) and Fourier basis sets, which make minima assumptions about the shape of
the response. The FIR st conssts of Ny contiguous box-car functions of PST, each of
duration Ty/Nk seconds (Figure 7A), where Ty is the maximum duraion of the HRF. The
Fourier set (Figure 7B) condsts of Ng sine and Ns cosine functions of harmonic periods T,
Tu/2 ... Tu/Ng (i.e, Nx=2Ngtl bass functions, where the last is the mean of the bass
functions over Ty).’? Linear combinations of the (orthonorma) FIR or Fourier basis
functions can capture any shape of response up to a specified timescale (Tw/Nk in the case of
the FIR) or frequency (N¢/T in the case of the Fourier set).*®

In practice, there is little to choose between the FIR and Fourier sets: The Fourier et
may be better suited when the PST sampling is nortuniform (Section 1IE); whereass the
paameter edimates for the FIR functions have a more direct interpretation in terms of
“averaged” PST dgna (effecting a linear “deconvolution”). Indeed, in the specid case when
Tu/Nk=Tg, the FIR functions are ddlta functions.

h(t) = Sker i dit-k-1)

over the Ny poststimulus scans, and the design matrix for events onsetting & scan o;j is

Xi = Oiztni szl..Nj Sicink d(t-(oj+k-1))

Aguirre et al, 1998). However, while this allows for inter-subject variability, it does not allow for inter-regional
variability within subjects (or potential error in estimation of the reference response, Friston et al., 2002).

12 gince the HRF is assumed to be bounded at zero for t<=0 and t>=Ty, the Fourier basis functions can also be
windowed (e.g, by a Hanning window) within thisrange.

13 In practice, there is little point in making Tu/Ny smaller than the effective PST sampling interval, Ts, (Section
I1E) or specifying Ng/Tw higher than the Nyquist limit /(2T g).
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where t indexes scans and ¢ indexes the column for the kth bass function of the jth event of
the ith type (Ollinger et d., 2001; see Figure 16A, for an example). For the specia case of
non-overlapping responses (i.e., that g;+k * ow+w for dl tu, j* v and K w), the estimates bii

of the FIR parameters are equivaent to the smple trid-averaged data:
bix = Sz Y(0+k-1) / N;

This esimation dso gpproximates the HRF when the event-types are fully counterbalanced
(such that the number of occasions when g+k = au+w is condant for dl tu, jtv and kK w,
which is approached when events are randomised and N; is large™), a procedure that has
been cdled “sdective averaging” (Dae & Buckner, 1997). It is equivaent to noting that the
covariance marix X'X (sometimes caled the “overlap correction matrix”, Dae, 1999)
goproaches the identity matrix (after mean-correction), such that the ordinary least-squares
estimates become:

b = XXy Xy @'y

Note that such counterbalancing is not required by the full pseudoinverse estimation used by
SPM (though there may till be important psychologica reasons for counterba ancing).
More paramonious basis sets can be chosen that make various assumptions about the

shape of the HRF.® One popular choice is the gamma function:

ft) = ((t-opd)* &/ (d(p-1)1) [7]

where o is the onset ddlay, d is the time-scding, and p is an integer phase delay (the pesk
dday is given by pd, and the dispersion by pd?). The gamma function has been shown to
provide a reasonably good fit to the impulse response (Boynton et a., 1996), though it lacks
an undershoot (Fransson et a., 1999; Glover, 1999). The first Ty seconds of a set of N

1 In strict terms, this also means an equal number of occasions (scans) when event-types co-occur (i.e are
conincident), which is not normally the case.
15 Unlike the Fourier or FIR sets, this set is not strictly a“basis” set in that it does not span the space of possible

responses within the response window Ty, but we maintain the term here for convenience.
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ganma functions of increesng digpersons can be obtained by incrementing p=2.Ny+1
(Figure 7C), which can be orthogonalised with respect to one another (as in SPM). This st is
more parsmonious in that fewer functions are required to capture the typicd range of
impulse responses than are required by the Fourier or FIR sets reducing the degrees of
freedom used in the design matrix and alowing more powerful Satistica tests.

An even more paramonious bas's set, suggested by Friston et d. (1998), is based on a
“canonicad HRF’ and its partid derivatives (Figure 7D). The canonicd HRF is a “typicd”
BOLD impulse response characterised by two gamma functions, one moddling the pesk and
one moddling the undershoot. The canonicd HRF is parameterised by an onset delay of Os,
peak delay of 6s, peak disperson of 1, undershoot delay of 16s, undershoot dispersion of 1
and a pesk:undershoot amplitude ratio of 6; vaues that were derived from a principa
component andysis of the data reported in Friston et a. (1998a). To dlow for variations
about the canonicad form, the partial derivatives of the canonicdl HRF with respect to, for
example, its pesk delay and disperson parameters can be added as further bass functions. By
a firg-order multivariate Taylor expanson (cf. Equation [8] beow), the tempord derivative
can capture differences in the latency of the pesk response, while the disperson derivative
can capture differences in the duration of the peak response.*®

D. Statistical Tests of Event-related Responses, and Which Basis Set?

Inferences usng multiple bads functions are generdly made with F-contrasts (Chapter 8).
An example Fcontrast that tedts for any difference in the event-related response to two tria-
types modelled by an FIR st is shown in Figure 16B. Further assumptions about the shape of
the response (or nature of differences between responses) can aso be entered at the contrast
level (Burock & Dae, 2000; Henson et d., 2001a). One might redrict differential contrasts to
a limited sat of FIR time-bins for example. In the extreme case, setting the contrast weights
for an FIR sat to match an assumed HRF shape will produce a parameter estimate for the
contrast proportional to that obtained by usng tha HRF as a dngle bass function (assuming
thet FIR timebins are sampled uniformly at each effective sampling interva).

16 A similar logic can be used to capture different latencies of epoch-related responses, viz. by adding the
temporal derivatives of the (HRF-convolved) epoch response functions. Note that variations in the HRF can
also be accommodated by nonlinear, iterative fitting techniques (Section II1F; see Hinrichs et al, 2000, for a

combination of nonlinear estimation of HRF shape together with linear deconvolution of responses).
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However, when the rea response resembles an assumed HRF, tests on a modd using
that HRF as a sngle bads function are more powerful (Ollinger et d., 2001). In such cases, t
tests on the parameter estimate for a canonicad HRF for example can be interpreted in terms
of the “amplitude’ of the response. However, when the red response differs gppreciably
from the assumed form, tests on the HRF parameter estimates are biased (and unmodelled
dructure will exist in the resduas). In such cases, a canonica HRF parameter estimate can
no longer necessarily be interpreted in terms of amplitude (see Chapter 8). The addition of
patid deivatives of the HRF (see above) can amdiorate this problem: the incluson of a
tempora derivative for example can reduce the resdud error by capturing systemdtic delays
rlative to the assumed HRF.}" Nonetheless, for responses that differ by more then 1s in their
pesk latency (i.e, when the firgt-order Taylor approximation fails), different canonicd HRF
parameters will be estimated even when the responses have identical pesk amplitudes.

An important empirical question then becomes How much varigbility exiss around
the canonicd form? Henson et d. (2001b) addressed this quetion in a dataset involving
rapid motor responses to brief presentations of faces across 12 subjects (the superset of the
data in Section V). By moddling the event-related response with a canonicd HRF, its partiad
derivatives and an FIR bass s, the authors assessed the contribution of the different basis
functions by a series of F-contrasts. Significant variability was captured by both the tempora
derivative and disperson derivative, confirming that different regions exhibited different
shaped responses. Little additiond variability was captured by the FIR basis set however,
suggesting that the canonicd HRF and its two partid derivatives were sufficient to cgpture
the mgority of experimenta variability (at least in regions that were activated in this task).

This sufficiency may be specific to this dataset, and reflect the fact that neura activity
was reasonably well modeled by a ddta function. It is unlikey to hold for more complex
experimentd trids, such as working memory trids where information must be maintained for

17 Note that the inclusion of the partial derivatives of an HRF does not necessarily affect the parameter estimate
for the HRF itself, since the basis functions are orthogonal (unless correlations between the regressors arise
owing to under-sampling by the Tg or by temporal correlations between the onsets of events of different types).
In other words, their inclusion does not necessarily affect second-level t-tests on the HRF parameter estimates
alone. Note also that t-tests on the partial derivatives are not meaningful in the absence of information about the
HRF parameter estimate: the derivative estimates depend on the size (and sign) of the HRF estimate (Section
IVF), and are unlikely to reflect plausible impulse responses (versus baseline) in the absence of a significant
HRF parameter estimate.
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severd seconds (eg, Ollinger e d., 2001). Nonethdess, such trids may be better
accommodated by more complex neurd modes, expanding u(t) in tems of multiple
events/epochs (cf. Equation [3]), while Hill assuming a fixed form for the HRF. This alows
more direct inferences about stimulus, response and delay components of a tria for example
(Zarahn, 2000). More generdly, the question of which basis set to use becomes a problem of
model selection (Chapter 7).

A problem arises when one wishes to use multiple bass functions to make inferences
in second-level andyses (eg., in “random effects’ andyses over subjects, see Chapter 12).
Subject-gpecific “beta images’ created after fitting an FIR mode in a fird-levd andyss
could, for example, enter into a second-level modd as a peridimulus time factor (differentid
F-contrasts on which would correspond to a condition-by-time interaction in a conventiona
repeated-measures  ANOVA). However, the parameter esimates are unlikdy to be
independent or identicaly-digtributed over subjects, violating the sphericity assumption of
univariate tests (Chapter 9).X® One olution is to use multivariate tests (Henson, et a., 2000),
though these are generdly less powerful (by virtue of making minima assumptions about the
data covariance). The use of ReML or “Parametric Empirica Bayes’ methods to estimate the
hyper-parameters governing congtraints placed on the covariance matrix (Friston et d., 2002;
Chapter 9) resolves this problem.

E. Timing Issues: Practical

There are both practical and theoretical issues pertaining to the timing of BOLD responses.
Two practical issues concern the effective sampling rate of the response and the different
acquigtion times for different dices (usng EF1).

It is possble to sample the impulse response a post-gimulus intervas, Ts, shorter
than the interscan interval Tr by jittering event onsets with respect to scan onsets (Josephs et
a. 1997). Jttering can be effected by ensuring the SOA is not a smple multiple of the Tg, or
by adding a random trid-by-trid delay in simulus onsets relative to scan onsats (Figure 8).
In both cases, different PSTs are sampled over trids (the main difference between the two
methods being whether the SOA is fixed or random). For example, an effective PST

18 This is one reason why researchers have tended to stick with t-tests on (contrasts of) the parameter estimate
for a single canonical HRF at the second-level, at the expense of generality (potentially missing responses with

anon-canonical form).
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sampling of 0.5Hz can be achieved with an SOA of 6s and a Tr of 4s, or by adding a delay of
0 or 2s randomly to each trid (producing SOAs of 48s, with a mean of 6s). While effective
sampling rates higher than the Tr do not necessarily affect response detection for typica Trs
of 2-4s (snce there is little power in the canonical response above 0.2Hz; see Figure 6A),
higher sampling rates are important for quantifying the response shape, such as its latency
(Miezin et d, 2000; Section IVF).

Jttering event onsets with respect to scan onsets does not help the second practical
issue concerning different dice acquistion times. This “dice-timing” problem (Henson et d.,
1999) refers to the fact that, with a descending EPI sequence for example, the bottom dice is
acquired Tr seconds later than the top dice. If a single bass function (such as a canonica
HRF) were used to modd the response, and onset times were specified rative to the start of
each scan, the data in the bottom dice would be systematicaly delayed by Tr seconds
rdative to the modd.'® This would produce poor (and hiased) parameter estimates for later
dices, and mean that different sengtivities would apply to different dices®® There are two
man solutions to this problem: to interpolate the data in each dice as if the dices were
acquired smultaneoudy, or use abasis set that dlows for different response onset latencies.

Tempord interpolation of the data (usng a full gnc interpolation) is possble during
preprocessng of images in SPM99. For sequentid acquistion schemes,  tempord
interpolation is generdly better when peformed after gpatid redignment, snce the timing
eror for a voxe re-diced to nearby dices will be smal redive to the potentid error for a
voxd that represents different brain regions owing to interscan movement. (This may not be
true for interleaved acquigtion schemes, for which tempord interpolation might be better
before spatid redignment). The data are interpolated by an amount proportiona to their
sampling time relative to a reference dice (whose data are unchanged). The event onsets can
then be synchronised with the acquisition of the reference dice. In SPM, this is equivdent to
mantaining event onsets rdative to scan onsets, but setting the timepoint TO in the smulated
timespace of T time-bins (Section 11A), from which the regressors are sampled, to:

19 One solution would be to allow different event onsets for different slices. SPM however assumes the same
model (i.e. onsets) for all voxels (i.e. dices) in order to equate the degrees of freedom (e.g. residual
autocorrelation) across voxels required for GFT (Chapters 14-15). Moreover, slice-timing information is lost as
soon as images are re-sliced relative to a different orientation (e.g. during spatial normalisation).

20 Thisisless of aproblem for low-frequency responses, such as those induced by epochs of tens of seconds.
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TO = round{ nT/ Ng}

where the reference dice is the nth dice acquired of the N dices per scan.

A problem with dice-timing correction is that the interpolatiion will dias frequencies
above the Nyquig limit 1/(2Tg). Ironicdly, this means that the interpolation accuracy
decreases as the dice-timing problem (ile Tgr) increases. For short Tgs < 2-3s, the
interpolation error is likely to be smal. For longer Trs, the severity of the interpolation error
depends on whether appreciable sgnad power exists above the Nyquig limit (which is more
likely for rapid, randomised event-related designs; see below).

An dterndive solution to the dicetiming problem is to include additiond bads
functions that can accommodate timing errors. The Fourier bass st for example does not
have a dicetiming problem (i.e it is phase-invariant). For more congrained sets, the
addition of the tempord derivaives of the functions may be sufficient. The parameter
edimates for the derivatives will vary across dices, to cgpture shifts in the data rdative to the
modd, while those for the response functions can reman congtant (up to a first-order Taylor
goproximation). The tempord derivative of the canonicd HRF for example (Figure 7D) can
accommodate dice-timing differences of agpproximady +/-1s (i.e, Tr's of 2s, when the
model is synchronised to the middle dice in time). A problem with this approach is that dice-
timing differences are confounded with latency differences in the red response. This means
that response |atencies cannot be compared across different dices (see below).

F. Timing Issues: Theoretical

Assuming that the data are synchronised with the event onsets, there may be theoretical
reasons for investigating aspects of the BOLD response latency (as well as its amplitude).
For example, BOLD responses arisng from blood vessds (eg. veins) tend to have longer
latencies than those from parenchyma (Sead e d., 2001). Though absolute differences in
response latency across brain regions are unlikdy to be informative regarding underlying
neurd activity, since they may smply reflect differences in vasculature?, differences in the
relative response latencies in different conditions may inform theories about the separate

21 Miezin et a (2000), for example, showed that the peak response in motor cortex preceded that in visual cortex

for events in which the motor response succeeded visual stimulation.
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dages of underlying neural processes. Latency estimates may aso correlate better with some
behavioural measures, such as reaction times (Kruggd et a., 2000).

For periodic responses, latency can be estimated easily using Fourier (Rgapakse et d,
1998) or Hilbert (Saad et a. 2001) transforms. For nonperiodic responses, the smplest
gpproach is to congtruct a measure of latency from the trid-averaged response, such as the
linear intercept to the ascending region of the peak response (using a very short Tr, Menon et
al, 1998), or the peak of a spline interpolation through the data (Huettel & McCarthy, 2001).
Other gpproaches estimate the latency directly from a parameterised HRF, using ether linear
or nonlinear (iterative) fitting techniques.

A linear method for edimating latency within the GLM was proposed by Friston et d.
(1998b). Using a firs-order Taylor expanson of the response, these authors showed how the
gandard error of a fitted response can be estimated from the tempora derivative of an HRF.
This approach was extended by Henson et a. (2002a) in order to estimate response latency
directly. If the red response, r(t), is a scaed (by a) verson of an assumed HRF, h(t), but
shifted by asmadl amount dt , then:

r(t) =a h(t +dt) @ h(t) +a hO(t) dt [8]

where h(f) is the first derivative of h(t) with respect to t. If h(t) and hI¢) are used as two
basis functionsin the GLM to estimate the parameters b, and b, respectively, then:

by=a b,=adt => dt=by/by

In other words, the latency shift can be edtimated by the ratio of the derivative to HRF
parameter estimates (a amilar logic can be used for other parameters of the HRF, such as its
disperson). The fird-order gpproximation holds when dt is smdl rdaive to the time-
constants of the response (see Liao et d, 2002, for a more generd treatment, using the first
and second derivatives of a parameter representing the scaling of t). When usng SPM’s
canonical HRF and tempord derivative for example, the approximation is ressoneble for
latency of shifts of +1s reaive to the canonicd HRF. Whole-brain SPMs of differences in
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response latencies can be congtructed smply by comparing the ratios (eg, over subjects) of
the temporal derivative to canonical HRF parameter estimates at every voxel (Figure 9A).2

Other methods use nonlinear (iterative) fitting techniques. These gpproaches are more
powerful (eg., can capture any Sze latency shift), but computationdly expensve (and hence
often redtricted to regions of interest). Various parameterisations of the HRF have been used,
such as a Gaussan function parameterised by amplitude, onset latency and disperson
(Kruggd et d., 1999) or a ganma function parameterised by amplitude, onset latency and
peak latency (Miezin et d., 2000). Henson & Rugg (2001) used SPM’s canonicd HRF with
the amplitude, onset latency and pesk latency parameters free to vary.?® The latter was
goplied to a rapid event-related experiment in which an FIR basis set was used to firg
edimate the mean event-rdlated response to first and second presentations of faces in a
fusform “face ared’. A subsequent nonlinear fit of the canonicad HRF to these deconvolved
data reveded dggnificant differences (over subjects) in the amplitude and pesk latency
parameters, but not in the onset latency parameter (Figure 9B). The most parsmonious
explanation for this pattern is that repetition of a face decreased the duration of underlying
neurd activity (assuming alinear convolution model; see Figure 6C).

A problem with uncorgrained iterdive fitting techniques is tha the parameter
estimates may not be optimal (because of loca minima in the search pace). Parameters that
have corrdated effects compound this problem (e.g., Stuaions can arise in noisy data where
the estimates of onset and peek latency take implausbly large vaues of opposte sign). One
solution is to put priors on the likdy parameter didributions in a Bayesan esimation scheme
(Chapter 11) to “regularise’ the solutions (see Gosd et d, 2001, for an example).

|'V. EFFICIENCY AND OPTIMISATION OF EXPERIMENTAL DESIGN

This section is concerned with optimisng experimenta designs in order to detect particular

effects. The am is to minimise the standard error of a contrast, c'b_(i.e. the denominator of a

22 To alow for voxels in which the approximation breaks down (e.g., for canonical HRF parameter estimates
closeto zero), Henson et al. (2002) applied a sigmoidal squashing function to constrain the ratio estimates.

2 The advantage of a Gaussian HRF is that its onset delay and dispersion are independent, unlike a gamma
HRF (Equation [7]). A problem however is that a Gaussian HRF is not bounded for t<0, and does not allow for
the asymmetry typically found in the BOLD response. A problem with both a Gaussian HRF and a single
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t-statigtic, Chapter 8), given a contrast matrix ¢ and parameter etimates b, whose variance is
(Friston et a, 2000b):

Va{c'b} =s?c’ (SX)"SVS' (SX)'T ¢ [9]

We want to minimise [9] with repect to the design matrix, X, assuming that the filter natrix
S, noise autocorrdation matrix V and noise variance s? ae constant (though the
autocorrelation and noise may in fact depend on the design; see below). If we incorporate S
into X, and assume V=I, then this is eguivdent to maximiang the “efficdency”, e, of a
contrast, defined by:

ec,X) = (s?c’ (X"X)1o)? [10]

This equation can be split into the “noise variance’, s, and the “estimator variance”, XX
(Mechdlli e d., in press-a).%* If one is interested in multiple contrasts, expressed h a matrix
C, and assume s 2 is constant, then the efficiency of adesign can be defined as (Dale, 1999):

e(X) u trace{CT (X" X)1C} [11]

A. Single Event-type Designs

For a sngle event-type, the space of possible experimenta designs can be captured by two
parameters. the minimal SOA (SOAn) and the probability, p, of an event occurring at every
SOAm (Friston et d, 19993). In “determinigtic’ designs, p=1 every fixed multiple of SOAn,
and p=0 otherwise (i.e. a series of events with fixed SOA; Figure 10A). In “stochastic’
designs, O<=p<=1 (producing a range of SOAS). For “dationary” stochagtic designs, O<p<l
is condant, giving an exponentid didribution of SOAS, for “dynamic’ stochastic designs, p
is itsdf a function of time The tempord modulation of p(t) in dynamic stochadtic designs

might be dnusoidd, for example, or a squarewave, corresponding to a blocked desgn. Also

gamma HRF is that they do not allow for a post-peak undershoot. A problem with the double (canonical)
gammaHRF used by Henson & Rugg (2001) isthat the onset latency and peak latency are correl ated.

24 Note that this measure of efficiency is not invariant to the scaling of the contrast vectors ¢, which should
therefore be normalized.
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shown in Figure 10A is the efficiency of each design (to detect a basc impulse response, i.g,
C=[1], assuming a canonical HRF). For short SOA, the blocked design is most efficient,
and the determinidic dedgn least efficient. For Stochadtic designs, efficiency is generdly
maximal when the SOA, isminimda and the (mean) p=0.5 (Friston et &, 1999).

Efficency can dso be conddered in dgnd-processing terms (Josephs & Henson,
1999). In the frequency domain, the HRF can be viewed as a filter. The most efficient
contragt is one that passes maximum “neurd sSgnd” power a the dominant frequency of the
HRF. Since the dominant frequency of a canonical HRF is gpproximately 30s (Figure 6A), a
blocked desgn with minima SOA, (large power) and a cycling frequency close to this
figure (eg, 15s on; 15s off) is very efficient. (Indeed, the mogst efficient design in this case
would be a continuous Snusoidd modulation of neura activity with period of 30s,
corresponding to a delta function at 0.033Hz). The effect of bandpass filtering can dso be
viewed in these terms. Since the HRF and S matrix convolutions are commutative, a sngle
equivaent filter can be caculated (the “effective HRF’, Josephs & Henson, 1999). Blocked
desgns with long cycling periods are undesrable since the mgority of the induced variance
is not passed by the highpass filter (i.e, will be indisinguishable from low-frequency noise).
Determinigic dngle-event designs with a short SOA, will induce high frequency neurd
variance that is not passed by the HRF (or lowpass filter). Stochastic designs however induce
variance over arange of frequencies, so can be reasonably efficient with a short SOA,.

A digtinction has been made between “detection power” and “estimation efficiency”
(Liu e d, 2001; Birn et d, 2002). The former refers to the ability to detect a sgnificant
response; the latter refers to the ability to estimate the shape of the response. The above
examples, which assume a canonicd HRF, relate to “detection power”. The concept of
“edimation efficiency” can be illustrated smply by consdering a more generd bass s,
such as an FIR. Multiple parameters now need to be edtimated (X has multiple columns,
Figure 10B), and efficiency is maximd (Equation [11]) when the covariance between the
columns of X is minimd. In this case (with contras C=l), blocked designs are less efficient
than randomised designs (Figure 10C, snce the FIR regressors are highly corrdaed in
blocked designs). This is the opposte of the dtuation with a sngle canonica HRF, for which
blocked desgns are more efficient than randomised designs. An dterndive perspective is
that the FIR basis functions have more high frequency components, and therefore “pass’
more sSgnd at the higher frequencies that arise from randomised designs (Figure 10D).
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Thus the different condderations of detecting a response versus characterisng the
form of that response require different types of experimental design. Hagberg et d. (2001)
consdered a range of possble SOA digributions (bimoda in the case of blocked designs,
exponentid in the case of fully randomised designs) and showed that “long-tail” distributions
combine reasonable detection power and edtimation efficiency (though uniform ditributions,
such asthose based on a Latin Square, did aswell on empirica data).

B. Multiple Event-type Designs

For multiple event-types, the space d possible designs can be characterised by SOA, and a
“trandtion matrix” (Josephs & Henson, 1999). For N; different event-types, a Ni™ by N;
trangtion matrix captures the probability of an event being of each type, given the higory of
the last 1.m event-types (some examples are shown in Figure 11). A fully randomised design
with two event-types (A and B) has a dmple fird-order trangtion matrix in which each
probability is 0.5. The efficiencies (detection power) of two contragts — [1 1], the man effect
of A and B (versus basdine), and [1 -1], the differentid effect — are shown as a function of
SOA, in Figure 12A. The optimad SOA for the man effect under these conditions (for a
finite sequence) is approximaidy 20s The efficiency of the main effect decreases for shorter
SOAs, wheress the efficiency of the differentid effect increases. The optimd SOA thus
depends on the specific contrast of interest?® Both patterns arise because of the increased
summation of successive responses at shorter SOAS, producing greater overdl signa power.
In the case of the main effect however, this power is moved to low-frequencies that are not
passed by the effective HRF (the signd smply becomes a “raised basding’ that is removed
by the highpass filter, Figure 13A). For the differentid effect, the extra power is maintained
a higher frequencies because of the random modulation of the event-types (i.e, greater
experimentaly-induced variability about the mean sgnd over time, Figure 13B).

Vaious experimentd condrants on multiple event-type designs can adso be
conddered. In some dtuations, the order of event-types might be fixed, and the design
question relates to the optima SOA. For an dternating A-B desgn (where A and B might
reflect trandtions between two perceptud dates for example), the optima SOA for a

2 The main effect, which does not distinguish A and B, is of course equivalent to adeterministic design, while

the differential effect is equivalent to a stochastic design (from the perspective of any one event-type).
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differentid effect is 10s (Figure 12B, i.e, hdf of tha for the main effect)?® In other
gtuations, experimental condraints may limit the SOA, to a least 10s say, and the design
question relates to the optima simulus ordering. An dternding design is more efficient than
a randomised design for such intermediate SOAs (snce randomisation induces more low-
frequency power that is lost to the highpass filter; cf Figures 13B and 13C). However, an
dternating design may not be advisdble for psychologicd reasons (subjects behaviour might
be influenced by the predictable pattern). A permuted design (with second-order transtion
matrix shown in Fgure 11) may be a more suitable choice (Figure 12B). Such a dedgn is
random (counterbalanced) to first order (though fully deterministic to second-order).

A further design concept concerns “null events’ (or “fixation trids’). These are not
red events in that they do not differ from the interevent basdine and are not detectable by
subjects (and hence are not moddled in the design matrix), but were introduced by Dade &
Buckner (1997) to dlow sdective averaging (see Section I1IC). In fact, they are smply a
convenient means of cregting a dochadic desgn by shuffling (permuting) a certain
proportion of null events among the events of interest (and correspond to trandtion matrices
whose columns do not sum to one, Figure 11). From the perspective of multiple event-type
designs, the reason for null events is to buy efficiency to both the main effect and differentid
effect at short SOA, (a a dight cost to the efficiency for the differentid effect; Figure 12C).
In other words, they provide better estimation efficiency in order to characterise the shape of
the response at short SOA, (by effectively producing an exponentia distribution of SOAS).

The efficiencies show in Figure 12 are unlikdy to map smply (eg. linearly) onto the
gze of the t-datigsic. Nonethdess, if the noise variance (Equation [9]) is independent of
experimentd design, the reationship should a least be monotonic (i.e. provide a rank
ordering of the dtatisticd power of different desgns). Mechdli et a. (in press-a) showed that
the noise variance differed sgnificantly between a blocked and a randomised design (both
modded with events, cf. Figures 5B and 5C). This suggests that the stimulus ordering did
affect unmoddled psychologica or physiologicd effects in this dataset, contributing to the
resdud error (noise). When the data were highpass filtered however, the noise variance no
longer differed sgnificantly between the two designs. In this case, the Satistical results were

in agreement with the relive efficiencies predicted from the estimation variances.

2 This is the extreme case of a blocked design, with the alternation of longer runs of A and B becoming more

efficient as the SOA decreases (Figure 12D; i.e, the reason for blocking diminishes as the SOA increases).
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Findly, note thet the predictions in Figure 12 ae based on the LTI modd;
nonlinearities ensure that the effidency of the differentid effect does not incresse
indefinitely as the SOA tends to zero. In fact, the induson of nonlinearities in the form of
the second-order Volterra kernel derived from one dataset (Friston et d., 1998a; Chapter 11)
suggests that efficiency continues to increase down to SOAS of 1s (after which it reverses),
despite the presence of nonlinearities for SOAs bdow approximately 8s (Figure 12A inset).
Nonetheless, differentia responses have been detected with SOASs as short as 0.5s (Burock et
al, 1998).

V. WORKED EXAMPLE

In this section, some of the above ideas are illudtrated in a sngle-sesson event-related MR
dataset derived from one of the 12 subjects reported in Henson et d. (2002b), and fredy
avalable from the SPM webgte http://www.fil.ion.ud.ac.uk/spm/data#SPMO0OAdVEFMRI.
Events were 500ms presentations of faces, to which the subject made a famous/nonfamous
decison with the index and middle fingers of ther right hand. One hdf of the faces were

famous, one hdf were novd (unfamiliar), and each face was presented twice during the

sesson, producing a 2x2 factorid design congsting of first and second presentations of nove
and famous faces (conditions N1, N2, F1 and F2 respectively, each containing N=26 events).
To these 104 events, 52 null events were added and the whole sequence permuted. This
meant that the order of nove/famous faces was pseudorandomised (given the finite
sequence), though the order of fird and second presentations, while intermixed, was
condrained by the fact that second presentations were necessarily later than fird
presentations on average. SOAmin was 4.5s, but varied near-exponentidly over multiples of
SOAmin owing to the null events. The timesaries comprised 351 images acquired
continuoudy with a Tr of 2s. The images were redigned spatidly, dice-time corrected to the
middle dice, normaised with a bilinear interpolation to 3x3x3mm voxes (Chapter 3) and
smoothed with an isotropic Gaussan FWHM of 8mm. The ratio of SOAmin to Tr ensured an
effective peristimulus sampling rate of 2Hz.

Analyses were peformed with SPM99. Events were modelled with Nyx=3 basis
functions condging of the canonicd HRF, its tempora derivative and its disperson
derivative. The resolution of the smulated BOLD dgna was st to 83ms (T=24) and the
event onsats synchronised with the middle dice (T0O=12). Also included in each modd were
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6 user-specified regressors derived from  the rigid-body redignment parameters (3
trandations and 3 rotations) to mode residud (linear) movement effects®’ A highpass filter
with cutoff 120s was applied to both model and data, together with an AR(1) modd for the
resdua tempord autocorrdation (Section I1C). No global scding was used. Two different
modes are consdered below: a “categorical” one and a “parametric’ one. In the categorica
modd, each event-type is moddled separatedly (Ni=4). In the parametric mode, a single
event-type representing al faces is modulated by ther familiarity and the “lag” dnce ther
last presentation.

A. Categorical Model

The desgn marix for the Categoricd modd is shown in Figure 14A. A (modified) effects
of-interest Fcontrast, corresponding to a reduced Ftest on the first 12 columns of the design
matrix (i.e, removing linear movement effects), is shown in Fgure 14B and the resulting
SPM{F} in Figure 14C. The asociated degrees of freedom [9,153] derive from the
autocorrelaion estimated from the AR(1) mode®®. Severa regions, most notably in bilatera
posterior inferior tempord, laterd occipitd, left motor and right prefrontd cortices, show
some form of rdiable response to the events (versus baseline). Note that these responses
could be activations (podtive amplitude) or deactivations (negative amplitude), and may
differ across the event-types. A T-contragt like that inset in Figure 14B would test a more
congrained hypothesis, namely that the response is postive when averaged across dl event-
types, and is a more powerful test for such responses (producing many more sgnificant
voxels in this dataset). Also inset in Figure 14C is the SPM{F} from an F-contrast on the
redlignment parameters, in which movement effects can be seen a the edge of the brain.

The parameter estimates (plotting the modified effects-of-interest contrast) and best-
fitting event-rdated responses for a right fusform region (close to what has been cdled the

27 One might also include the temporal derivatives of the realignment parameters, and higher-order interactions
between them, in a Volterra approximation to residual movement effects (regardless of their cause). Note also
that the (rare) events for which the fame decision was erroneous could be modelled as a separate event-type
(since they may involve physiological changes that are not typical of face recognition). This was performed in
the demonstration on the website, but isignored here for simplicity

2 Applying a lowpass HRF smoothing instead (Section 11C) resulted in degrees of freedom [10,106] and fewer
significant voxels, while using a ReML estimation of an AR(1)+white noise model resulted in degrees of

freedom [11,238] and agreater number of significant voxels.
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“Fudform Face Ared’, Kanwisher e d, 1997) are shown in Figure 15A and 15B. Firg
presentations of famous faces produced the greatest response. Furthermore, responses in this
region appear to be dightly earlier and narrower than the canonica response (indicated by
the positive parameter estimates for the temporal and dispersion derivatives).?

There are three obvious further effects of interest: the main effects of familiarity and
repetition, and their interaction. The results from an F-contrast for the repetition effect are
shown in Fgure 15C, after inclusve masking with the effects-of-interest F-contrast in Figure
14C. This mask redricts analyss to regions that are generdly responsve to faces (without
needing a separate face-locaiser scan, cf. Kanwisher et a, 1997), and could be used for a
gmdl-volume correction (Cheapter 14). Note that this masking is facilitated by the incluson
of null events (othewise the main effect of faces versus basdine could not be estimated
efidetly, Section 1VB). Note dso that the efficiency of the repetition effect is
approximately 85% of that for the familiarity and interaction effects (usng Equation [11] for
the corresponding F-contrasts). This reflects the unbalanced order of firds and secord
presentations, meaning that more low-frequency sgnd power is logt to the highpass filter.
Incidentaly, the incluson of the movement parameters reduced the efficiency of these
contrasts by only 97%.

The contrast of parameter estimates and fitted responses for the single right posterior
occipitotempora  region identified by the repetition contrast are shown in Fgure 15D.
Differentid effects were seen on dl three basis functions, and represent decreased responses
to repeated faces.*°

Figure 16A shows the desgn matrix usng a more generd FIR bass sat of Nc=16, 2s
timebins The effectsof-interest contrast (Figure 16B) reveds a subset of the regions
identified with the canonical bass st (cf. Figures 16C and 14C). The absence of additiona
regions usng the FIR modd suggests that no region exhibited a reiable event-related
response with a noncanonica form (though this may reflect lack of power). Figure 16D
shows the parameter edimaes from the right fusform region, which clearly demondrae
canonicd-like impulse responses for the four event-types. No right occipito-tempora region
was identified by an F-contrast testing for the repetition effect (inset in Figure 16C) when

29 Indeed, several occipitotemporal regions were identified by an F-contrast on the temporal derivative alone,
demonstrating the importance of alowing for variability about the canonical form (reducing the residual error).
30 Note that the difference in the temporal derivative parameter estimates does not imply a difference in latency,

given the concurrent difference in canonical parameter estimates (Henson et a, 2002; Section IVF).
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usng the FIR basis set. This reflects the reduced power of this uncongtrained contrast. Note
that congraints can be imposed on the contrasts, as illustrated by the T-contrast inset in
Figure 16B, which corresponds to a canonica HRF.

B. Parametric Modd

In this modd, a sngle event-type was defined (collgpsing the onsats for the four event-types
above), which was modulated by three parametric modulations (Section 1IA). The first
modelled how the response varied according to the recency with which a face had been seen
(a suggesion made by Karl Frigon, offering a continuous perspective on “repetition”). This
was achieved by an exponentid parametric modulation of the form:

aj = el

where L; is the “lag” for the jth face presentetion, defined as the number of stimuli between
that presentation and the previous presentation of that face3' Thus as lag incresses, the
modulation decreases. For first presentations, Lj=¥ and the modulation is zero® (though it
becomes negative after mean-correction).

The second parametric modulation had a binary vadue of 1 or -1, indicating whether
the face was famous or novd; the third modulaion was the interaction between face
familiarity and lag (i.e, the product of the fird and second modulations after mean
correction). Each modulation was applied to the three tempora basis functions, producing the
desgn matrix in Fgure 17A. The F-contragt for the man effect of faces versus basdine
(upper contrast in Figure 17B) identified regions smilar to those identified by the effects-of-
interest contrast in the Categoricd model above (since the modds span smilar spaces). As
expected, the F-contrast for the lag effect (lower contrast in Figure 17B), after masking with
the main effect, reveded the same right occipitotempord region (Figure 17C) that showed a
man effect of repetition in the Categoricd modd. The bedt-fitting event-related parametric

31 The choice of an exponential function (rather than, say, a polynomial expansion) was based simply on the
observation that many biological processes have exponential time-dependency. The half-life of the function (50)
was somewhat arbitrary; ideally it would be derived empirically from a separate dataset.

32 This was for both famous and novel faces, though face familiarity could also be modelled this way by setting

Lj=¥ for N1, and Lj=M for F1, where M isalarge number (or some subjective recency rating).
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reponse in Figure 17D shows that the response increases with lag, suggesting that the
repetition-related decrease observed in the Categoricd mode may be transent (consstent
with the gmilar lag effect found when a parametric modulation was agpplied to second
presentations only; Henson et a, 2000b).

Acknowledgements
This work is funded by Welcome Trust Fellowship 060924. The author would like to thank
John Ashburner, Karl Friston, Dan Glaser and Will Penny for their comments.



32

References

Aguirre, G. K., Zarahn, E., D'Esposito, M. 1998. The variability of human, BOLD
hemodynamic responses. Neuroimage 8:360-9

Birn, R. M., Cox, R.W. and Bandettini, P. A. 2002. Detection versus estimation in event-
related fMRI: choosing the optimd simulus timing. Neuroimage, 15:252-264.

Birn, R. M., Saad, Z. S,, Bandettini, P. A. 2001. Spatial heterogeneity of the nonlinear
dynamicsin the fmri bold response. Neuroimage 14:817-26.

Boynton GM Engd SA Glover GH and Heeger DJ. (1996) Linear systems anadys's of
functional magnetic resonance imaging in human V1. J Neurosci. 16:4207-4221

Bullmore ET Brammer MJ Williams SCR Rabe-Hesketh S Janot N David A MédllersJ
Howard R and Sham P. (1996) Statistical methods of estimation and inference for
functiond MR images. Mag. Res. Med. 35:261-277

Burock, M. A., Dae, A. M. 2000. Estimation and detection of event-related fMRI Sgnds
with temporaly correlated noise: a gatigticaly efficient and unbiased approach. Hum
Brain Mapp 11:249-60.

Burock MA Buckner RL Woldorff MG Rosen BR and Dae AM. (1998) Randomized Event-
Rdated Experimenta Designs Allow for Extremely Rapid Presentation Rates Using
Functiond MRI. NeuroReport 9:3735-3739

Chawla, D., Rees, G., Friston, K. J. 1999. The physiologica bass of attentiona modulation
in extradtriate visual areas. Nat Neurosci 2:671-6

Dae A and Buckner R. (1997) Sdlective averaging of rapidly presented individud trias
usng fMRI. Hum Brain Mapp. 5:329-340

Dae, A. M. 1999. Optima experimentd design for event-related fMRI. Hum Brain Mapp
8:109-14

Fransson, P., Kruger, G., Merboldt, K. D., Frahm, J. 1999. MRI of functiona deactivation:
tempord and spatia characterigtics of oxygenationsengtive reponsesin human
visud cortex. Neuroimage 9:611-8

Frigon KJ Jezzard PJand Turner R. (1994) Andysis of functiond MRI time-series Hum.
Brain Mapp. 1:153-171

Friston KJ Josephs O Rees G and Turner R. (1998a) Non-linear event-related responsesin
fMRI. Mag. Res. Med. 39:41-52

Friston KJ Fletcher P Josephs O Holmes A Rugg MD and Turner R. (1998b) Event-related
fMRI: Characterizing differential responses. Neurolmage 7:30-40



33

Friston KJ, Zarahn E, Josephs O, Henson RN, Dale AM (1999a) Stochastic designsin event-
related fMRI. Neurolmage. 10:607-19.

Friston KJ, Mechdlli A, Turner R, Price CJ.(2000a) Nonlinear responsesin fMRI: the
Bdloon modd, Volterrakernds, and other hemodynamics. Neurolmage. 12:466-77.

Friston KJ, Josephs O, Zarahn E, Holmes AP, Rouquette S, Poline J. (2000b) To smooth or
not to smooth? Bias and efficiency in fMRI time-series andyss. Neurolmage.
12:196-208.

Friston, K.J, Glaser, D.E, Henson, R.N.A, Kiebd, S, Phillips, C., Ashburner, J. (2002).
Classcd and Bayesan inference in neuroimaging: Applications. Neuroimage, 16,
484-512.

Glover, G. H. 1999. Deconvolution of impulse response in event-related BOLD fMRI.
Neuroimage 9:416-29

Gosd, C., Fahrmeir, L., Auer, D. P. 2001. Bayesian modding of the hemodynamic response
function in BOLD fMRI. Neuroimage 14:140-8.

Hagberg, G. E., Zito, G., Patrig, F., Sanes, J. N. 2001. Improved detection of event-related
functiond MRI sgnds using probability functions. Neuroimage 14:1193-205.
Henson, R., Andersson, J., Friston, K. 2000. Multivariate SPM: Application to bassfunction

characterisations of event-related fMRI responses. Neuroimage (HBM0OO) 11:468

Henson, R. N. A., Buechd, C., Josephs, O., Friston, K. 1999a. The dice-timing problemin
event-related fMRI. Neuroimage (HBM99) 9:125

Henson, R.N.A., Price, C., Rugg, M.D., Turner, R. & Friston, K. 2002a. Detecting latency
differencesin event-related BOLD responses. gpplication to words versus nonwords,
and initid versus repeated face presentations. Neuroimage, 15: 83-97.

Henson, R. N. A, Rugg, M. D. 2001. Effects of stimulus repetition on latency of the BOLD
impulse response. Neuroimage (HBMO1) 13:683

Henson, R. N. A., Rugg, M. D., Friston, K. J. 2001. The choice of basis functionsin event-
related fMRI. Neuroimage (HBMO1) 13:149

Henson, R. N. A., Rugg, M. D., Shdlice, T., Josephs, O., Dolan, R. 1999b. Recollection and
familiarity in recognition memory: an event-related fMRI study. Journal of
Neuroscience 19:3962-3972.

Henson, R., Shdlice, T., and Dolan, R. 2000b. Neuroimaging evidence for dissociable forms
of repetition priming. Science, 287: 1269-72.



Henson, R.N.A, Shdlice, T., Gorno-Tempini, M.-L., Dolan, R.J 2002b. Face repetition
effectsin implicit and explicit memory tests as measured by fMRI. Cerebra Cortex,
12: 178-186.

Hinrichs, H., Scholz, M., Tempemann, C., Woldorff, M. G., Dde, A. M., Heinze, H. J. 2000.
Deconvolution of event-related fMRI responses in fast-rate experimentd designs.
tracking amplitude variations. J Cogn Neurosci 12:76-89.

Huettd, S. A., McCarthy, G. 2001. Regiond Differencesin the Refractory Period of the
Hemodynamic Response: An Event-Related fMRI Study. Neuroimage 14:967-76.

Johnson, M. K., Nolde, S. F., Mather, M., Kounios, J., Schacter, D. L., Curran, T. 1997. Test
format can affect the Smilarity of brain activity associated with true and false
recognition memory. Psychological Science 8:250-257

Josephs O Turner R and Friston KJ. (1997) Event-related fMRI Hum. Brain Mapp. 5:243-
248

Josephs O and Henson RNA. (1999) Event-rdated fMRI: moddling, inference and
optimisation. Phil. Trans. Roy. Soc. London, 354:1215-1228

Kanwisher N. McDermott J., Chun, M. M. 1997. The fusform face areac amodule in human
extrastriate cortex specialised for face perception. J. of Neurosci. 17: 4302-4311.

Kleinschmidt, A., Buchd, C., Zeki, S, Frackowiak, R. S. 1998. Human brain activity during
spontaneoudy reversing perception of ambiguous figures. Proc R Soc Lond B Bial
Sci 265:2427-33

Kruggel F and von Cramon DY (1999). Tempord properties of the hemodynamic responsein
functional MRI. Hum. Brain Mapp. 8:259-271

Kruggd, F., von Cramon, D. Y. 1999. Modding the hemodynamic response in single-trid
functional MRI experiments. Magn Reson Med 42:787-97

Kruggd, F., Zysst, S., von Cramon, D. Y. 2000. Nonlinear regression of functiond MRI
data: an item recognition task sudy. Neuroimage 12:173-83.

Lee A.T., Glover, G. H., Meyer, C. H. 1995. Discrimination of large venous vessals in time-
course spira blood- oxygenation-leve- dependent magnetic- resonance functiond
imaging. Magnetic Resonance in Medicine 33:745-754

Liao, C. H., Wordey, K. J,, Poline, J-B., Duncan, G. H., Evans, A. C. 2002. Egtimating the
delay of the hemodynamic response in fMRI data. Neuroimage, 16, 593-606.

Liu, T. T., Frank, L. R., Wong, E. C., Buxton, R. B. 2001. Detection power, estimation
efficiency, and predictability in event-related fMRI. Neuroimage 13:759-73.



Maonek, D., Grinvald, A. 1996. Interactions between eectrical activity and cortical
microcirculaion revealed by imaging spectroscopy: implications for functiond brain
mapping. Science 272:551-4

Mechdli, A., Price, C. J, Henson, R. N. A., Friston, K. J. in press-a The effect of highpass
filtering on the efficiency of response estimation: a comparison between blocked and
randomised designs. Neuroimage.

Mechdlli, A., Henson, R. N. A., Price, C. J,, Friston, K. J. in press-b. Comparing event-
related and epoch andlysisin blocked design fMRI. Neuroimage.

Menon, R. S,, Luknowsky, D. C., Gadti, J. S. 1998. Menta chronometry using latency-
resolved functional MRI. Proc Natl Acad Sci U SA 95:10902-7

Miezin, F. M., Maccotta, L., Ollinger, J. M., Petersen, S. E., Buckner, R. L. 2000.
Characterizing the hemodynamic response: effects of presentation rate, sampling
procedure, and the possibility of ordering brain activity based on relative timing.
Neuroimage 11:735-59.

Ollinger, J. M., Shulman, G. L., Corbetta, M. 2001. Separating processes within atrid in
event-related functiona MRI. Neuroimage 13:210-7.

Pollmann, S., Wiggins, C. J,, Norris, D. G., von Cramon, D. Y., Schubert, T. 1998. Use of
short intertrid intervalsin Sngle-trid experiments a 3T fMRI-study. Neuroimage
8:327-39.

Portas, C. M., Strange, B. A., Friston, K. J,, Dolan, R. J., Frith, C. D. 2000. How does the
brain sustain avisual percept? Proc R Soc Lond B Biol Sci 267:845-50.

Purdon PL and Weisskoff RM (1998) Effect of tempora autocorrelation due to physologica
noise and simulus paradigm on voxd-leve fdse-postive ratesin fMRI.

Hum Brain Mapp. 6:239-495

Price, C. J.,, Veltman, D. J., Ashburner, J., Josephs, O., Friston, K. J. 1999. The critica
relaionship between the timing of stimulus presentation and data acquidtion in
blocked designs with fMRI. Neuroimage 10:36-44

Raapakse, J. C., Kruggd, F., Maisog, J. M., von Cramon, D. Y. 1998. Modding
hemodynamic response for analyss of functiona MRI time-series. Hum Brain Mapp
6:283-300

Rugg, M. D., Henson, R. N. A. 2002. Episodic memory retrieva: an (event-related)
functiona neuroimaging perspective. In The cognitive neuroscience of memory

35



36

encoding and retrieva. Eds. A. E. Parker, E. L. Wilding, T. Bussey. Hove:
Psychology Press.

Saad, Z. S, Ropella, K. M., Cox, R. W., DeYoe, E. A. 2001. Analysis and use of FMRI
response delays. Hum Brain Mapp 13:74-93.

Schacter, D. L., Buckner, R. L., Koutstaal, W., Dae, A. M., Rosen, B. R. 1997. Late onset of
anterior prefrontd activity during true and fase recognition: an event-related fMRI
study. Neuroimage 6:259- 269

Strange, B. A., Henson, R. N., Friston, K. J,, Dolan, R. J. 2000. Brain mechanisms for
detecting perceptua, semantic, and emotiona deviance. Neuroimage 12:425-33.

Turner R Howseman A Rees GE Josephs O and Friston K (1998). Functional magnetic
resonance imaging of the human brain: data acquisition and andyss. Exp. Brain Res.
1235-12.

Vazquez AL and Noll CD. (1998) Nonlinear aspects of the BOLD response in functional
MRI. Neurolmage 7:108-118

Woolrich, M. W., Ripley, B. D., Brady, M., Smith, S. M. 2001. Tempora Autocorrelation in
Univariate Linear Modding of FMRI Data. Neuroimage 14:1370-86.

Wordey KJ, Liao, CH, Aston, J, Petre, V, Duncan, GH, Morales, F & Evans, AC (2002). A
generd datistical andysisfor fMRI data. Neuroimage, 15:1-15.

Wordey KJand Friston KJ. (1995) Analyss of fMRI time-seriesrevisted - again.
Neurolmage 2:173-181

Zarahn, E. 2000. Tegting for neura responses during tempora components of trials with
BOLD fMRI. Neuroimage 11:783-96.

Zarahn, E., Aguirre, G., D'Esposito, M. 1997. A tria-based experimenta design for fMRI.
Neuroimage 6:122-38

Zarahn E Aguirre GK and D'Esposito M. (1997) Empirica andyses of BOLD fMRI
datigtics | Spatidly unsmoothed data collected under null-hypothesis conditions.
Neurolmage 5:179-197



37

Figure Legends

Figurel

Stimulus, neurd and haemodynamic modds. (A) Stimulus modd, gt), for squarewave
dimulation (32s on, 32s off) convolved with one of severa possible epoch response function
sets, r(t), offered by SPM99 (clockwise: boxcar, boxcar plus exponentid decay, hadfsine and
DCT; boxcar plus exponentia decay chosen here) to produce the predicted neurd signa u(t).
(B) Neurd sgnd convolved with a canonica HRF, h(t), to produce the predicted BOLD
dgnd, x(t). (C) An dternative modd of sguarewave simulaion in terms of deta functions
every 2s (green) predicts a BOLD response smilar to a boxcar epoch-response (blue) after
scding.

Figure 2

Cregtion of regressors for desgn matrix. Predicted BOLD dgnd x(t) from Figure 1B,
samulated every di=Tr/T seconds, is downsampled every Tr a timepoint TO to creste the
columns x; (boxcar) and X, (exponentid decay) of the desgn matrix (together with the mean
or congtant term x3). Two possble sample points are shown: a the middle and end of a 2s

SCan.

Figure3

Power spectra, highpass filtering and HRF convolution. Schematic power spectrum and
timeseries (inset) for (A) subject a redt, (B) after squarewave stimulation a 32s on, 32s off
(C) after highpass filtering with cutoff 64s (D). Red data (blue) and low-frequency drift
(black) fitted by DCT highpass filter matrix S (cutoff 168s) derived from the globd
maximum in a 42s on; 42s off auditory blocked design (Tr=79). (E) Fits of a boxcar epoch
mode with (red) and without (black) convolution by a canonical HRF, together with the data,
after gpplication of the highpass filter. (F) Resduds after fits of modds with and without
HRF convolution: note large systemdtic errors for model without HRF convolution (black) at
onset of each block, corresponding to (nonwhite) harmonics of the simulation frequency in
the resdual power spectrum (inset).

Figure4
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Modds of fMRI tempora autocorrelation. Power spectra and autocorrelation functions for:
(A) data (solid black), derived from an AR(16) estimation of the mean, globally-normalised
resduds from one dice (z=0) of an event-related dataset (described in Section V), together
with fits of an AR(1) modd (dashed blue) and 1/f amplitude mode (dashed red); (B) high-
(dot-dash) and low- (dotted) pass filters, comprisng a bandpass filter (dashed); (C) data and
both models after bandpass filtering (note that bandpass filter characterigics in (B) would
aso provide a reasonable approximation to resdua autocorrelation); (D) data (solid black)
and ReML fit of AR(1)+white noise modd (dashed blue) after highpass filtering (aso $iown
is the bandpass filter power spectrum, demondrating the high frequency information that
would be logt by lowpass smoothing).

Figure5

Blocked and Randomised designs. Smulated data (black), neurd mode (blue) and schematic
fitted response (red) for two event-types (A and B) presented with SOA=5s for (A) Blocked
desgn and boxcar epoch modd; (B) Randomised design and event-rdated mode; (C)
Blocked design and event-related model; (D) Blocked design and response from a boxcar
epoch model, neurd modd illugtrates that equivalent response to A and B blocks does not
diginguish item (event-related) effects from state (epoch-related) effects.

Figure6

The BOLD response. (A) Typica (canonica) impulse response (power spectrum insgt). (B)
BOLD dgnd predicted from linear convolution by canonicd impulse response of
squarewave neurd activity of increasng durations 200ms to 16s. (C) BOLD sgnd predicted
for two event-types (red and blue) with squarewave neura activities of different (top-to-
bottom) megnitude, onset, duration with same integrated activity, and duration with same
mean activity. Verticd lines show peak of resulting BOLD response.

Figure7

Tempora bass functions offered by SPM, Ty=32s. (A) FIR basis set, N¢=16; (B) Fourier
bass set, N&=8; (C) Gamma functions, Nx=3. (D) Canonicd HRF (red) and its tempora
(blue) and digperson (green) derivatives. The tempord derivative is approximated by the
orthogondised finite difference between canonicd HRFs with pesk delay of 7s versus 6s, the
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disperson deivative is  goproximated by the orthogondised finite difference between
canonical HRFs with peak dispersons of 1 versus 1.01.

Figure8

Effective Sampling Rate. Schematic (left) of stimulus event onsets rddive to scan onsets
(tal verticd lines represent firgt dice per scan; shorter lines represent subsequent dices) and
resulting peristimulus sampling points (right).

Figure9

Edimating BOLD impulse response latency. (A) Top left: The canonicad HRF (red) together
with HRFs shifted 1s earlier (green) or laer (yelow) in time. Top Right: The canonicd HRF
and its tempord derivative. Middle Left: Parameter edimaes for canonicd (%) and
derivative (%) associated with fit to HRFs above. Middle Right: Right fusform region
showing differential latency when tested across subjects (Henson et a, 2002, the superset of
data in Section V). Bottom Left: rdationship between the latency difference relaive to the
canonicad HRF (dt) and the ratio of derivativecanonica parameter estimates ([3/13;). Bottom
Right: Canonicd and derivative parameter edimates from right fusform region above for
firss (F1) and second (F2) presentations of famous faces. (B) Event-related data (top)
sampled every 0.5s from maximum of right fusform region (+48, -54, -24) in (A) for F1
(solid) and F2 (dotted), fitted by HRF parameterised by pesk amplitude, peak delay and onset
dday (inset) usng Nelder-Mead iterative search, to give fitted responses (bottom) in which
amplitude and pesk latency, but not onset latency, differ Sgnificantly following repetition
(using nonparametric tests across subjects, Henson & Rugg, 2001).

Figure 10

Efficency for a sngle event-type. (A) Probability of event each SOAmin (left column) and
effidency (right column, increesing left-to-right) for a deterministic design with SOA=8s (1%
row), a dationary stochastic (randomised) design with p=05 (2" row) and dynamic
stochastic designs with modulations of p(t) by different sinusoidd frequencies (3¢ to 5™
rows) and in a blocked manner every 32s (6" row). (B) Design matrices for randomised
(Ran) and blocked (BIk) designs moddled with an FIR bads set (FIR, bindze=4s) or
canonical response function (Can), mean p=0.5, SOAmin=2s, Tr=1s, block length=20s. (C)
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Efficiencies for the four modes (note change of scde between Can and FIR modds). (D)
Power spectrafor the four models (note change of scale between Ran and Blk models).

Figure1l

Example trangtion matrices.

Figure 12

Efficency for two event-types. Efficiency is expressed in terms of “estimated measurable
power” (EMP) passed by an effective HRF, characterised by a canonicd HRF, highpass filter
with cutoff period of 60s and lowpass smoothing by a Gaussan 4s FWHM, as a function of
SOAmin for main (solid) effect ([1 1] contrest) and differentid (dashed) effect ([1 —1]
contrast). (A) Randomised dedgn. Insat is the efficency for the differentid effect with
nonlinear saturation (solid) predicted from a second-order Volterra expanson (Friston et d,
1998). (B) Alternating (black) and Permuted (blue) designs. (C) With (green) and without
(red) null events. (D) Blocked desgns with runs of one (dotted), two (dot-dash) or four
(dashed) stimuli, eg., ABABABAB..., AABBAABB... and AAAABBBB respectively.

Figure 13

Frequency perspective on efficency for two event-types. Timeseries and power spectra, after
canonicd HRF convolution, with SOAs of 2s (left) and 16s (right), for (A) main effect, (B)
differentid effect in randomised design, (C) differentid effect in an dternating design.
Highpassfilter indicated as black dotted line in power spectra.

Figure 14

Categoricd Modd: effects of interest. (A) Desgn matrix. (B) F-contrast for effects of
interest (inset is T-contrast that tests for podtive mean parameter estimate for canonical
HRF). (C) SPM{F} MIP for effects of interest Fcontrast, thresholded a p<.05 whole-brain
corrected, together with SPM tabulated output (inset is SPM{F} for contrast on movement
parameters, also at p<.05 corrected).

Figure 15
Categoricadl Modd: repetition effect. (A) Parameter edtimates (scae arbitrary) from loca
maximum in right fusform (+45, -48, -27), ordered by condition - N1, N2, F1, F2 - and
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within each condition by bads function - canonicad HRF, tempora derivative and disperson
derivative. (B) Fitted event-related responses (solid) and adjusted data (dots) in terms of
percentage signa change (relaive to grand mean over space and time) againg PST for N1
(red), N2 (blue), F1 (green) and F2 (cyan). (C). SPM{F} MIP for repetition effect contrast
(inset), thresholded a p<.001 uncorrected, after inclusve masking with effects of interest
(Figure 12) at p<.05 corrected. (D) Contrast of parameter estimates for repetition effect
(difference between first and second presentations) in right occipitotempora region (+45 -63
-15) for canonicd HRF, tempord derivaive and disperson derivative, together with fitted
responses (solid) + one standard error (dashed).

Figure 16

Categoricadl Modd: FIR bass sat. (A) Desgn Matrix. (B) Effects of interest F-contrast
(canonicd HRF weighted T-contrast inset). (C) SPM{F} MIP for effects of interes,
thresholded at p<.05 whole-brain corrected, together with SPM tabulated output (inset is
SPM{F} for unconsgtrained repetition effect F-contrast, thresholded a p<.005 uncorrected).
(D) Parameter estimates for effects of interest from right fusform region (+45, -48, -27), as
in Figure 15A, ordered by condition - N1, N2, F1, F2 - and within each condition by the 16
basis functions (i.e., mean response every 2s from 0-32s PST).

Figure 17

Parametric Moddl (A) Design Matrix, columns ordered by bass function — canonicd HRF,
tempordl derivative, digperson derivative — and within each bads function by parametric
effect — man effect, lag, familiaity, lag-x-familiaity. (B) F-contrasts for main effect (top)
and lag effect (bottom). (C) SPM{F} MIP for lag effect, together with SPM tabulated output,
thresholded a p<.005 uncorrected, after inclusve masking with man effect a p<.05
corrected. (D) Parametric plot of fitted response from right occipitotempora region (+45 -60
-15), close to that in Figure 15C, in terms of percentage signa change versus PST and Lag
(infinite lag vaues for firgt presentations not shown).
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B High and Lowpass filter
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Design

A. Randomised

B. Alternating

C. Permuted

D. “Null events’

Transition Matrix

A B
A 0.5 0.5
B 0.5 0.5
A 0 1
B 1 0
AA 0] 1
AB 0.5 0.5
BA 0.5 0.5
BB 1 0
A 033 | 0.33
B 033 | 0.33

Example Sequence

ABBBAABABAAAAB....

ABABABABABABAB....

ABBABAABBABABA....

ABB--B-A---AABA--B....

Figure 11
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response at [45, —48, -27]
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Figure 16
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