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Abstract

Several suggestions for introducing explicit forgetting in arti�cial neural networks

have been studied for Willshaw Net and Hop�eld Net models of distributed, as-

sociative memory. Such forgetting allows a network to function as a short-term

memory, or \palimpsest". Then continuous learning does not result in eventual

catastrophic failure of the memory, but rather the e�ective storage of a well-

de�ned number of recent memories, accompanied by the progressive forgetting of

older ones. The suggestions have been implemented in sizeable networks and their

performances compared. They have also been studied mathematically and brie
y

reviewed from physiological, psychological and implementational perspectives.
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Chapter 1

Introduction

1.1 Overview of Project

The advent of arti�cial neural networks has allowed computational modelling of

psychological theories of distributed, associative memory. One characteristic of

these models is a limited capacity for information storage which, when exceeded,

typically results in complete failure of the model as a memory device. There is

no doubt that animal memories have a �nite capacity, but such sudden failure of

all memories is never observed. This suggests that an important part of animal

memory involves \freeing" capacity by some forgetting of information.

Irrespective of psychological modelling, there may well be practical situations

where a neural network is required to temporarily store inde�nite amounts of new

information. This can only be achieved by replacing old information with new, as

e�ectively and e�ciently as possible.

The objective of this project is then to examine suggestions for incorporation

of forgetting in neural networks. The objective has been met by the implementa-

tion of seven main proposals: four identi�ed in recent research papers and three

proposed by the author. In the literature, the proposals have been framed in the

context of two basic neural network models: the Willshaw Net and the Hop�eld

Net. The end result is three proposals for the Willshaw Net and four for Hop�eld

Nets.

Simulation data have shown all methods to be e�ective, though they di�er

in theoretical and practical capacities, and also in biological plausibility. Com-

parison of the proposals has involved their model-independent classi�cation and
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engendered a more general understanding of the nature of forgetting in distributed

memories.

1.2 Background

1.2.1 Associative Memories

From psychological theories of human and animal learning has come the idea of

associative memories. These store information by learning correlations between

di�erent stimuli. A high correlation between two stimuli means that, when one is

presented as a memory cue, the other is likely to be retrieved as a consequence:

the two have become associated with each other in memory.

This correlation has two aspects. One is the frequency with which the two

stimuli co-occur during learning (as in classical conditioning). This aspect is not

relevant here, since the interest shall be con�ned to the amount learnt in one

presentation of stimuli (so-called one-shot learning).

The second aspect involves the nature of the stimuli themselves. By considering

them as comprised of a number of component features, correlations can be learnt

between some features, but not others. It might be that common features are

\reinforced", whereas features not shared by both stimuli are \ignored". Then the

stored information is distributed in the sense that it is shared amongst numerous

correlations between individual features.

Distributed, associative memory can be contrasted to other types of memory,

such as that found in a conventional computer. Here, information is not gradually

learnt from co-occurrences of data, but is simply \placed" in a number of specially

set-aside locations by an inbuilt routine. Each location has a particular address,

and information is retrieved by returning the contents of a given address. However,

the address and its contents need not share any features in common.

Since it is the actual nature of the cue that is important in associative mem-

ories, not an arbitrary address, the former are sometimes said to exhibit content-

addressibility. To see this, consider a case where the cue is not completely correct.

In a conventional computer, an incorrect address would simply result in the wrong
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piece of information being retrieved. In a distributed memory on the other hand,

it may still be possible to retrieve the information if the cue is su�ciently similar

to the associated stimulus.

1.2.2 Neural Networks

Neural Networks, or Connectionist Models, o�er an architecture in which the

natural form of memory is distributed. A typical net consists of a number of units,

each of which can be thought as representing a particular feature. The presence,

absence, or \degree" of a feature in a particular stimulus then corresponds to the

activation of that unit. A stimulus maps to a pattern of activity over the units.

Associations are learnt by changing the strength of connections between units.

The connections determine how unit activations interact; speci�cally their weights

determine how much activation is \passed" from one unit to another. Learning

typically involves presenting stimuli, and then strengthening weights between units

with similar activations. Retrieval involves presenting one stimulus and passing

activations between units until a pattern of activation representing the associated

stimuli is reproduced.

Neural networks are inspired by (and named after) the micro-structure of the

animal brain. Units are abstractions of neurons, weighted connections of synapses,

and activations represent the �ring rates or �ring probabilities of neurons. How-

ever, it should be emphasised that they are simply abstractions, and there are

many additional information-processing possibilities in nature, such as more dif-

fuse e�ects of hormones or peptide transmissions for example.

The weight changes in \arti�cial" nets are often based on a naturally occurring

phenomenon discovered by Hebb in 1949. Hebb's observation was that conjoint

activity in both the pre- and post-synaptic cell normally results in an increase in

e�cacy of the synapse in the future. This method of learning is completely local

to the synapse, in that it is a function of only two activity levels, that impinge

directly on the synapse.

Neural networks can again be compared to conventional computers. The im-

portant di�erence is that it is possible, in principle, for nets to operate in parallel,

when each unit can be treated as a separate computational device, updating its
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activation independently in time. Conventional computers rely on a single, serial,

Central-Processing Unit, operating to an internal clock. (In practice of course,

neural nets are usually \simulated" on serial computers). Related to this is the

notion that it is the global state of a net that is important, and thus individual dis-

ruptions to units, e.g. their malfunctioning, do not necessarily invalidate the useful

computation of the whole system: nets are more robust computational devices (or

have more redundancy !).

1.2.3 Short-term Memories

As mentioned earlier, one important di�erence between arti�cial and \natural"

neural networks is that the latter, as far as is known, can continue to learn new

information inde�nitely.

This ability is particularly evident in our everyday life, since people are contin-

ually storing information for immediate, temporary purposes, which is then totally

forgotten a short-while afterwards. (All too apparent when trying to remember a

shopping list or telephone number !) For such reasons, people are usually posited

as having a functionally separate short-term memory.1

Two quantities particularly relevant to a short-term memory are its span and

serial order curve.

Spans

The main de�ning parameter of a short-term memory is the average number of

associations that can be accurately retrieved (to within a particular criterion).

This number is called the span of the short-term memory.

1Indeed, in information-processing models of human cognition, there is nearly always

a component somewhere that stores information temporarily, e.g. in spoken language

comprehension, such a component is often deemed important for backtracking during

syntactic parsing of ambiguous sentences.
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Serial Order Curves

Another common performance characteristic of short-term memories is their serial

order curve. These curves usually represent the average chance of retrieving an

item against its serial position in a list of items - i.e. in continuous learning; the

time since it was last learnt.

Given a span of X items, an ideal serial order curve might be an approximate

step function, where the probability of accurate retrieval is excellent until X new

associations have been trained, whereupon it drops suddenly. This might corre-

spond to a store that could hold X items perfectly, and where the learning of a

new item simply entails replacing the oldest item. In people and animals however,

curves always show a smoother forgetting of items over time.

1.2.4 Palimpsests

Most neural networks studied up until now cannot function as short-term memo-

ries. Eventually they reach a point when trying to learn new information leads to

disasterous consequences: the retrieval of all information suddenly becomes im-

possible. This is called catastrophic failure. However, designing some method of

forgetting to accompany learning, or as a natural consequence of other constraints

in the net, is no trivial matter, especially since the memories are distributed over

many connections.

There have been some recent suggestions in the literature. In much of this, the

term palimpsest has been adopted to describe nets with some forgetting strategy.2

Hence the suggestions will be referred to as palimpsest schemes. In a palimpsest

2The word \palimpsest" comes from the name of a Medieval tablet upon which

text was repeatedly enscribed through time, resulting in only the most recent writing

being legible, with scraps of older text being glimpsed. (Historians then have ample

opportunity to squabble over interpretations of the older writings !) The analogy is

really to emphasise the role of interference from more recent \memories", gradually

obscuring older ones.
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scheme employing both learning and forgetting processes, the two will be subsumed

under the general process of training.

Under continuous training, the capacity of net palimpsests stabilises, rather

than collapsing, resulting in a �nite span and gradual forgetting over time (as

evidenced in their serial order curves). Note that when nets are trained from a

Tabula Rasa situation, where all weights are initially zero, there is normally a

transient e�ect before the weights arrive at their asymptotic distribution (which

characterises the net's stability).

1.3 Aims

The orginal aims of this project were six-fold:

1. To conduct an extensive search of the literature for references to short-term

neural net memories,

2. To generalise and categorise the suggestions discovered,

3. To select as many of the suggestions as possible for implementation,

4. To compare the performances of the implementations,

5. To analyse performance mathematically, and

6. To brie
y consider the suggestions from psychological, physiological and im-

plementational view-points.

All of the above aims have been accomplished. However, the results are pre-

sented here in a somewhat di�erent order, as described below.
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1.4 Overview of Report

Chapter 2 gives a formal summary of di�erent classes of neural network models.

The two speci�c models considered here are then introduced: the Willshaw Net

in Chapter 3, and the Hop�eld Net in Chapter 4.

The literature search revealed four main palimpsest schemes (Aim 1), which

are discussed, together with two further ideas for the Willshaw Net and one for the

Hop�eld Net, in Chapters 5 and 6. In most cases, their performance is analysed

mathematically (Aim 5).

Two simulators were written in C for each basic model (Aim 3). The di�erent

palimpsest schemes can be selected from within the simulators (in addition to the

standard, non-palimpsest net operation). Results from simulations are included

in the \Performance" sections of the relevant chapters. The simulators themselves

are described in the Appendices.

The di�erent suggestions are brought together (Aim 2) and performances com-

pared (Aim 4) in Chapter 7, which also attempts a cross-model comparison in

terms of information capacity.

Chapter 8 contains some theoretical discussion on the generalised methods

from the di�erent viewpoints in Aim 6. Chapter 9 concludes and discusses possible

extensions to the project.

Appendix A contains a Glossary for the notation and all the variables used in

the report.

Appendix B introduces the application of signal-to-noise ratios, particularly in

relation to the Willshaw Net.

Appendix C contains a User Manual for the Willshaw Net Simulator; Appendix

D for the Hop�eld Net Simulator, and Appendix E gives some consideration to

the parameters used in simulation runs relevant to this report.
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Chapter 2

Neural Network Models

This chapter gives an overview of di�erent types of neural network models, intro-

ducing some variables and terminology used throughout the report.

2.1 Formal Description

The common features of the neural networks considered here are:

� A set of units, with L subsets or layers, each having Nl units, l = 1; 2:::L.

� An activation for each unit: fa(l)
i
2 < j i = 1; 2:::Nlg. The activation in the

lth layer can be represented by the vector a(l).

� A set of connections to a unit i in layer l from unit j in layer l0, or weights:

fw(l;l0)
ij

2 < j i = 1; 2:::Nl; j = 1; 2:::Nl0g. Weights may be grouped into

matrices W(l;l0) connecting layers l; l0.

� A set of P pattern vectors v(p;l) for each layer l, with components: fv(p;l)
i

2
< j p = 1; 2:::P; i = 1; 2:::Nlg. (This set can be thought as having countably

in�nite members if patterns can be generated inde�nitely.)

� The presentation of pattern p on layer l; \perfect", when 8i a(l)i = v

(p;l)
i , or

in the presence of \noise", n(l), when a(l) = v(p;l)+n(l), and typically v(l):n(l)

is close to 1.
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� An update rule for units, whose activations change as a function, f , of the

weighted sum from all connected units: a
(l)
i

= f(
P

L

k=1

PNk

j=1w
(l;k)
ij

a

(k)
j
).

� A learning rule for weights, whose values change as a function, g, of only

two variables local to the connection: w
(l;l0)
ij

= g(a
(l)
i
; a

(l0)
j
).

� Unit activations change over a time-course of updating episodes.

� Weight sizes change over an (independent) time-course of training episodes.

2.2 Classes of Model

Further features can be used to distinguish various classes of model. The following

logically independent features (though correlated in practice and not necessarily

conventional) can be used to classify most neural nets along several dimensions:

Partially/Fully Connected A net is said to be fully connected when every unit

is connected to every other unit. If this is not the case, then it is partially

connected. Layers can similarly said to be fully or partially inter-connected,

and fully or partially intra-connected (when l = l
0 in W above). Partially

connected layers may still be represented by the matrix W, simply with

some of the elements being set to 0 permanently.

Iterative/Parallel Updating In one updating episode, a single unit can be up-

dated separately (iterative updating) or all units in a layer can be updated

together, in parallel.

Feedforward/Recurrent A net is said to be feedforward if the graph of connec-

tions has no loops; otherwise the net is recurrent. The term \feedforward"

is adopted because the weights connecting one layer to the next often have

a direction associated with them; e.g. with two-layer feedforward nets, one

layer is often called an input layer, the other, an output layer, and the ac-

tivation of output units is determined solely by the weighted activation of

input units, \fed" through the weights. (The activation of the input units is

provided by presentation of an input pattern).
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Symmetric/Asymmetric Weights If a net's weights are such that 8i8j wij =

wji, then that net has symmetric weights. (This may depend on the learning

function.)

Continuous/Discrete Activations Whether a
(l)
i

can vary continuously or only

take one of a �nite set of values.

Continuous/Discrete Weights Whether w
(l;l0)
ij can vary continuously or only

take one of a �nite set of values.

Linear/Nonlinear Activation Functions Classi�cation based on whether f is

linear. In most interesting cases, it is non-linear and dependent on a unit-

based parameter called the threshold, �i.

Linear/Nonlinear Learning Functions Classi�cation based on whether g is

linear.

Instantiation of variables L, f and g inside a class yields particular models.

(Sometimes the term architectures is used to distinguish di�erent values of L and

particular connectivities.) Instantiation of Nl yields an individual net. One �nal

important de�nition for the operation of an individual net is:

Auto-Association/Hetero-Association When two or more di�erent patterns

are associated by a net, it is operating under hetero-association. When

a net is only learning one pattern (associating its components with \each

other"), it is functioning as an auto-associator. Though any class of model

can in principle operate under either condition, the conditions do relate to

particular architectures since the notion of a layer is usually to distinguish

which patterns are being associated.
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2.3 Exploration of Models

Complete exploration of this space of di�erent models, together with di�erent

methods of introducing forgetting, would be extremely arduous. Rather, this

project initially concentrates on two particular, standard models: the Willshaw

Net (WN) and the Hop�eld Net (HN). These particular models stand out like

mountains in the space of di�erent neural networks; from the top of which, most

authors in the literature have also started their journey.

The WN is a fully inter-connected, feedforward net with 2 layers and paral-

lel update. Activations and weights are both discrete and binary, whilst both

activation and learning functions are Heaviside functions.

The HN is a fully intra-connected, recurrent net of 1 layer, generally with

symmetric weights (since it is normally used for auto-association). Activations

are binary and updated iteratively, but weights are continuous. The activation

function is obviously non-linear, whilst the learning function is linear.

Within these models, the investigation has mainly been to discover and opti-

mise relations between variables in the learning, forgetting and activation func-

tions. The net architectures are �xed, as is the size of the nets, although there is

some interest in how the properties of the nets scale with Nl.
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Chapter 3

Willshaw Net

This chapter gives an introduction to the standard operation of the Willshaw Net,

and considers its capacity as a memory device under noise-free memory cueing.

3.1 Introduction

The WN is a fully inter-connected, feed-forward associative memory, with one layer

of input units, one layer of output units and binary-valued weights, or switches.

The net associates a number of pattern pairs, each input and output pattern in

the pair being represented as a vector with binary-valued components. When

these patterns presented to the net, an active unit then corresponds to a pattern

component of value 1.

Learning of these associations is by simple Hebbian reinforcement, where the

switch connecting input unit i and output unit j is turned on, or triggered, when-

ever there is conjoint activity of both units.

An association has been stored when there is good retrieval of the output

pattern. Good retrieval is interpreted as a (near-)faithful reproduction of the

output pattern over the output units, given a pattern of activity over the input

units similar to the corresponding input pattern (a cue). Reproduction is via

parallel update and thresholding of the weighted sum for each output unit.

12



3.2 Mathematical Characterisation

Let a WN have NI input units and NO output units. The weight matrix W then

has NI �NO elements, with a weight wij = 1 corresponding to a triggered switch.

Consider input and output pattern vectors v(I) and v(O), where v
(I)
i
; v

(O)
i

2
f0; 1g. To learn this new pattern pair, the WN learning rule is:

wij ! g(wij + v

(O)
i
v

(I)
j
) (3:1)

where the learning function g is:

g(x) =

8><
>:

1 if x � 1

0 otherwise

Let the input unit activities be represented by vector a(I) and output unit

activities by a(O). Then the updating rule is then:

a

(O)
i
! f(

NIX
j=1

wija
(I)
j
) (3:2)

where the activation function f is a non-linear thresholding function:

f(x) =

8><
>:

1 if x � �

0 otherwise

As apparent, the threshold is common to all output units.

Let the number of components of value 1 in pattern p beMp; the ratio Fp =
Mp

Np

is referred to as the pattern coding. For simplicity, letMp be constant for all input

patterns at MI , and for all output patterns, at MO. Then, from consideration of

the learning rule, � =MI is the relevant threshold setting.

The quality of retrieval can be measured by the hamming distance index. The

hamming distance between two N -dimensional vectors x and y, H(x, y), is de�ned

as the number of components by which the two vectors di�er:

H(x;y) =
NX
i=1

h(xi; yi) (3.3)

h(x; y) =

8><
>:

0 if x = y

1 otherwise
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The hamming distance between a(O) and v(O) is often referred to as the output

hamming distance, HO. An HO = 0 means identical vectors and perfect retrieval.

In practice, retrieval is rarely perfect. There exist two possible types of error

in the net output:

1. Spurious Errors a

(O)
i

= 1; v
(O)
i

= 0

2. Omission Errors a

(O)
i

= 0; v
(O)
i

= 1

In standard, noise-free operation of the WN with constant pattern coding,

only spurious (or \commission") errors are possible, since switches can only ever

be turned on. Indeed, the mean number of spurious errors increases as more

pattern pairs are learnt. With palimpsest schemes however, where switches can

be turned o�, both types of error can occur.

3.3 Theoretical Capacity

3.3.1 Hetero-association

[Willshaw et al 69] derive conditions for e�cient use of the WN under hetero-

association, by attempting to keep the number of spurious errors in retrieved

patterns small.

Consider the learning of R random pattern pairs. The probability that a

particular switch, wij, has been triggered at some time during the training of

these patterns, p, is:

p = 1� (1� FIFO)
R ' 1� exp (FIFOR) (3.4)

given small values of FI and FO, i.e. sparse pattern coding. Rearranging this

equation allows an expression for R:

R ' � NINO

MIMO

ln (1� p) (3:5)

The probability p is sometimes also viewed as the loading density of a net. Note

that as p ! 1, the WN fails as a memory device, since, given any input pattern,

all output units will be activated.
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To keep the number of spurious errors small, a criterion can be chosen, e.g.

one expected spurious error per net output, i.e. E[HO] = 1.

Given that the pattern pairs are randomly chosen with a constantMI andMO,

the expected number of spurious errors is (NO �MO) p
MI (though this is making

some assumptions - see next section). Then a slightly more stringent limit of good

performance can be set by the condition:

NO p
MI = 1 (3:6)

From Information Theory considerations [Willshaw 71] the information e�-

ciency of a net, �, can be de�ned as:

� =
R log2 (C

NO

MO
)

NINO

(3:7)

where Cn

r
is the number of combinations of r items in n.

By substituting in expressions for R and MI from Eqs 3.5 and 3.6, � can be

determined for the maximum number of pattern pairs stored and retrieved with

an \average" of one spurious error, Rc. Rc is sometimes termed the capacity of a

net. Using Stirling's approximation, � then conveniently simpli�es to a function

of p only:

� ' log2(p)ln(1� p) (3:8)

Maximising � with respect to p gives maximum information e�ciency (of ln2)

in the large NO limit at p = pc = 0:5 and MI = log2(NO), i.e. very sparse coding.

In this case, when NI ' NO = N :

Rc = O

�
( N

log(N)
)2
�

(3:9)

3.3.2 Auto-association

When the WN is used for auto-association, 8p(v(I;p) = v(O;p)), MI = MO = M ,

NI = NO = N , and W is a symmetric matrix. Note however that optimum

performance with perfect cueing could actually be achieved when W = I and

� = 1. It is only really the possibility of noise in the input patterns that makes

auto-association interesting.
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However, the above analysis of capacity is not strictly valid for the auto-

associative case. Here, the value for p in Eq 3.4 is a poor approximation when M

is small. Considering a particular output line j, the probability of the weight on

the leading diagonal, i.e. wjj, being triggered in R patterns, p1, is greater than

the probability for o�-diagonal weights, p2:

p1 = 1�
�
1� M

N

�
R

(3.10)

p2 = 1�
�
1� (M�1)M

(N�1)N

�
R

(3.11)

The probabilities p1 and p2 are linked by the equation:

N
2
p = Np1 +N(N � 1)p2 (3:12)

and since the second term dominates for large N , an approximate value for R

under sparse-coded auto-association is:

R ' � N
2

M(M � 1)
ln (1� p) (3:13)

The amount of information stored in an auto-associative net can also be a mis-

leading quantity, since that information can only be retrieved given a proportion

of that same information in the �rst place ! (Though, by de�ning an informa-

tion storage capacity for nets, [Palm 92] shows auto-association is half as e�cient

as hetero-association under this measure). This caveat aside, the capacity of an

auto-associative WN under optimal coding can similarly be said to increase with

the square of N

log(N)
.

3.4 Unit Usage

The above analysis is only a �rst approximation to the maximum number of pat-

tern pairs usefully stored. Results from simulations give Rc signi�cantly smaller

than the theoretical prediction. This discrepancy is because Eq 3.6 contains an

assumption now known as the unit usage approximation. This is that the pro-

portion of triggered switches connected to each output unit is the same for all

output units. However, with randomly generated patterns, the unit usage follows

a binomial distribution with characteristic probability FO.
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This means that the distribution of weighted sums on output units that should

be inactive is not symmetrical, but negatively skewed. This results in a slightly

greater chance of output units producing a spurious error than predicted. (More-

over, under auto-association, the symmetry of the weight matrix also introduces

correlations amongst the distribution of sums.)

Generally, the discrepancy is smaller for sparse pattern codings (though out-

put errors also increase as MI ! 0). The discrepancy is actually minimised

for the optimum encoding above, of MI = log2(NO). However, analysis of the

general case is very complex. In all subsequent analyses, the unit usage approx-

imation has been made for mathematical tractability. For further details, see

[Buckingham & Willshaw 92].

3.5 Performance

Results from the Willshaw Net Simulator are consistent with the above analysis.

The Figs 3{1 to 3{4 come from a 512(9) square net, where NI = NO = 512

and MI = MO = 9, operating under hetero-association, which has a theoretical

maximum capacity Rc ' 2243.

Fig 3{1 shows the average HO for pattern pairs 1 to R, plotted against R,

where R is the number of pattern pairs trained (from a Tabula Rasa). When

HO = 1, it can be seen that R ' 2100. The discrepancy between 2100 and 2243

is due to the large N approximations and particularly the unit usage assumption

made in calculating Rc. Fig 3{2 is a graph of unit usage for each output unit when

p = pc, which gives an indication of the variability of this quantity (mean is 256:1

with standard deviation 27:6).

Fig 3{3 shows the loading density, p, as a function of R. Here, as expected,

p = 0:5 at R ' 2243. As more pattern pairs are trained beyond this point, p

asymptotically approaches 1 (when all switches in the net are triggered).

Fig 3{4 is a plot of the number of patterns with HO � 1, S, against R. S

corresponds to the number of output patterns reliably retrieved. Also shown is a

plot of S=R against R. It shows clearly the catastrophic failure characteristic of
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Figure 3{3: Loading Density in standard Willshaw Net

the WN under excess loading: by R ' 3200, the net has ceased to function as an

associative memory.

When p = pc, S ' 1370. Obviously, this value is not the same as Rc since,

although HO = 1, there will be many net outputs with an HO of 2,3 or more. Each

pattern has a �nite chance of not being retrieved reliably; this chance increases

slowly to 0:5 when R ' 2243 - after that it increases rapidly.

The maximum value of S is ' 1670, when R ' 1900. Thus operation at

\maximum information e�ciency", in the sense de�ned in the previous section,

does not give the greatest number of output patterns reliably retrieved. Rather,

this occurs at sub-optimal loadings, p ' 0:43 < pc.

Simulation results when this net is operating under auto-association give p = pc

when R ' 2500. This is in agreement with the prediction from Eq 3.13. This in

turn produces a larger maximum value for S ' 1920.
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3.5.1 A word on spans

The de�nition of the parameter S above is that of the span of a net. However,

since the net here is not functioning as a palimpsest, it is not really appropriate

to say it has a maximum span of about 1; 700 associations.

Note that S is a new measure of net performance, which has not been utilised

before in the analysis of the WN. It would seem a better index of performance of

a palimpsest than its \capacity", since the interest is in near-perfect retrieval of

the most recently learnt associations. Near-perfect, or \reliable" retrieval requires

HO < HL, where HL is the hamming limit, chosen as 2 here.

It is useful to consider the relation between S and R. Their maximum values

occur at di�erent loadings because, whereas R is only a logarithmic function of

p, S is a multiplicative function of both this logarithm and another function that

decreases with p. Since patterns with HO > 1 do not contribute to S, an estimate

of the expected value of S is given by:

S = �N
2

M
2
ln(1� p)Q(p) (3:14)

where Q(p) is the probability of obtaining 0 or 1 spurious errors:1

Q(p) = (1� p
M)N�M + (N �M)(1� p

M)N�M�1
p
M (3:15)

Thus S would not be expected to have its maximum value at the same loading

that gives \capacity-optimal" performance when R = Rc.

Alternatively, the two quantities, S and R can be simply related when R =

RL, where RL is such that E[HO] = HL = 2: then S ' 3
e2
RL (substituting

(N � M)pM = 2 into the above equation). This can be checked from Fig 3{1,

where RL ' 2400, and from Fig 3{4, where S(R = RL) ' 970.

Note �nally that the WN simulation results in this report come from a square

net with N = 512 and capacity-optimal M = log2(N) = 9. The choice of N

comes from a play o� between the desire for large N and the desire for reasonable

1This is a special case of Eq 5.22.
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amounts of computer-time. The second constraint is reinforced by the fact that R

needs to be large for an accurate estimation of span (' 10; 000).

Since maximum S does not occur when p = pc, this suggests that the \span-

optimal" pattern coding may not be F =
log2(N)

N
(to actually determine the span-

optimal coding would seem to be very complicated). However, it is still the case

that optimum spans will come with sparse coding - as later chapters show - so M ,

although no longer exactly selected by theory, has been kept as 9. Indeed, since

M and N are only theoretical variables, not an experimental ones (�xed for most

simulations), the choice is not immediately important.
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Chapter 4

Hop�eld Net

This chapter gives an introduction to the standard operation of the Hop�eld Net,

and considers its capacity as a memory device under noise-free memory cueing.

4.1 Introduction

The HN is a fully intra-connected, recurrent associative memory, with a single

set of units connected by real-valued weights. The net can store a number of

patterns, represented as vectors with spin-valued components of 1 or �1.1 The

HN is normally used for autoassociation. (Although it is sometimes used to store

hetero-associative sequences of patterns. [Parga 89] gives a good overview of some

popular modi�cations to the basic HN.)

When these patterns are imposed on the units, an active unit then corresponds

to a pattern component of 1; an inactive unit, the value of �1. The activation

vector of a net at any one time is referred to as the state of that net.

Learning is by a variation of Hebbian reinforcement, where the weight con-

necting units i and j is strengthened whenever there is either conjoint activity or

1
Spin values, rather than the binary values used in the WN, are employed for his-

torical and conventional reasons. They also make mathematical characterisation of the

HN more slightly more concise. Note that the two conventions are related by a trivial

linear transformation.
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conjoint inactivity of both units. Whenever one unit is active but the other is

inactive, the weight is weakened.

Retrieval of patterns is an iterative process, where units update their activation

one at a time (asynchronously). A pattern is said to have been stored when,

starting at a certain state, the net relaxes after several updates to a stable state

similar to that pattern.

4.2 Mathematical Characterisation

Let a HN have N units and a weight matrix, W. Consider a pattern vector

v, where vi 2 f�1; 1g. Let the value of each component be chosen at random

with equal probability (such vectors are called uniform signary vectors); then

8p E[Fp] = 0:5.

The HN Learning Rule is:

wij ! wij + �vivj (4:1)

where � is a scaling constant, often inversely proportional to N (i.e. the learning

function g is linear over all patterns).

Let the state of the net be represented by vector s (= a(1)). Then the Update

Rule is:

si ! f(
NX
j=1

wijsj) (4:2)

where f is the thresholding activation function:

f(xi) =

8><
>:

1 if xi > �i

�1 if xi < �i

For simplicity, let 8i(�i = 0). The N weighted sums are often said to comprise the

\local �eld", h(s). In the case that hi = 0, the correct update is si ! si.

View the update dynamics as over iterations t. Units are said to be stable

when their current sign matches that of the local �eld (then si(t + 1) = si(t)).

Units are chosen at random to be updated, until each unit is stable. Call this
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stable state of the net ŝ. Thus relaxation is a non-deterministic process with �xed

end-points.

Provided weights are symmetrical (wij = wji) and there are no self-connecting

weights (wii = 0), there exists a Lyapunov function associated with the update

dynamics, that de�nes a quantity often termed the energy, E, of a state. The

utility of this quantity was �rst recognised by [Hop�eld 82]:

E(s) = �1

2

NX
i=1

NX
j=1

wijsisj (4:3)

Under these constraints, the quantity E can be shown never to increase: each

update will either lower the energy, or leave it unchanged.

In energy terms, the stored patterns of a net correspond to local minima of

an energy \landscape" in N -dimensional space. The relaxation of a net is then

viewed as a trajectory through this space, from the point representing the starting

state, to the nearest minimum, which corresponds to a �nal, stable state.2

The stored patterns are often called attractors because of this \basin of at-

traction" for nearby starting states. However, not all patterns learnt are stored -

i.e. produce perfect minima - and they are rarely the only attractors in the net.

This is because the linear superposition of patterns in training also creates spuri-

ous attractors. A net stabilising in a spurious attractor would not correspond to

retrieval of any learnt pattern.

The quality of retrieval can again be measured by the hamming distance index,

H, (see Eq 3.3) between the vectors ŝ and target pattern v. There is an alternative

measure of retrieval quality that is common in the literature. This is the overlap

(or inner product), m(x;y) de�ned as:

m(x;y) =
1

N

NX
i=1

xiyi (4:4)

2In practice, the constraints of symmetric and non-self-connecting weights can be

relaxed and the net can still function adequately - although it may not always reach a

stable state. However, there is a lemma associated with the updating algorithm: if a

net has not reached a stable state in N updates, then it will not reach a stable state at

all (it will oscillate inde�nitely).
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The net output overlap is then mo = m(̂s;v). Perfect retrieval then gives mo = 1,

whilst the case of mo = �1 corresponds to the stable state being the inverse of

the target pattern.3 (This is not uncommon, since, due to the symmetrical nature

of the learning rule, the inverses of trained patterns also become attractors in the

energy landscape.)

Of course, overlap and hamming distance are simply related for spin vectors by

m = 1� 2H
N
. However, though m has the advantage that gives a good indication

of similarity, irrespective of N , H will occasionally be used for comparison with

the WN.

4.3 Theoretical Capacity

4.3.1 Physical Analogies

If patterns are orthogonal, they can be superposed without any interaction or

creation of spurious attractors.4 In practice, the \pseudo-orthogonality" of random

patterns [Hop�eld 82] will be respected when the number of patterns trained, R,

is small compared to N . As R grows, the likelihood of \cross-talk" between the

patterns increases. This extra noise soon causes instability of learnt patterns,

which eventually determines the capacity of the net.

As it happens, physicists have been studying similar interactions amongst the

components of complex systems in nature (like the interaction of magnetic domains

in some materials). The standard HN is actually a special case of a more general

class of models where the update rule itself is not deterministic, but stochastic.

The probability of changing the activation of a unit is a function of both the local

�eld and a parameter referred to as the \temperature" of the net [Hertz et al 91].

Nets operating under non-zero temperature are called \Boltzmann Machines".

3If a net does not stabilise in N updates, a default mo = 0 is assigned

4Unless N such mutually-orthogonal patterns are learnt (i.e. the patterns comprise

an orthogonal basis for the N -dimensional space), in which caseW, with diagonal terms,

coverges to NI.
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Physicists have developed powerful methods for exposing phase-transition di-

agrams of such systems, parameterised by the temperature and the loading of the

net. The loading of the net, �, is simply the ratio of the number of patterns

trained, R, against the net size N :

� =
R

N

(4:5)

When the temperature is 0, the standard HN is recovered, and, there is a critical

capacity, �c, beyond which good retrieval of patterns suddenly becomes unlikely

[Amit et al 85]. Theoretical and numerical results give �c ' 0:138, whence mo

drops from about 0:97 to 0:35.

Thus, given a reliable retrieval criterion, mL = 0:97 (say), the maximum num-

ber of patterns that can be reliably retrieved, just before catastrophic failure oc-

curs, is O[N ], i.e. linear in N .5

4.3.2 Analysis of Local Fields

Irrespective of the powerful methods used above, it is useful to give simple consid-

eration to how a HN fails under non-palimpsest conditions. This involves making

two assumptions.

Firstly, the capacity of a net can be approximated by the number of learnt

patterns that correspond to initially stable states. If a presented pattern has one

or more of the units initially unstable, then, as borne out in practice, it is very

likely that the state will settle into a quite di�erent attractor (a \cascade" e�ect)

- such a pattern cannot be counted as a stored \memory".

Secondly, the N2 weights are treated as random, independent variables. In

reality of course, there are correlations between these variables, i.e. wij = wji.

(Such correlations can only justi�ably be ignored in partially-connected, asym-

metric nets, where connections between units are very sparse. Then the dynamics

can be solved exactly [Derrida et al 87].)

5There do exist \multi-connected models" which have interactions from more than

n = 2 units and have Hamiltonian (Lyapunov) functions of order n. Their capacities

generally increase with Nn�1 [Horn & Usher 88].
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Now the necessary and su�cient condition for a pattern, v, to be a stable state

of the net is that, for all i, the sign of vi is the same as the sign of hi. This is

equivalent to the requirement that [Personnaz et al 86]:

Wv = Av (4:6)

where A is some diagonal matrix with non-negative elements - in other words:

8i
NX
j=1

wijvjvi > 0 (4:7)

Now consider the mean and variance of the local �elds for the pth pattern, v(p)

after R have been learnt [Gordon 87]. Let � = 1
N
; then the average local �eld over

all learnt patterns for unit i is given by:

hi(v(p)) =
1

N

N
0X

j=1

RX
r=1

v

(r)
i
v

(r)
j
v

(p)
j

=
1

N

N
0X

j=1

(
RX

r=1;r 6=p
v

(r)
i
v

(r)
j
v

(p)
j

+ v

(p)
i
) (4.8)

where
P

N
0

j
=
P

N

j 6=i. Since the �rst term above is the sum of independent variables

of value �1 or 1, the expected value is 0. Thus:

hi(v(p)) =
N � 1

N

v

(p)
i ' v

(p)
i (4:9)

Therefore, the net state should - in the average - correspond to v(p) (if the initial

state is not a learnt pattern, then hi(s) = 0).

The second moment of the local �eld is:

h
2
i
(v(p)) =

1

N
2

N 0X
j=1

RX
r=1

v

(r)
i
v

(r)
j
v

(p)
j
�

N 0X
k=1

RX
s=1

v

(s)
i
v

(s)
k
v

(p)
k

=
N � 1

N
2
R +

(N � 1)(N � 2)

N
2

v

(p)
i
v

(p)
i

(4.10)

The �rst contribution comes from the terms j = k, whilst the second comes from

the terms j 6= k, and is hi
2
(i.e. ignoring terms of order 1

N
). The variance of the

local �eld, �i, is then:

�i = h
2
i � hi

2 ' R

N

(4:11)

Thus even when the initial state corresponds to a trained pattern, when R

N
is

large enough, there is some probability that Eq 4.7 will be violated. Ignoring
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correlations between weights, this probability, Q, can be assumed equal for all i,

and can be expressed as a Gaussian function of �

h
2 :

Q(
�

h

2 ) =
1p
2��

Z 0

�1
exp (�(z � hv

(p))2

2�
)dz (4:12)

For small x, the function Q(x) vanishes like exp (�x�2) and is linear in the neigh-

bourhood of x = x� =
1
3
, the in
exion point. It can be approximated by a straight

line passing through x� of slope dQ

dx
jx=x�. This crosses the abscissa at x = x0,

where Q(x0) = 0. Then below x0, trained patterns are expected to be initially

stable states; beyond x0, unstable units are expected.

The numeric value of x0 is 0:153. Since h
2
= 1 from Eq 4.9 and � = R

N
, x0

corresponds to the capacity �c, and is in close agreement with the more powerful

methods of [Amit et al 85]. Thus a signal-to-noise analysis of the local �elds for

each unit gives a good prediction of the point at which a HN undergoes catas-

trophic failure. This will be utilised when the palimpsest schemes in Chapter 6

are considered.

4.4 Performance

Results from the Hop�eld Net Simulator are shown in Figs 4{1 to 4{3. Here,

N = 512; � = 1:0 and the expected maximum number of patterns reliably retrieved

is ' 71.

Fig 4{1 is a plot of the number of patterns with mo > 0:97 (HO < 7) against

the number of patterns trained, R. It shows clearly the catastrophic failure of the

HN, since by R ' 120, the net has ceased to function as an associative memory.

Fig 4{2 shows the average overlap of all patterns trained so far, which shows the

failure from a di�erent perspective.

The maximum ordinate value is in fact 62, which is somewhat short of the above

prediction. This is probably because the prediction is based on the assumption

N !1, and �nite N e�ects reduce the capacity in practice.

Fig 4{3 shows the distribution of average incident weights for each of the 512

units when R = 300. The mean of all weights is �0:04, i.e. close to 0, but the

variance is very large, ' 300:26.
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    Number of patterns "reliably retrieved" in a 512(256) Hopfield Net
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Figure 4{1: Number of Patterns Reliably Retrieved in Hop�eld Net
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Chapter 5

Forgetting in the Willshaw Net

This chapter examines three main proposals for palimpsest schemes in the Will-

shaw Net: random resetting, weight ageing and generalised learning. Approximate

predictions of the noise-free, hetero-associative spans under each method are de-

rived, where possible, via a probabilistic analysis of switch triggering.

5.1 Random Resetting

The normal WN learning rule always triggers a switch given conjoint input and

output unit activity. Thus, immediately after having learnt an association, testing

with the same input pattern will produce a weighted sum of MI to each target

output unit, which can thus be used as the threshold to distinguish true signals

from background noise.

Random Resetting involves turning o� random switches with a (small) proba-

bility. An episode of forgetting precedes the learning of a new pattern pair. Since

forgetting can turn o� some of the switches triggered by previous patterns, there

is now a chance of omission errors when those patterns are retested. Thus it may

be advisable to adjust the threshold, to reduce the chance of these errors (paying

by the increased chance of spurious errors). Moreover, it is worth investigating

performance in palimpsest schemes when conjoint activity does not always trigger

a switch - i.e. it is only likely that it will.

Consideration of this general case is given later. First however, a special case

of Random Resetting is described where the threshold is kept normal and the net
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loading is capacity-optimal at p = pc. Examination of this special case will clarify

some important concepts, such as survival time.

5.1.1 Analysis of Special Case

The Method

The original suggestion of [Willshaw 71] sought to stabilise the loading density

of a net at the constant level pc. Viewing time as discretized into single training

episodes, the aim is to maintain the average p constant over time at:

p(t) = pc = 0:5 (5:1)

This requires the number of switches turned on by a pattern learnt at time t

to be equal to the number of random switches turned o� (reset). Now the former

quantity is simply:

MI �MO � (1� p(t)) (5:2)

Let the probability of resetting a triggered switch be r; the latter quantity is then:

NI �NO � p(t)� r (5:3)

Equating and rearranging, we obtain an expression for r:

r =
MIMO p(t)

NINO(1� p(t))
(5:4)

which, with p(t) = pc, simpli�es to:

r =
MIMO

NINO

= FIFO (5:5)

Thus one training episode in this Random Resetting algorithm involves learning

each pattern pair normally (Eq 3.1), but preceding each learning with an iteration

over approximately pcNINO triggered switches, resetting each with probability r.

Survival Time

The survival time of a pattern pair association is the number of subsequent train-

ing episodes before that association is deemed \forgotten", i.e. when the output
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pattern can no longer be reliably retrieved. To simplify analysis of this quantity,

consider the case of a square net where NI = NO = N , MI = MO = M and

F = M

N
.

Take a particular switch, wij, which is on at time t with probability p̂(t).

Consider the probability that wij is still on after learning a pattern pair at time

t+ 1, subsequent to an intervening forgetting episode:

p̂(t+ 1) = p̂(t)(1� r) + (1� p̂(t))F 2 (5:6)

The �rst term is the probability that wij is not reset during forgetting, whilst

the second is the probability that wij is triggered by the learning of the new

patterns.

Substituting q(t) = p̂(t)� pc and the expression for r in Eq 5.5, the following

recurrence relation emerges:

q(t+ 1) = q(t)(1� 2F 2) (5.7)

Thus after R training episodes:

q(t +R) = q(t)(1� 2F 2)R ' q(t)(1� 2F 2
R) (5.8)

providing F 2 � 1, i.e. coding is sparse.

It is useful to distinguish two types of triggered switches in the net. There are

those that are supposed to remain on in order to store a given association. Let the

probability that they do remain so be ps(t) (where \s" stands for \signal"). The

second type are those not relevant to that particular association, which have been

triggered by the learning of other pattern pairs, and only contribute background

\noise" to that association. Let these be turned on with probability pn(t).

Now ps(t) and pn(t) are not truly independent, since they are related to the

constant pc by:

N
2
pc =M

2
ps(t) + (N2 �M

2)pn(t) (5:9)

However, in the sparse coding limit, they can be e�ectively treated as such, and

pn(t) can also be assumed constant over time, at pn(t) = pc.
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Immediately after learning a particular pattern pair that triggers wij at time

0, ps(0) = 1. Thus:

qs(0) =
1

2
qs(R) =

1

2
(1� 2F 2

R) (5.10)

and then the probability that it is still on after R new training episodes is:

ps(R) = 1� F
2
R (5.11)

In a similar manner to Eq 3.6, an upper bound can be placed on R, Rs, when

the expected number of omission errors is 1:

M(1� ps(Rs)
M) = 1 (5:12)

More typically, such a criterion for reliable retrieval is based on the total num-

ber of output errors. This total comprises both spurious and omission errors. Thus

HL = 2 would correspond to the constraint:

M(1� ps(Rs)
M) + (N �M)pn(Rs)

M = 2 (5:13)

However, when pn = pc and (N�M) ' N , the second quantity is ' 1 from Eq 3.6,

and so Eq 5.12 holds near enough.

Substituting in the expression for ps(R) allows an estimation of the survival

time of an association:

Rs ' �
N

2

M
3
ln(

M � 1

M

) ' N
2

M
4

for 0�M � N (5:14)

Span

If it were the case that every association had a survival time of exactly Rs, then

the span, S, would be equal to Rs. This of course will never be the case, and in

fact, the distribution of survival times follows an exponential decay, as in Fig 5{1

However, the many patterns with survival times less than Rs are accompanied by

fewer patterns that have very long survival times (> 2Rs). Thus, average span S

should correspond to expected survival time Rs.

If N is large and M = log2(N), the predicted span is of the order of:

O

�
N

2

log(N)4

�
= O

�
Rc

log(N)2

�
(5:15)
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Figure 5{1: Example Distribution of Survival Times

Also note that, although it is stretching the sparse coding assumptions made

above, a value of M as large as
p
N would predict a span only of the order of 1.

This reinforces the importance of sparse coding in most uses of the WN, including

as a short-term memory.

Simulation with F = 1=
p
N con�rms this, giving spans of 2-3 pattern pairs.

5.1.2 General Case Analysis

The Method

Here, two new variables are introduced: z, the probability that a switch is trig-

gered under appropriate conditions (formerly 1 in the above analysis) and � , the

threshold of the activation function (constant over output units for convenience -

see [Willshaw & Dayan 90]).
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Survival Time

The recurrence relation is now:

p̂(t + 1) = p̂(t)(1� r) + zF
2(1� p̂(t))

= (1� r � zF
2)p̂(t) + zF

2 (5.16)

Thus, after R training episodes:

p̂(R) = (1� r � zF
2)Rp̂(0) +

zF
2

r + zF
2
(1� (1� r � zF

2)R) (5.17)

The net stabilises at a loading p = p̂1, since starting with a Tabula Rasa

(p̂(0) = 0) and letting R!1:

p̂1 =
zF

2

r + zF
2

(5.18)

Note that when r = 0, p̂1 = 1, which results in the normal catastrophic failure.

The interesting cases are only really when 0 < r < 1 and 0 < z � 1.

Again, consider the survival time of a switch triggered by a particular associ-

ation learnt at time t = 0, such that ps(0) = 1� (1� p)(1� z):

ps(R) = (1� r � zF
2)R(p+ z � pz) + p(1� (1� r � zF

2)R)

= (1� r � zF
2)R(1� p)z + p (5.19)

Since the threshold can be lowered below M , the reliable retrieval criterion

from Eq 5.13 becomes:

M(1� P (ps; �)) + (N �M)P (pn; �) = 2 (5:20)

where P (px; �) is the probability of a weighted sum greater or equal to � :

P (px; �) =
MX
i=�

C
M

i
p
i

x
(1� px)

M�i (5:21)

Span

When � is (naively) retained at M , Eq 5.21 simpli�es, and then expressing and

maximising Eq 5.20 in terms of p, gives optimal p ' ( 2
N(M+1)

)
1

M and hence optimal
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r from r = 1�p
p
F

2. For a 512(9) net, this means an optimal p = 0:44. This in turn

predicts a span of S ' 57, which is an improvement of ' 130% over the span with

capacity-optimal p = pc.

However, when � < M , a more sophisticated signal-to-noise analysis is needed.

Such analysis soon gets very complicated however, and approximations are the

only way to make the mathematics tractable. Discussion of the signal-to-noise

ratio and possible approximations is given in Appendix B.

Direct Estimation

An alternative approach is to derive a general expression for the span of a net in

terms of ps and pn. Since the span of a net is the number of patterns with HO � 1

- i.e. with no errors, one omission error, or one spurious error - the probability of

one of these situations arising, Q(R), can be found, enabling a derivation for S:

S =
R=WX
R=0

Q(R)

Q(R) = P
M

s
(1� Pn)

N�M +

MP
M�1
s

(1� Ps)(1� Pn)
N�M +

(N �M)PM

s
(1� Pn)

N�M�1
Pn (5.22)

Ps = P (ps(R); �); Pn = P (pn; �)

where P (p; �) is de�ned in Eq 5.21, and W is the size of a \window" of pattern

pairs which are likely to retrieved reliably. In principle, it is possible for W !1,

since even when R is large and ps ! p, Q(R) is still �nite (but small) - a retrieval

by \
uke" alone. In practice however, it is su�cient to just set a W large with

respect to the expected survival time Rs.
1

This expression for the span, together with equations for ps and pn, can only

be studied by numerical analysis. Such number-crunching in fact gives good pre-

dictions for S, although they will always tend to be over-estimations because of

its unit usage approximation.

1Experience shows that makingW one order of magnitude larger than Rs is normally

su�cient.
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Q(R,r) in 512(9) WN with Random Resetting (z=1)
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Figure 5{2: Probability of reliable retrieval of a pattern under Random Resetting

from Numerical Analysis, as a function of r and R

S(r,tau) in 512(9) WN with Random Resetting (z=1, W=1000)
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Figure 5{3: Span under Random Resetting from Numerical Analysis, as function

of r and �
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Case r�10�3 (p) � St Sn Sp

p = pc 0.309 0.50 9 42.4 47.7 44.2 �5:5
�=M 0.395 0.44 9 57.0 57.4 56.2 �4:8
Any � 1.60 0.16 6 - 163 149 �7:4

Table 5{1: Maximum Spans for di�erent Resetting Probabilities

Figs 5{2 and 5{3 show the functions Q(R; r) and S(�; r) from the results of

numerical analysis. The theoretical maximum span obtainable for a 512(9) net is

' 163, which occurs when r = 0:0016 and � = 6.

5.1.3 Performance

Some simulation results for Random Resetting in a 512(9) net are shown in Ta-

ble 5{1. Fig 5{4 shows a span graph for the special case of Random Resetting.

Here, average span is 44:2 � 5:5. Fig 5{5 shows the stability imposed on p when

Random Resetting is initiated after some initial training. Fig 5{6 shows the serial

order curves from simulations with special case and optimal general case Random

Resetting with W = 1; 000.
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Span

In the table, the three rows correspond to the special case in section 5.1.1 when

p = pc, the greatest span when � = M and the greatest span for any � (all

have z = 1). The columns show r, p (which is determined by r), � and then

three estimates of S: from theory, St, from numerical analysis, Sn, and from

practice/simulation, Sp.

It can be seen that the three estimates of S are very close. The results for naive

thresholding con�rm Rs to be an accurate predictor of S - since theory matches

practice to within one standard deviation.

The only signi�cant discrepancy is for the optimal span under general Random

Resetting, when numerical analysis would predict S = 163, whereas simulation

results give S = 148:9 � 7:4 (theoretical prediction is unavailable here). This is

most probably due to the unit usage assumption used in the numerical analysis.

Note the best possible span comes from a light loading, whence the expected

number of spurious errors is ' 0:46, which is less than the expected number of

omission errors (1:54 at the limit R = Rs). Given the low amount of information

41



    1.00

    2.00

    3.00

    4.00

    5.00

    6.00

    7.00

    8.00

    9.00

    10.00

    0.00     0.50     1.00

    Serial Order Curve of 512(9) Willshaw Net, Random Resetting Optimal Case

    Ho

    "Serial Order" / 1000

    Serial Order Curve of 512(9) Willshaw Net, Random Resetting Special Case

    1.00

    2.00

    3.00

    4.00

    5.00

    6.00

    7.00

    8.00

    9.00

    10.00

    0.00     0.50     1.00

    "Serial Order" / 1000

      Ho

Figure 5{6: Serial Order Curves under Random Resetting
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in sparsely coded patterns, this may make a common limit of HL an unsatisfactory

choice, but further consideration is not given here.

Serial Order Curve

From the serial order curves, it can be seen how older associations are progres-

sively forgotten in an exponential manner - such a memory has gradual, \soft"

degeneration with age. Of course, this entails a �nite probability that even very

recently trained patterns will fail to be retrieved reliably. The optimal case pro-

duces a better-de�ned serial order curve than the special case, as can be seen from

comparing the two graphs.

It can be noted that Rs corresponds to the point on the serial order curve when

HO = 2 (although the noise in the data makes accurate comparison impossible).

The asymptoticHO value will be di�erent for the two cases (though they appear

similar). For the special case when p = pc, the asymptote should be around 10,

since there would be only one active output unit expected if an input pattern was

presented to a completely random weight matrix. It may need a larger window to

see this asymptote reached (ps is probably still slightly larger than pn), whereas

the optimal case, being sharper, has de�nitely peaked by about 900 forgetting

episodes.

5.2 Weight Ageing

The Method

This method turns o� switches with a probability, r(A), that is a function of the

age of a switch, A. The age of a switch is the time (number of subsequent patterns

trained) since that switch was last triggered. This includes \re-triggering" cases,

when wij = 1 prior to training: then the switch age is \reset" by the new training

episode.

To stabilise loading density, the new switches triggered in the learning of an

association need to be accompanied by the resetting of an equal number of existing

43



switches. The former quantity is again just:

MI �MO � (1� p) (5:23)

Now one choice of r(A) is a step-function parametrised by a \critical age"

parameter, Ao, where r(A) = 1 iff A � Ao (and 0 otherwise). Then the second

quantity simply becomes the number of switches older than this critical age. Each

such switch cannot have been re-triggered by any of the Ao learning episodes

subsequent to its original triggering, so the requirement is that:

(1� p)MIMO =MIMO(1� FIFO)
Ao ' MIMO exp (�AoFIFO) (5:24)

Of course, this argument has followed a similar line to that producing Eq 3.5, and

consequently the above requirement is satis�ed when Ao = � NINO

MIMO
ln(1� p).

In summary, an episode of forgetting in this \ideal" Weight Ageing algorithm

involves a search through all triggered switches for switches that are older than

Ao. Only these switches are reset.

A more general class of probability-age functions has r(A) increasing smoothly

with age. A sigmoidal function is such a function, which provides extra 
exibility

through a parameterD, determining the \sharpness" of the sigmoid (the Heaviside

function can be viewed as an in�nitely sharp sigmoid). Then:

r(A) =
1

1 + e
�D(A�Ao) (5:25)

The simulators allow experimentation with values for D as well as Ao.

Survival Time

With a discontinuous r(A), the expected survival time will, of course, be equal

to the number of pattern pairs with HO < HL when R = Ao under standard

training. An optimal value for Ao can then be obtained from Fig 3{4, for the

maximum ordinate value. In this case, Ao should be ' 1900. Survival times with

such r(A) functions give spans:

S = O

�
( N

log(N)
)2
�
= O[Rc] (5:26)
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Figure 5{7: Span under Ageing Weights

5.2.1 Performance

Span

Fig 5{7 and 5{8 show the span and serial order curves for Weight Ageing in a

512(9) net trained from a Tabula Rasa with a Heaviside r function and Ao = Rc

(p = pc). The average span, after stabilisation, is (1:37� 0:04)� 103.

The measured span is in agreement with the value of S from Fig 3{4 when

R = Rc. If Ao = 1900, better spans of (1:70 � 0:01) � 103 can be achieved.

Interestingly, at this lower loading, a much more \stable" span results, as can be

seen from comparing the standard deviations of the above two estimations.

For sigmoidal probability-age functions, as expected, the span decreases as the

sharpness of the sigmoid decreases. However, there is little decrease until D� 1.

When D = 0:01 for example, the span is still (1:069� 0:006)� 103.
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Figure 5{8: Serial Order Curve under Ageing Weights

Serial Order Curves

The discontinuous serial order curve shows how the more selective nature of the

weight ageing method can produce almost \ideal" memory pro�les.

46



v

(O)
j

= 0 v

(O)
j

= 1

v

(I)
i

= 0 w y

v

(I)
i

= 1 x z

Table 5{2: Generalised Hebb Rule

5.3 Generalised Learning

Generalised Learning methods are not random, but \directed" in the sense that

the switches reset are in some way dependent on the particular pattern vectors

presented at time t. For example, whilst switches connecting conjoint activities

might be triggered, the switches connecting active input units to inactive output

units might be simultaneously reset.

5.3.1 Generalised Hebb Rule

Neurophysiological studies have shown that changes in synaptic e�cacy would

seem to be governed by quite complex processes. It has been suggested recently,

e.g. [Stanton & Sejnowski 89], that increases in synaptic strength, or Long-Term

Potentiation (LTP), may be balanced by decreases in e�cacy through Long-Term

Depression (LDP) - although the results are often in debate [Willshaw & Morris 89].

However, it is possible to explore an abstract space of possibilities - for example

[Palm 88] draws up a generalised framework for weight update rules (for continuous

weighted nets) as shown in Table 5{2. In Palm's formalism the variables w � z

correspond to real-valued weight changes.

[Dayan & Willshaw 91] determine optimum cases in this formalism, with re-

spect to signal-to-noise ratios. The best learning rule turns out to be the Covari-

ance rule, e.g. [Dayan & Sejnowski 93], studied in statistics (c.f. Eq 5.28), where

w; z are increments to a weight and x; y are decrements.

In the sparse coding limit, other rules approach optimality: a Homosynaptic

rule (when FO ! 0, c.f. Eq 5.30), a Heterosynaptic rule (when FI ! 0, c.f.

Eq 5.32) and of course the standard rule used in the WN, which is non-optimal

but best when both input and output patterns are sparsely coded (c.f. Eq 5.27).
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Figure 5{9: Schematic Illustration of Generalised Learning

Note that the standard HN learning rule has x = y = �� and w = z = +�

(weights are only symmetrical when x = y). The HN learning rule only approaches

optimality when the patterns are uniform signary vectors.

The Method

The possibility of resetting switches in a similar manner (or unlearning) suggests

that modi�ed learning rules could produce a stable WN loading below the asymp-

totic value of p = 1. This would be achieved by converting the weight increments

or decrements for real-valued weights into probabilities for triggering or resetting

binary-valued weights. Then the variables in Table 5{2 would correspond to:

w; z = prob(wij ! 1)

x; y = prob(wij ! 0)

The relevant probabilities for switches are shown schematically in Fig 5{9. Below

are listed some of the particular values for the probabilities w � z investigated:
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� Standard WN Learning rule:

w = x = y = 0; z = 1 (5.27)

� Covariance Rule:

w =MIMO=NINO; z = (NI �MI)(NO �MO)=NINO;

x =MI(NO �MO)=NINO; y =MO(NI �MO)=NINO (5.28)

� Homosynaptic Unlearning:

w = y = 0; x > 0; z > 0

Eg w = y = 0; x =MO=(NO �MO); z = 1 (5.29)

Eg w = y = 0; x =MO=NO; z = (NO �MO)=NO (5.30)

� Heterosynaptic Unlearning:

w = x = 0; y > 0; z > 0

Eg w = x = 0; y =MI=(NI �MI); z = 1 (5.31)

Eg w = x = 0; y =MI=NI ; z = (NI �MI)=NI (5.32)

� Keinosynaptic Unlearning:

x = y = 0; ŵ > 0; z > 0

Eg x = y = 0; ŵ =MIMO=(NI �MI)(NO �MO); z = 1 (5.33)

where ŵ 6= w, but here is the prob(wij ! 0).

Survival Time

The survival time under Generalised Learning can be studied by similar methods

to those in Section 5.1.2. Making the same simpli�cations for a square net as

before, the following arise:

p̂(t+ 1) = p̂(t)(1� (x + y)F (1� F )) + (1� p̂(t))(w(1� F )2 + zF
2)

= (w(1� F )2 + zF
2) + (1� (w(1� F )2 + (x + y)F (1� F ) + zF

2))p̂(t)
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p =
w(1� F )2 + zF

2

w(1� F )2 + (x+ y)F (1� F ) + zF
2

(5.34)

p̂(R) = p+ (1� (w(1� F )2 + (x+ y)F (1� F ) + zF
2))R(p̂(0)� p)

(5.35)

Letting k = 1� (w(1� F )2+ (x+ y)F (1� F ) + zF
2), a recurrence relation for ps

can be derived similar to the general Random Resetting case:

ps(0) = 1� (1� p)(1� z) (5.36)

ps(R) = k
R(1� p)z + p (5.37)

(The signal-to-noise ratio, �, will also be determined in a similar manner to Eq B.2

in Appendix B.) However, there are interesting di�erences to Random Resetting,

particularly when pn can no longer be approximated by p. These are highlighted

by considering some of the examples in Eqs 5.29 to 5.28.

5.3.2 Analysis of Special Cases

The values of x and y in Eqs 5.29, 5.31, or 5.33 are derived by requiring a stable

net loading of p = pc and z = 1, which suggests the optimal threshold is � = M .

Then, since w(1� F )2, (x+ y)F (1� F ), zF 2 are all � 1, the recurrence relation

becomes:

ps(R) ' 1� M
2

N
2
R (5.38)

This equation is of course identical to 5.11. Because patterns are randomly

generated, learning new pattern pairs e�ectively results in Random Resetting of

switches important to previous associations.

The value of pn(R) however, depends on the particular type of unlearning.

Homosynaptic

Consider Eq 5.29: now, immediately after learning a given association:

pn(0) = p(1� x) (5:39)
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After training R further associations, pn(R) ! p, being the stable point of the

recurrence relation from 5.35 again (this time for pn):

pn(R) = p� (1� (xF (1� F ) + zF
2))Rpx (5:40)

In this example, where p = 0:5 and x = F

1�F � 1:

pn(R) ' 1

2
(1� 2

M
3

N
3
R) (5.41)

Substituting pn(R) and ps(R) from 5.38, the following approximation is derived

for Rs (from 5.13):

Rs '
1 + M

2

N

M4

N2 +
2M4

N3

= O

�
N

2

log(N)4

�
(5:42)

Though this is of the same order as Eq 5.14, it suggests a survival time slightly

greater than with Random Resetting (and results con�rm this - see later).

Another advantage of such a method would be apparent if the sequences of

pattern pairs trained were not random, but correlated in some way. For example,

if input patterns were all drawn from a similar template (i.e. were separated by

small hamming distances - sharing 1's in several places), the span of a net under

Random Resetting would fall dramatically, as the number of spurious errors would

increase. However, under homosynaptic unlearning, recently trained patterns are

more thoroughly \impressed" on the memory, reducing the chance of spurious

errors.

This is supported by simulation results, where correlated patterns can be pro-

duced by setting components to 1 with di�ering probabilities. In a 512 net with

E[M ] = 9, but with 9 of the components 30 times more likely to be set than the

other 503, the average span under Random Resetting is 1:5 � 1:3, whereas under

Homosynaptic Unlearning, the average is 13� 3:3.

Heterosynaptic

Since this method does not a�ect weights responsible for spurious errors like ho-

mosynaptic unlearning, the value of pn ' p. However, the method should damp

the 
uctuations in unit usage, since any increase in the usage of a particular unit,

zM(1� p), is now countered by a decrease of (N �M)y.
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Indeed, this is observed in practice, when, for example, the variance of unit

usage in a 512(9) net under heterosynaptic unlearning is 4 times smaller than

under homosynaptic.

Note that the distinction between homo- and heterosynaptic unlearning would

be irrelevant if retrieval of patterns in a WN could procede in either direction. In

other words, if \output" patterns could cue retrieval of \input" patterns, as well

as vice versa, then it would be advantageous for a palimpsest scheme to employ

both homo- and heterosynaptic methods.

Keinosynaptic

Keinosynaptic unlearning involves turning o� switches if neither of the respective

input or output units are active (i.e. the probability ŵ is not the same as em-

ployed in the other rules). Since this method would seem to have neither of the

advantages of the above two, it might be expected to perform no better than Ran-

dom Resetting in the sparse coding limit. Indeed, as this ideal is compromised,

keinosynaptic unlearning would probably perform worse than Random Resetting,

since it actually encourages variability in unit usage. The only possible advantage

of this scheme would be increased robustness to spurious active units in noisy cues,

but this would have negligible e�ect with sparse coding, so has not been explored

here.

Other Rules

Eqs 5.30, 5.32 and 5.28 are probabilistic equivalents of optimal cases of the Gen-

eralised Hebb Rule studied in [Dayan & Willshaw 91]. All three have z < 1, but

still give a stable net loading of p = 0:5. As a consequence, all give the largest

spans when � =M .

However, although the original rules can be shown to give optimal signal-to-

noise ratios, which are essential for good span, they are not optimal for palimpsest-

like behaviour with respect to S. This is likely to be for two main reasons.

Firstly, they are only really applicable when the weights are continuous, and

conversion to probabilities in a binary-weighted net is not likely to retain their
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optimality. For example, there is no possibility for binary weights to take negative

values, and reduce the weighted sum.

Secondly, the threshold here is identical for all output units, whereas the

[Dayan & Willshaw 91] analysis assumes each unit can independently adjust its

own threshold from knowledge of its quenched weights. A common threshold will

not produce spans as good as with adaptable thresholds.

5.3.3 General Case Analysis

As with the general case of Random Resetting, better spans can be achieved when

� is allowed to drop belowM , and the net is loaded more lightly. The threshold is

then variable in the sense that a good choice will depend on the variables w; x; y; z.

When � < M , a mathematical expression for Rs is again hard to ascertain.

However, the parameter space of w; x; y; z and � can be again explored by nu-

merical analysis from Eqs 5.22, 5.37 and 5.40, as in the \Direct Estimation" of

Section 5.1.2. The results of such analysis are compared with simulation results

in Table 5{3.

5.3.4 Performance

Span results from a 512(9) net under various Generalised Learning schemes are

shown in Table 5{3.

Span

The �rst six rows in the table show particular values for w; x; y; z from Eqs 5.28

to 5.33. These values uniquely determine p from Eq 5.34. The column under

Sn represents the maximum theoretical span obtained in numerical analysis from

varying � , whose maximising value is shown in the previous column. Sp stands

for the span found in practice, from simulation.

The last two rows show maximal theoretical spans after exploring a space of

values for w; x; y; z; � by numerical analysis. For naive thresholding where � =M ,

a maximum S ' 60 can be obtained with w = y = 0, z = 1 and x = 0:0216. For a
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Equation w/103 x/102 y/102 z p � Sn Sp

5.29 0.0 1.79 0.0 1.0 0.50 9 52 53.1 �5:2
5.30 0.0 1.76 0.0 0.982 0.50 9 33 31.8 �5:2
5.31 0.0 0.0 1.79 1.0 0.50 9 48 50.0 �5:6
5.32 0.0 0.0 1.76 0.982 0.50 9 30 31.9 �5:2
5.33 (ŵ) 0.3 0.0 0.0 1.0 0.50 9 - 42.3 �5:2
5.28 0.3 1.73 1.73 0.965 0.50 9 11 11.4 �3:0
�=M 0.0 2.16 0.0 1.0 0.45 9 60 59.0 �5:3
any � 0.0 8.75 0.0 1.0 0.17 6 178 168 �7:3

Table 5{3: Maximum Spans for di�erent Generalised Learning Methods

smaller threshold of 6, the much better span of ' 178 is obtained, with x = 0:0875

(�0:0025) instead.

The following are worth noting:

� The prediction from Eq 5.42 for S under homosynaptic unlearning, 46:3, is

actually considerably smaller than that observed in practice (53:1 � 5:2).

The di�erence is due to the approximations made in the prediction.

� Both homosynaptic and heterosynaptic unlearning with p = pc, give sig-

ni�cantly larger spans than Random Resetting (t-tests: [N = 100, one-

tailed; Homosynaptic: t = 12:4, prob < 0:005, Heterosynaptic: t = 7:4,

prob < 0:005]). The di�erence for Homosynaptic unlearning is ' 8:9. Thus

both reducing noise in spurious output lines and reducing the variability in

unit usage confer signi�cant increases in span.

� Results with keinosynaptic unlearning, as expected, give a span signi�cantly

down on the Random Resetting case (t-test: [N = 100, t = 3:1, prob < 0:005,

one-tailed]), with a di�erence of 1:9.

� The e�ects of w > 0 or z < 1 (as with Random Resetting) are insigni�cant

versus the e�ects of homo- and heterosynaptic unlearning.

� Although a �nite y is advantageous, its value is out-weighed by having x

large enough for an optimal � and p ' 0:17.

� Optimal loading densities and thresholds under Random Resetting and Gen-

eralised Learning are very similar. This is to be expected, given the only

54



e�ective di�erence is in the noise term pn. However, this may not be the

case if patterns were correlated or pattern coding was less sparse.

Palimpsest Scheme Optimal Parameters Span (approx)

Random Resetting r = 0:0016, z = 1, � = 6 149

Weight Ageing r(A) = 1$ A > 1900 1,700

Generalised Learning x = 0:088, z = 1, w = y = 0, � = 6 168

Table 5{4: Comparison of Palimpsest Schemes in Willshaw Net

5.4 Summary

All the palimpsest schemes discussed above, given certain choices of parameters,

can allow a net to function as a short-term memory with a stable span. Given an

optimal choice of these parameters (found by numerical analsysis when N = 512

and M = log2(N) = 9), the size of this span is shown in Table 5{4.
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Chapter 6

Forgetting in the Hop�eld Net

This chapter examines four main proposals for palimpsest schemes in the Hop-

�eld Net: bounded weights, attentuated weights, random unlearning and enforced

storage. Approximate predictions of the noise-free spans under each method are

derived via a statistical analysis of weight variablility and behaviour of local �elds.

6.1 Catastrophic Failure

6.1.1 Recap

As mentioned in Chapter 3, a HN loaded beyond �c fails completely as an associa-

tive memory. In energy terms, this is because the basins of attraction created by

learnt patterns interfere and distort, resulting in instability and the appearence of

spurious attractors. The point of failure can be approximated by considering the

behaviour of local �elds; a perspective o�ered in Section 4.3.2.

This failure may also be studied from a slightly di�erent perspective, that of

the weights themselves. Put simply, since the growth of weights is unbounded, the

contribution of any learnt pattern to the nature ofW diminishes, and it no longer

becomes possible for learning to create stable states. This alternative perspective

is outlined �rst, before both are employed in examination of palimpsest schemes.
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6.1.2 Analysis of Weight Changes

Consider the continuous training of a HN under a palimpsest scheme. Learning of

a new pattern v(p), after R = p� 1 have already been trained, is achieved through

Eq 4.1:

wij(p) = wij(R) + �wij(p) (6:1)

where:

�wij(p) = �v

(p)
i
v

(p)
j

(6:2)

From Eq 4.7, the condition that this pattern be an initially stable state of the

net is:

8i
� P

N

j=1wij(R)v
(p)
j v

(p)
i +

P
N

j=1�wij(p)v
(p)
j v

(p)
i

�
> 0 (6:3)

For randomly chosen patterns, the �rst quantity is a sum of N independent,

random variables between �wij(R) and +wij(R), with a mean of 0. If N is large

enough, the variance of each variable will be approximated by K(R), where:

K(R) = w
2
ij
� wij

2 (6:4)

where the bar means averaging over all R patterns. Then the standard deviation

of the �rst sum, obtained from the sum of the variances, is
q
NK(R).

Treating the �wij's also as independent random variables, the second sum is

simply equal to (N � 1)� (since wii = 0). Hence the pth pattern is likely to be a

stable attractor if � is greater than some critical value:

� > "

s
K(R)

N

(6:5)

where " is a numerical factor.

Under standard learning, the variance of the wij's is the sum of the variances

of each weight change, which is �. Hence, starting from a Tabula Rasa, where

K(0) = 0:

K(R) = R�
2 (6:6)

The condition that 6.5 be ful�lled is then:

R

N

<

1

"
2

(6:7)
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Since this criterion is relevant to any of the R learnt patterns, as soon as it is

exceeded by training more patterns, all such patterns are simultaneously forgotten

- hence the catastrophic failure found in practice. From section 4.3, the estimate

of �c = 0:14 gives " ' 2:6.

Therefore, to control this overloading e�ect, the acquisition the latest pattern

(signal) must be controlled relative to the background noise K.

One way is to make � an exponentially increasing function of R. Then the

signal strength, �(R), grows with R (as does the noise), and Eq 6.6 becomes:

K(R) = K(0) +
RX
p=1

�(p)2 (6:8)

By considering a continuous behaviour of these quantities, [Nadal et al 86] and

[Nadal 86], derive a marginalist function for �(R), such that it is always tuned

exactly to stabilise the last pattern trained:

�(R)2 = �(0)2 exp
"
2
R

N

(6:9)

However, this unbounded growth of � makes the palimpsest implausible as a

short-term memory device operating inde�nitely (as R ! 1). A better way to

achieve this is by either placing an upper limit on K or attempting to keep it

constant.

6.2 Bounded Weights

The Method

[Hop�eld 82], [Sompolinsky 86] suggest a non-linear learning function, where the

range of values that can be taken by wij is limited in B � wij � B. This in turn

places an e�ective upper limit on K = B
2. The learning rule is now:

wij(p) = g(wij(R) + �v

(p)
i
v

(p)
j
) (6:10)

where:

g(x) =

8>>>><
>>>>:

�A if x � �B
x if �B < x < B

A if x � B
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(although any other non-linear function g(x) with saturation would su�ce).

The value of B can be chosen such that the distribution of wij's should still be

seriously a�ected when R

N
= �c. This means B cannot be much bigger than Bc

where:

B < Bc =
q
N�c�

2 =
�

"

p
N (6:11)

For much smaller B, only the most recent pattern is stored. For much larger B,

the bounds have no e�ect and catastrophic failure still occurs.

Spans

When � is greater than some critical value, the net obtains a stationary span. For

such a stationary regime � > 2:7
N

(B = 1p
N
). This critical value has been obtained

by Markov chain representation of the iterative training [vanHemmen et al 88] or

by viewing the weights as performing random walks between re
ecting barriers:

in terms of approximate signal-to-noise ratios [Gordon 87], or as an exact solution

in sparsely-connected nets [Derrida & Nadal 87].

The optimal value of � is ' 3
N

[Gordon 87]. This is in excellent agreement

with the optimum found from numerical analysis [Nadal et al 86]. Spans where

the retrieval quality mo > 0:97 are then obtainable: S ' 0:04N , i.e. still of O[N ],

but now a third as much as �cN .1

[Parisi 86] e�ectively plots a serial order curve for this type of bounded learning

in which the probability of reliably retrieving a pattern shows a smooth decay as

patterns get older. For N in the range 200�400, 70% of the total storage capacity

has this probability at 90% or higher. More detailed investigations are needed to

see if the sigmoidal function approaches a step-function in the large N limit.

Note that if the bounds are \absorbing" rather than re
ecting (i.e. if wij(p) =

�B, then wij(p + i) = �B 8i subsequent patterns), then the net reaches an

asymptotic state when no new patterns can be learnt, but the oldest patterns

remain stable attractors and there is no failure of these memories. This has been

compared to a �xed capacity Long-term Memory [Peretto 86].

1Finally, when � is increased beyond N� 1

2 , the span is exactly 1.
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[Amit & Fusi 92] suggest a slightly di�erent bounding scheme where continu-

ous weights undergo exponential decay over time, although periodically, they are

\refreshed" to a �nite set of clipped values. The frequency of refreshing is varied

relative to the frequency of pattern training. When the frequencies are similar, this

scheme provides a palimpsest with a span of O[ln(N)]. As the rate of presentation

is increased, the span increases rapidly to orders O[ N

ln(N)
]. Alternatively the refresh

mechanism can operate stochastically, which allows the pattern presentation to be

slowed down signi�cantly, but the span still cannot surpass
p
N .

6.2.1 Performance

Results from a 512(256) HN with � = 0:00586 and weights bounded at B = 0:0442

give a span of S = 24:4�3:2. Fig 6{1 shows the serial order curve with the overlap
metric. The mean weight value is 0 with variance as small as 0:17�, which is about

75% of the upper limit B2.
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Figure 6{1: Serial Order Curve under Bounded Weights
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The experimental S value is close to the predicted S ' 20:5 (given the vari-

ability of the simulated estimate). The sigmoidal serial order curve is quite sharp

suggesting a sudden transition from remembering to forgetting - from HO = 0, to

HO ' 250.

6.3 Attentuated Weights

The Method

[Nadal et al 86] also invent a new learning rule that keeps the value of K �xed at

K = 1
N
. This is:

wij(p) = �(wij(R) + �v

(p)
i
v

(p)
j
) (6:12)

In a similar manner to Eq 6.8, this requires:

� = (1 +N�
2)�

1

2 ' exp

�N�2
2

(6:13)

in the large N limit. Thus each time a new pattern is learnt, the existing weights

are attenuated by a �xed amount - they \decay" back to their mean value of 0.

In other words, the creation of each new energy minimum is supplemented by the


attening of old ones.

Spans

As in section 4.3.2, the condition for a pattern v(p) to be reliably retrieved after

R + 1 have been trained is when:

� � x0h
2

(6:14)

and in this scheme:

hi(v(p)) = N��
R�p

v

(p)
i

� = N�
2

RX
r=1

�
2(R�r) (6:15)

Therefore, if the last pattern must be well retrieved (p = R+1), and using Eq 6.13:

1

N(1� exp (�N�2)) '
1

N
2
�
2
� x0 (6:16)
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This means that � � 2:56
N
. Alternatively, adopting the stronger condition that the

last S patterns are well retrieved:

N�
2
S = ln(N2

�
2
x0) (6:17)

Maximising S with respect to �2 gives the optimal � and span:

� =

s
e

x0N
2
' 4:2

N

S ' 0:05N (6:18)

Thus the optimal span is slightly better than with Bounded Weights, although it

is still approximately a factor of 3 smaller than �cN .

[Mezard et al 86] generalise this learning rule to a whole family of models.

They solve the thermodynamics of this family in a similar way to the Hop�eld

model. Their calculation of the threshold for a stationary capacity is N� > 2:46,

which is close to the above prediction, as is their optimal N� = 4:11.

A similar family of models has been proposed by [Shinomoto 87] for use in

Boltzmann Machines, where forgetting involves similar attenuation, but the learn-

ing rule involves averaging over states organised by the stochastic rule implemented

in the connection itself. However, in the zero temperature limit, the rule is formally

equivalent to that of [Nadal et al 86].

6.3.1 Performance

Results from a 512(256) HN with � = 0:00803 and Attenuated Weights with � =

0:984, give a span of S = 29:9� 1:9. The mean weight value is 0 with variance as

small as 0:25�.

This is actually over two standard deviations larger than the approximate

theoretical prediction: S ' 25:6. This may be due to �nite N e�ects again, or

the inaccuracy of the above analysis (this is why S = 0:05N is only given to one

signi�cant �gure).
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6.4 Random Unlearning

The Method

Another suggestion for avoiding catastrophic failure is to have some unlearning of

attractors in the net. For example, this might involve starting the net in some

random state and allowing it to relax to the nearest attractor. If that attractor

corresponds to a state s0, then unlearning of that state is simply the opposite

process to the normal HN adjustment:

�wij = ��s0is0j (6:19)

where � is some constant.

This method was originally suggested by [Hop�eld et al 83] as a method of

improving the accessibility of trained patterns (but not as a palimpsest scheme).

When � < � and a considerable number of unlearning trials, u, are performed,

unlearning improves memory function both by equalisation of the size of trained

attractors and by suppression of spurious attractors. (This method has been

compared to hypothesised physiological processes that may occur during REM

sleep in animals, whereby random activity leads to weak and insigni�cant engrams

being erased and stronger engrams actually being made more resilient.2)

The idea has been further studied by [Kleinfeld & Pendergraft 87]. With a

small net of 30 units they found that, with � = 1
N
and R = 11 patterns trained, a

massive improvement of ' 25% of patterns stored with no unlearning, to ' 95%

stored when 120 unlearning trials were performed. This resulted in an almost

two-fold increase in capacity of the net in information-theoretic terms. Providing

� <
1
R
, the improvement is relatively independent of � given a constant total

amount of unlearning u�.

2[Geszti & Pazmandi 87] give another interpretation of dream sleep, where learning

is within bounds, �a la Parisi, but the attractors that random initial states settle into

are not unlearnt, but rather relearnt. This strengthening of strong memories within

a bounded system automatically entails the weakening of more super�cial (spurious)

memories.
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Spans

For a palimpsest scheme, the desire is to actually remove old pattern attractors

as well as spurious attractors. This necessarily involves a more radical alteration

of the energy landscape. Given alternating learning and unlearning episodes, this

would be trivial with S = 1 and u = 1; then � = �. However, it should be very

hard to obtain a stable span when S > 1.

This is because a pattern attractor needs a large amount of unlearning, u�,

to smooth it out (else the normal interference will eventually occur). This means

it will either have to be selected many times as s0, or � will have to be large.

However, to be selected many times, S needs to be small, whilst if � is large and s0

corresponds to a spurious attractor instead, the unlearning will a�ect several other

desired attractors too. This catch-22 situation seems irresolvable, as simulation

results would support.

Alternatively, unlearning can take place after every e learning trials, where

e > 1. If K is to remain constant, and it is assumed that s0 is always a pattern

attractor (i.e. S � �cN - so unlearning will always decrease noise), then the

requirement would be for e� = u�.

However, care must be taken when pursuing this idea. If S ' e, then much

random unlearning simply involves \wiping the slate" clean every few training

episodes. In the extreme case, this could produce an \span" of S = �cN if

e = �cN and u� was su�cient to mean that the subsequent training started from

a Tabula Rasa again. The drawback is that every pattern is not treated equally;

their survival times would be dependent on the time they were trained. Some

patterns would have a survival time only of one training episode and the serial

order curve would be totally 
at.

Thus the choice of e relative to expected S e�ectively boils down to a choice

on the form of serial order curve. Here, consideration shall only be given to e < S,

to allow reasonable serial order curves.

6.4.1 Performance

Values for e, u and � have been explored by simulation. Table 6{1 shows the
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Rp e u � Sp

1 1 1 � 1

2 1 1 � 2

3 1 1 � 0

2-8 1 10 0:1� 1

2-8 1 100 0:01� 1

2 2 2 � 1:5

3 3 3 � 0

2 2 20 0:1� 1:5

3 3 30 0:1� 2

4 4 40 0:1� 2:5

Table 6{1: Random Unlearning Results

results of S from a 512(256) net under di�erent amounts of unlearning (which

always precedes learning).

The �rst column in Table 6{1 under Rp gives the number of pre-learnt pat-

terns before unlearning �rst begins. Sp is the span from simulations, after the

(signi�cant) initial transients have died down.

The main conclusions are then:

� With alternating learning and unlearning, the maximum S ' 2. When as

few as 3 attractors exist in the net, there must be the creation of at least

one spurious attractor.3 This is because, when s0 corresponds to a spurious

attractor, the unlearning with � = 1 is likely to be too great and in e�ect

causes the partial training of a new pattern, rather than the desired 
attening

of a pattern attractor. From this point onwards, the introduction of further

spurious attractors is likely to escalate, and the palimpsest fails from normal

interference - not even the latest pattern can be made stable.

� Reducing � and increasing u means unlearning is likely to diminish several

attractors in the net. Now several patterns may become unstable and forgot-

ten. In the long-term, the best hope is a span of 1 from the normal learning

3The �rst spurious attractors to appear are co-called mixture states, which are linear

combinations of an odd number of learnt patterns - see [Hertz et al 91]
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of the last pattern (since the above \excess" learning is less likely to occur

when � < �).

� The last few rows of the table show how it does not appear possible to obtain

S > e when e > 1. This is mainly due to s0 occasionally being a spurious

attractor (i.e. failure of the assumption in the previous Section). Though

some patterns (those learnt immediately after the unlearning episode) have a

survival time of e, i.e. greater than the average S, the di�erential treatment

of patterns is not really satisfactory, as explained above.

Consequently, Random Unlearning can allow continual training, but is not an

e�ective palimpsest scheme at all, since the best stable span obtainable is that of

2 patterns, and this would seem independent of N (since there is always a �nite

chance of a spurious attractor when S > 2 that can potentially destabilise the

palimpsest).

6.5 Enforced Storage

The Method

[Morris & Wong 88] propose a learning rule that goes beyond the usual Hebbian

rules. Their rule is based on the error-correcting properties of \delta-rules" like

the Widrow-Ho� rule:

wij ! wij + ��ivj (6:20)

where �i is a measure of error. The usual linear measure is simply the di�erence

between the new pattern component v
(p)
i

and unit i's local �eld after presenting

the pattern on the net just before it is learnt:

�i(p) = v

(p)
i
�

NX
k=1

wik(R)v
(p)
k

(6:21)

The most important result about these rules in the heteroassociative case is that

W converges to the matrix that results in the minimal least square error for the

estimation of the output pattern from the input pattern [Stone 86]. In the auto-

associative case, this matrix is just I. In return for the added complexity of the
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delta-rules, they no longer impose any requirement of orthogonality or even linear

independence of pattern vectors in achieving their goals.

The drive behind the [Morris & Wong 88] rule is to \enforce" each new pattern

on the net with su�cient intensity that it is always stored (i.e. the requirement

given by Eq 6.3). They show this is the case if the learning rule is:

wij(1) =
�

N

v

(1)
i
v

(1)
j

(6.22)

wij(p) = wij(R) + �wij(p) fi 6= j; p > 1g

�wij(p) =
1

N

�
�v

(p)
i
�PN

k=1wik(R)v
(p)
k

�
v

(p)
j

(6.23)

wii(p) = 0 f8pg

where �ij is the Kronecker Delta symbol. This rule keeps the amount of noise

in the weights, K, approximately constant under continuous training, and it is

simple to show that constraint 4.7 is satis�ed since Wv(p) = �v(p). (S is in fact

independent of � if � > 0.)

Spans

In fact this rule predicts a maximum capacity higher than that with generalised

Hebbian rules. Using a non-standard measurement of \Bit Error Rate", or the

probability of an initially unstable unit, [Morris & Wong 88] calculate a maximum

(transient) capacity of 0:25 when the bit error rate is 0:05, together with a some-

what reduced stable capacity of 0:15. The condition that the leading diagonal of

W is zeroed is important to prevent W converging on I (which they show occurs

if the condition is removed).

Note that, although the rule looks more complicated than the Hebbian rule,

it is still completely local and, computationally-speaking, updating is of the same

order O[N2]; in fact it only involves approximately twice as many steps.

6.5.1 Performance

Fig 6{2 shows the span of the net after training from a Tabula Rasa. The maximum

number of patterns reliably retrieved is 67, and the number does not stabilise until
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Figure 6{2: Span under Enforced Storage

about 1; 000 patterns have been trained. The average span (after initial transients

have died down) is 35:7�2:2. The mean weight value is 0:002�0:442 when � = 10.

6.6 Other Methods

Several authors have proposed more sophisticated learning rules, such as the

\pseudo-inverse" method or the \eigenstructure" method. Incremental learning

and forgetting regimes have also been designed for both of these [Yen & Michel 92].

However, these methods are usually very complicated and would seem bio-

logically implausible (often violating the locality constraint). Consequently, the

details are not covered here, although for reference, a summary of the four basic

classes of learning rule, from [Yen & Michel 92], is shown in Table 6{2.4

4The delta rule falls into the class of \projection rules", from the fact thatW comes

to project onto the R-dimensional space spanned by the pattern vectors.

68



Characteristic Hebbian Projection Pseudo-inverse Eigenstructure

Net Always Stabilises yes yes no yes

Patterns always Stored no yes yes yes

Storage Capacity < 0:15N < 0:5N < 0:5N can be > N

Symmetric Weights yes yes no yes

Spurious States yes yes yes ltd

Energy Analogy yes yes no yes

Table 6{2: 4 Di�erent Classes of Learning Rules

6.7 Summary

All the forgetting methods discussed above, given certain choices of parameters,

can allow a net to function as a palimpsest with a stable span linearly proportional

to the size of the net, as shown in Table 6{3, where both theoretical, St, and

simulated, Sp, spans are given.

Palimpsest Scheme Optimal Parameters St Sp

Bounded Weights � = 3:0
N
, B = 1p

N
0.04N 0.05N

Attenuated Weights � = 4:1
N
, � = exp (�8:4

N
) 0.05N 0.06N

Random Unlearning e = 1, u = 1, � = 1:0 - 2

Enforced Storage � > 1 - 0.07N

Table 6{3: Comparison of Palimpsest Schemes in Hop�eld Net

However, the above analyses and simulations determine only the number of

patterns that are stable states of the net when perfectly reproduced over the units.

Of course, ifW = I, then that number would be 2N ! Consequently, it is important

to examine how these schemes compare under noisy presentation of patterns - i.e.

to elucidate the relative sizes of each desired attractor. This is examined in the

next chapter.
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Chapter 7

Comparison of Palimpsest Schemes

This chapter attempts a more general classi�cation of the palimpsest schemes

considered in the previous two Chapters. They are also compared, in neutral,

information-theoretic terms, for auto-associative performance under noise.

7.1 Some Categorisation

The seven methods of forgetting considered in this project can be viewed as ex-

emplars of three main categories of forgetting.

7.1.1 Weight Decay

Weight decay, as a type of forgetting process, shall be de�ned as gradual returning

of weights to some �xed resting value, in a non-speci�c manner and as a function

of the number of forgetting episodes. It is non-speci�c in the sense that it is

independent of the nature of the patterns themselves (once forgetting parameters

are �xed). Examples include the Random Resetting method in the WN, and

Attentuated Weights method of the HN (resting wij = 0 in both cases).

Weight Ageing in the WN is another example of Weight Decay. The di�erence

to Random Resetting is essentially between whether the probability of a switch

remaining triggered over time has �rst- or second-order dependence on the number

of forgetting episodes. When the second-order dependence in the Weight Ageing
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method has a very speci�c form (i.e. a step function), there is a considerable

improvement in span.

Random Unlearning of patterns in the HN can also be grouped into this cate-

gory. Weights e�ectively decay back to their mean value in a non-speci�c manner

because the attractor to be unlearnt is randomly chosen.1

Weight Decay methods do not necessarily require any modi�cation of a model's

learning function, since the forgetting stage can be treated as a separate, active

procedure in the complete training algorithm (its incorporation into a rule in

the HN is simply more concise). This suggests that learning and forgetting could

operate as independent processes on di�erent timescales, i.e. there need not always

be alternating learning and forgetting episodes, as raised in Section 6.4. The

general advantages of uncoupling their timescales are not immediately apparent,

and beyond the scope of this project.

7.1.2 Bounded Weights

The prototype of this category is the method of Bounded Weights in the HN. Here

the weights are at no time forced to decay back to their mean value, but remain in a

restricted asymptotic distribution. Restricting weights actually involves changing

a linear learning function to a non-linear squashing function.2 (Since the weights

in the WN are already clipped to only one of two values, there is not really an

equivalent method here.)

Forgetting due to bounded weights is also non-speci�c, and there is again the

possibility of uncoupling learning and forgetting: e.g. clipping weights after several

patterns have been learnt, �a la [Amit & Fusi 92].

However, forgetting in nets with bounded weights can also be regarded as a

passive consequence of the physical structure of a net: in the sense that it is a

1Indeed, a random pattern unlearning process in the WN would be formally equiva-

lent to the random resetting method.

2Note that bounded weights do not have to be clipped to a set of discrete values: they

can still be continuous.

71



property of the connections rather than any active process operating on them.

For example, it would be possible to independently force forgetting via weight

decay, but with bounded weights, forgetting is necessarily tied up with further

learning of new patterns.

7.1.3 Pattern Interaction

This method of forgetting relies on a modi�ed learning function where the training

of the most recent pattern has a speci�c e�ect on existing stored patterns. In one

sense, all distributed memories have some forgetting from interaction between

patterns. However, the speci�city used here refers to the forgetting being actively

directed by the pattern currently being trained.

For example, consider Generalised Learning in the WN. Whereas retrieval fail-

ure under standard, non-palimpsest learning arises from a constant background

noise, under the process of unlearning, the noise can be selectively modi�ed for

the current pattern.

As discussed earlier, the HN learning rule is already an example of the Gen-

eralised Hebbian Rule, so this type of e�ect is implicit. However, it is possible

to extend the idea of speci�city to the Enforced Storage case as well. Again, for-

getting is a consequence of the interaction between the existing patterns and the

pattern being trained, but now this interaction is further modi�ed by how much

the weights need to be altered to accomodate this pattern. Thus even more infor-

mation is gleamed from the particular pattern being trained, and used to minimise

adverse interaction with other patterns (and with the more sophisticated methods

alluded to in Chapter 6, yet more information is used through comparing the new

pattern with the current state of the net).
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7.2 Single Unit Analysis

[Amit & Fusi 93] examine palimpsest behaviour from the point of individual thresh-

old units, irrespective of any net architecture. By obtaining an expression for the

signal-to-noise ratio for weighted sums to an individual unit after a certain num-

ber of patterns trained, they apply a constraint that the probability of an error on

any unit tends to zero with increasing N , which [Weisbuch & Fogelman-Soulie 85]

believe requires that the square of the signal-to-noise ratio must grow at least as

log(N).

With this restriction they observe a constraint only logarithmic in N on the

maximum span of any net employing such units (i.e. less than O[N ]), unless one

of a number of various parameters is allowed to scale with N (see Section 8.1.4).

Two particular parameters relevant here are the pattern coding F , which must

decrease with N , or the number of clipped values of a weight, which must increase

with N .

However, there seems to be a discrepancy between their theory and the results

here. In examining the binary units in the WN, and a Generalised Learning

scheme, they state that:

S = O

�
( N

log(N)
)2
�

(7:1)

which is the same order as Rc, provided:

� F decreases with N through F / ln(N)

N

� The unlearning parameters are related to N via F , by: x + y = Fz (and

w = 0; c.f. Section 5.3.1)

However, simulations with M = ln(N) and x = Fz in a 512(6) WN give very

small spans (' O[10]) - mainly due to the non-optimal pattern coding. Even

the numerical analysis and simulation in Section 5.3.4, which include some cases

almost satisfying the second provision (but with M = 9), still do not give spans

of this order.

Results from N = 256;M = 8 and N = 1024;M = 10, with homosynaptic

unlearning as prescribed above, show spans of 20:9� 3:6 and 130� 10 respectively.
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Together with the result of S ' 50:6� 5:8 from the 512(9) net, these spans do not

really show a clear scaling of N
2

log(N)2
.

There are probably two reasons for this discrepancy. Firstly, [Amit & Fusi 93]

are satis�ed with the constraint that E[HO]! 0 asN !1. This does not address

suitable retrieval criteria for �niteN , as are required in actual simulation estimates

of S, rather than just signal-to-noise ratios. Since mathematical expressions for S

have complex dependency on � and HL (see Appendix B), it is in fact di�cult to

obtain an order for the expected span.

Secondly they state:

\In the simple case of auto-associative memory the possibility of

retrieving a memory is determined by the distribution of depolarisa-

tions among the neurons in the network upon the presentation of one

of the previously memorized patterns. If that distribution is such that

there exists a threshold which separates the depolarization of neurons

which had been active in the learned pattern from those which had

been quiescent, retrieval is in principle possible."

(author's emphasis). Thus they simply assume adaptable thresholds for individual

units can be found to separate signal from noise, based on particular distributions

of weighted sums. This is not the case for the WN considered here (though this

adaptability, whilst allowing better retrieval, seems unlikely to account for a dif-

ferences of order of N or log(N) - [Willshaw 93]).

7.3 Information Capacities

It is not necessarily advisable to compare performances of the seven di�erent

methods by direct comparison of their spans in Chapters 5 and 6. This is because

of three reasons:

1. The WN results come from the hetero-associative scenario, whilst the HN

can only ever function as an auto-associator.
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2. The patterns used in each net have di�erent information contents. The WN

patterns always have 9 components set to 1, whereas the HN patterns have

256 such components on average.

3. The critera for reliable retrieval are di�erent: for the WN, HL was 2, whilst

for the HN, it was 7 (the latter was in order to achieve reasonably large

spans and also to conform with the conventional mL of 0:97).

To allow comparison, simulations have been carried out with the WN operating

under auto-association. Then, by relativising information contents, a common

reliable retrieval criterion can be chosen, and the two models compared.

Moreover, as mentioned earlier, the value of an auto-associator is only apparent

when there is some uncertainty in the retrieval cue. Thus the relative metric of

interest is the total amount of information, I(n), given a certain amount of noise

in the retrieval cues, n, that a net can reliably store. This can be calculated from

the number patterns, S(n), with information content, Ip, that can be reliably

retrieved:

I(n) = S(n)Ip (7:2)

Call I(n) the information capacity of a palimpsest. (Note how this measure does

not directly address the issue of how much information in the cue pattern needs

to be provided in order to retrieve the full pattern. Rather the capacity here is a

variable, dependent on the amount of noise in the cue.)

Information Content of Patterns

Ip can be de�ned by the standard Shannon Metric:

Ip = �N( qlog2(q)� (1� q)log2(1� q) ) (7:3)

where q is the probability that a component in pattern p has one of two possible

values. As noted in point 2 above, q is not strictly the same quantity for both HN

and WN patterns, but the di�erence can be over-looked here. Then, substituting

F for q: for WN patterns Ip = 0:127N (with N = 512, M = 9), whilst for a HN,

Ip = N .
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Reliable Retrieval Criterion

To equate the retrieval criteria, it can be noted thatHL = 2 in the WN corresponds

to a total error in information terms of 29% of Ip - i.e. this would be the minimum

amount of information needed to correct the error. Then an identical total error

for the HN patterns implies an HL of 26 (using Eq 7.3).

Measure of Noise

The amount of noise, n, is a scalar measured as follows: n is the number of

randomly chosen pattern components that are 
ipped to one of the two possible

values with equal probability. Thus n = 0 corresponds to a perfect cue (as is

the case for the results in previous chapters), whilst n = N corresponds, in the

average, to a cue completely uncorrelated with the intended pattern.3

Comparison of Information Capacities

Given these adjustments, a fairer comparison of the di�erent palimpsest schemes

(with optimal choice of parameters) is shown in Table 7{1. The �gures represent

the amount of information reliably retrieved per pattern component, I(n)=N , with

maximum error of 29%Ip, for di�erent values of n.

The following important conclusions arise:

� With no noise, all information capacities are of the same order, bar that with

Weight Ageing and Random Unlearning of course.4

� The advantage of (optimal) Weight Ageing fades rapidly with small amounts

of noise, e.g. by n = 10, spans have dropped by a factor of 100. This is

in agreement with a general result of [Willshaw 71], which is that a net's

3With spin values, this means generating cues with ai = uivi, where ui = �1 with

probability n=2N .

4It is also noticeable that, in calculating I(0), auto-associative spans in the WN are

sometimes up to ' 135% bigger than hetero-associative ones.
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Method n = 0 n = 5 n = 10 n = 20 n = 30

Random Resetting 24:5 12:0 3:26 0:06 -

Weight Ageing 234 33:1 2:31 0:10 -

Gen. Learning 28:1 14:3 3:60 0:09 -

Bounded Weights 25:4 25:3 25:0 24:9 23:6

Atten. Weights 30:5 30:0 30:0 30:0 29:7

Random Unlearn. 2:0 2:0 2:0 1:96 1:97

Enforced Storage 36:2 30:9 27:1 17:2 8:75

n = 50 n = 100 n = 200 n = 400 n = N

Random Resetting - - - - -

Weight Ageing - - - - -

Gen. Learning - - - - -

Bounded Weights 24:2 23:6 20:6 8:43 0:33

Atten. Weights 29:2 28:1 25:0 9:18 0:21

Random Unlearn. 1:93 1:74 1:94 1:86 0:50

Enforced Storage 0:90 - - - -

Table 7{1: Information Capacities of Palimpsest Schemes when N = 512

robustness to noise is e�ectively proportional to its \spare" capacity. Since

p is over twice as big in the optimal Weight Ageing case (p ' 0:44) compared

to the two other WN schemes (p ' 0:17), an increased sensitivity to noise is

to be expected.

� Capacities in the HN show much more resilience to noise than in the WN.

This is mainly due to the iterative updating in the recurrent HN that allows

progressive correction of errors (at the expense of time).

� This is particularly true of Bounded and Attentuated Weights, where �nite

spans exist even when n = 400. This is not necessarily surprising, since the

random amounts of noise mean that, given many retrieval cues, some are

likely to be close enough to the desired attractor even when n is this large.

� It is not so true under Enforced Storage (ine�ective when n > 50), where the

cost of an increased number of stable pattern attractors must be a reduction

in the size of their basin of attraction.

Consequently, a \take-home" lesson from this section might be: if the interest

is in correcting a small number of spurious errors in a given cue, Weight Ageing in

the Willshaw Net has the greatest information capacity. However, if the interest
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is retrieving patterns from very noisy data (as would seem more useful), then

Attenuated Weights in the HN is best.

A Word on other Models and Architectures

A slightly di�erent perspective is taken by [Amari 88], who considers the \noise-

reduction property" of associative nets with L layers, where layer l feeds forward

to layer l + 1. This property is a measure of how much the overlap, between the

cue on layer 1 and target pattern, improves by the last update (e.g. on layer L),

as a function of the loading, �, of the net.

Recurrent nets are obtained when layer L feeds back into layer 1. Then a HN,

with parallel update, corresponds to the case when L = 1. The interesting result

of Amari's neurodynamical analysis is that noise-reduction in recurrent nets is

\better" when L = 2 than when L = 1. Thus feeding output back to input in

a WN may improve the information capacity of WN palimpsest schemes under

noise.

However, when L � 3, the advantage of recurrency itself decreases. Thus

feedforward architectures with L > 2, and parallel update, buy better and better

noise-reducing ability at the cost of an increased number of connections.
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Chapter 8

Perspectives

This chapter gives brief consideration to some physiological, psychological and

implementational aspects of the palimpsest schemes studied.

8.1 Physiological Plausibility

8.1.1 Timescales

The average �ring rate of neurons in the brain places an upper limit on the number

of calculations they can usefully perform in one second. The Feldmann 100-step

rule estimates this number to be of the order of 100 basic operations, which is

much less than is possible with the clock-rate of conventional computers. This

is often taken as an argument for the importance of parallel computation in the

brain.1

Some have taken this as prohibitive of iterative updating techniques, e.g.

[Sejnowski 86], where only one neuron updates in successive time-steps. For a

net of thousands of units, thousands of updates (as in the HN) would be needed

to reach a stable state, which would be too slow for the sort of computations that

animals appear to be capable of. There is no way that a human brain with at least

1Though others have observed that, if information is encoded in �ring probabilities

rather than rates, there is not necessarily such a strong constraint.
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109 neurons, could function as a single, huge HN ! This is often used in support

of parallel update, such as is common in feed-forward nets.

Another issue is the relative timescales of updating and learning. If there is

no explicit distinction made in the brain between learning and retrieving episodes,

learning must be continuous. Then, for a net to learn desired patterns or states,

but not states intermediate in the process of retrieval, the learning process must

be relatively slow compared to the updating process (or desired states must be

maintained by external stimuli for a long time relative to retrieval times). This

again favours fast (parallel) update.

8.1.2 Connectivity and Coding

Although the average \fan-in" of neurons in animal brains is large (104�106), the

connectivity is still sparse compared to the number of neurons. Sparse connectivity

has been studied in many papers, with the main result being that the decrease

in capacity is actually accompanied by an increase in e�ciency (see Section 8.3).

There is no reason to think that this would not also be the case for the palimpsests

considered here, so sparse connectivity has not been studied here.

Many physiologists believe that the brain also employs sparse coding of stimuli,

which may be modulated by more general activation-inhibiting processes (that

could dynamically adjust the threshold with MI in the WN for example). This is

again associated with increased storage e�ciency (in spite of the smaller amount

of information in individual patterns). Thus the sparsity of coding in the WN may

be justi�ed on these grounds.

8.1.3 Synapses

Realistically, synapses must have a limit to their e�cacy and their learning func-

tion is almost certain to be non-linear. Synaptic e�cacies are also likely to be

continous rather than discrete or binary as in the WN (even though clipping of

synapses leads to greater e�ciency in arti�cial neural nets [Hop�eld 82]).

The exact operation of synapses would seem to be very complex, so most

learning functions are considerable abstractions. Needless to say, Hebbian rein-
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forcement is a gross simpli�cation. However, as a simpli�cation, it would seem

more plausible than any delta-rule form of learning (the delta-rule may be more

appropriate at a higher level of description than the neuronal level). As discussed

in section 5.3.1, LTD has only been con�dently observed in the Cerebellum, and

has not been observed yet in the classic \home" of LTP, the Hippocampus. Also,

it would seem too early to make conclusions on the presence of synaptic decay

over time. There is sometimes a gradual reduction in LTP over a period of days,

but whether this is the only type of decay is an open question.

There is a fundamental tenet in neurophysiology [Crick & Asanuma 86] known

as Dale's Law. This is an empirical �nding, that synapses can be either excitatory

or inhibitory, but can never change from being one type to being the other. The law

is not respected in any of the HN palimpsest schemes considered here. However,

[Nadal et al 86] did �nd that adopting a sign constraint on weights (such that

either �A � wij � 0 or 0 � wij � A) does not qualitatively a�ect the performance

of a palimpsest with Bounded Weights. (Another common response is to dismiss

the issue by noting the equivalence of having two connections between units, one

which can only be negatively weighted and the other only positively weighted).

8.1.4 Optimality

The optimal choice of forgetting parameters in all palimpsest schemes considered

here would seem to require knowledge of N and F .

It might be plausible that the numerical parameters in learning functions have

evolved to near-optimal values, but given that there is much structure in the ani-

mal brain, with di�erent codings and neuron concentrations, it seems implausible

that the variables such as r, w � z, B, � and particularly Ao,
2 have evolved opti-

mally for di�erent areas of the brain. Moreover, knowledge of N and F would not

seem to be locally accessible, so neither does it seem likely that the dependencies

can be explicitly determined (though one could imagine the variables being par-

tially determined by the number synapses impinging the same neuron and/or some

2This is why the dependency of S on Ao has been \diluted" by the D parameter in

the more biologically-plausible sigmoidal r(A) functions.
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estimation of the stimuli coding from sampling the average activity of a neuron

over time). Thus another point in favour of one palimpsest scheme over another

would be a weaker dependence on parameters such as N and F .

8.1.5 Summary

As mentioned in the introduction, current neural nets are a far abstraction from

reality. This caveat in mind, the tentative conclusion of this section would be that

Generalised Learning and/or Bounded (but continuous) Weights would seem to be

the most biologically plausible forgetting methods. This is because there is already

some evidence for the former, and the latter is very likely true of real synapses.

This is not to say that some form of Weight Decay over time is implausible; simply

there is no conclusive evidence for it yet.

As for the di�erent models, the architecture of the Willshaw Net would seem

more plausible than that of the Hop�eld Net, particularly if sparsely connected;

the feedforward and parallel update features appearing most important.3 For a

good review of architectures for auto-associative memory, see [Treves & Rolls 91].

8.2 Psychological Comparisons

The categories of palimpsest schemes attempted in the previous Chapter already

have analogies in psychological theories of forgetting. The debate between tem-

poral decay theories (c.f. Weight Decay) and inteference theories (c.f. Pattern

Interaction) has been raging for decades [Baddeley 86]. With the development

of neural networks, support was gained for interference theories, since this is the

reason for normal (catastrophic) failure of such distributed memories. However, as

has been shown by the methods of Weight Ageing and Attenuated Weights, decay

alone can also produce e�ective forgetting for short-term associative memories.

3This is not denying the utility of the Hop�eld Model at a higher level of description

of associative memory.
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However work on forgetting methods in neural networks may have exposed

some more subtle distinctions. One is that between speci�c and non-speci�c meth-

ods, as discussed in section 7.1. Another is that between active and passive forms

of interference. For example, the forgetting induced by bounded or clipped weights

is a passive form of interference, more akin to the notion of masking.

One important and robust result from experiments on human short-term mem-

ory is a \saucer-shaped" serial order curve. These curves not only show a recency

e�ect (the advantage of more recent training of patterns, as is clearly observed in

all schemes considered here), but also a primacy e�ect, where the �rst few items

of the training sets also have an increased chance of recall. None of the palimpsest

schemes considered show this.

There have been several mechanisms suggested by which primacy can arise,

the most common being the increased \saliency" of the �rst few items (perhaps

a higher initial � variable ?). [Wong et al 91] suggest a Bounded Weights model,

with di�ering probabilities of strengthening and weakening weights (when the

probability of strengthening weights is greater, primacy can be exhibited in ad-

dition to recency). [Burgess et al 91] obtain both by combining absorbing weight

bounds, �a la [Peretto 86], with Weight Attentuation. Alternatively, there may be

associations learnt not simply between the items themselves, but also the \experi-

mental context" [Burgess & Hitch 92], with stronger context-item associations for

earlier items in a list. This obviously needs some consideration of the transient ef-

fects of individual learning occasions (e.g. each new occasion implicating a Tabula

Rasa ?). Finally, [Nadal et al 87] give some speculative comments about increased

performance through repeated learning, which is observed both in people and in

their palimpsests, and some psychological analogies to transients seen in Tabula

Rasa training.

Thus from the psychological perspective, care must be taken in comparing

forgetting methods in general, and forgetting methods perhaps unique to short-

term memories. For a very simple model of short- and long-term memory with

both temporal decay and interference, see [Gardner-Medwin 89].
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8.2.1 Summary

As apparent, there is much more work needed before arti�cial neural network

models can account for the wealth of experimental data obtained from psycholog-

ical investigation. Only a tiny number of observed phenomena have been men-

tioned above - although recent research does seem to be heading in this direction.

However, a major issue in connectionist modelling, not touched upon here, is

the amount of structure provided in the net (the so-called \modularity" debate).

Since there is undoubtedly much structure in brains, the \
ow" of processing must

be relevant the problem of forgetting, e.g. whether loops exist which periodically

refresh decaying memories.

8.3 Implementational Perspective

Section 7.3 shows the information capacity of the seven palimpsest schemes under

di�erent amounts of noise. Another useful metric is their information e�ciency, �,

which is the ratio of their capacity to the amount of information needed to specify

the net itself (e.g. the amount of data needed to implement the net on a conven-

tional computer). This is obviously an important consideration for application of

neural network palimpsests.

8.3.1 Implementation Requirements

Willshaw Net

Since weights are binary, the number of bits to specify W is N2. This is all that

is needed for the Random Resetting and Generalised Learning scenarios (storage

of activations and other parameters being negligible in comparison).

However, the Weight Ageing method requires the additional storage of the

age of each weight. The upper bound of each age is the integer Ao, and a realistic

maximum value of this parameter is N
2

M2 (since larger values are unlikely to produce

a useful palimpsest). Thus let the extra amount of data required be N2
log2(

N
2

M2 ).
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Hop�eld Net

Here the weights can be real-valued, but the palimpsest schemes e�ectively impose

a maximum absolute value.

For Bounded Weights, assume that the bounds �B give a range of 2B=� pos-

sible integer values for wij. Then W requires N2
log2(2

B

�
) bits of information.

For Attenuated Weights, an upper limit on jwijj is ��

1�� . The wij's can have any

real number in this range, but assume that they are stored only to 2 signi�cant

�gures4. Then W requires N2
log2(200

��

1��) bits of information.

For Enforced Storage, analysis is di�cult. However, an estimate can be ob-

tained from practice. In a 512(256) net, the experimental variance of the weights

after extensive training can be used as an estimate for a ' 95% probability of each

weight being under an absolute value of 0:884 (when � = 10 in Section 6.5.1). If it

is assumed that the other 5% are clipped with negligible e�ect on S, the learning

rule implies a range of possible values of 20:884N
�

, from which storage cost can be

determined.

8.3.2 Comparison of Information E�ciences

Table 8{1 summarises the approximate information e�ciences (�10�3) of six of

the palimpsest schemes (Random Unlearning is not shown since its information

capacity is so small), under various conditions of noise.

The following important conclusions arise:

� With no noise, information e�ciencies are all roughly of the same order, i.e.

the advantage in I(n) under Weight Ageing is compensated by a greater

implementation cost.

� However � for WN palimpsest schemes is generally higher than for HN

schemes, provided there is little noise. This is because the simple binary na-

4This choice of accuracy (clipping) may be a very poor one - consideration of necessary

accuracies is beyond the scope of this simple comparison.
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Method Bits/5122 n = 0 n = 5 n = 10 n = 20

Random Resetting 1:0 48 23 6:4 0:1

Weight Ageing 13 36 5:0 0:4 -

Gen. Learning 1:0 55 28 7:0 0:2

Bounded Weights 3:9 13 13 13 12

Atten. Weights 6:6 9:0 8:9 8:9 8:9

Enforced Storage 5:5 13 11 9:6 6:1

n = 30 n = 50 n = 100 n = 200 n = 400

Random Resetting - - - - -

Weight Ageing - - - - -

Gen. Learning - - - - -

Bounded Weights 12 12 12 10 4:2

Atten. Weights 8:8 8:6 8:3 7:4 2:7

Enforced Storage 3:1 0:3 - - -

Table 8{1: Information E�ciencies of Palimpsest Schemes when N = 512

ture of the WN makes it more e�cient to implement (this has been observed

in many other papers). Note again that the high e�ciency of the WN is

contingent on patterns being sparsely coded. Interestingly, [Kohring 90] de-

scribes a method of converting single, densely coded patterns into a number

of sparsely coded patterns, and retrieving these in limit-cycles in a modi�ed

Willshaw Net.

� Maximum values of � are still only O[0:01], i.e. � 1. Thus the price of

e�ective forgetting for a short-term memory is (obviously) a reduction in

information e�ciency, c.f. maximum e�ciency of the WN of O[1].

� Obtaining an upper bound on wij from experimental results seems a satis-

factory method, since it provides an acceptable estimation when applied to

Bounded Weights as well as Enforced Storage. However, when applied to

Attenuated Weights, it gives an upper bound ' 10 times smaller than the

bound used in the table above (obviously the theoretical upper limit, ob-

tained from the summation of a geometrical progression, is never approached

in practice). This may explain why the e�ciency of Attenuated Weights is

markedly reduced over the other HN schemes.
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8.3.3 Summary

Consequently, a \take-home" lesson from this section might be: given low noise

levels, Generalised Learning is a good option, whereas, given potentially high noise

levels, Bounded Weights is generally the most e�cient option in information terms.

Finally, from the application viewpoint, it has been observed that neural net-

works are only more computationally e�cient than conventional methods when

the number of stored patterns per unit is greater than the number of connections

per unit. In this case, none of the above methods are anywhere near as e�cient

as a simple FILO or FIFO stack of limited capacity. Of course, what the latter

lack is any content-addressibility: retrieval of information must be a separate and

error-free procedure.
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Chapter 9

Discussion

9.1 Conclusion

It is best to present conclusions in relation to the original aims.

Identi�cation

The author believes this project to have examined all the palimpsest schemes

suggested in the literature to date that satisfy the locality constraint on learning

functions (which can be argued as being one of the most important features of

cognitive parallel, distributed processing). In addition, as far as is known, the

methods of Ageing Weights, Generalised Learning and Random Unlearning have

not been employed before to create neural network palimpsests.1

Further, if some ideas have been overlooked, e.g. in other types of neural net-

work models, they may well still fall into one of the three main categories identi�ed

in the classi�cation attempted here. Chapter 7 then provides a guide to accompany

any journeys into into less well-charted neural network territory.

All seven of the palimpsest schemes considered in this project: Random Re-

setting, Ageing Weights, Generalised Learning, Bounded Weights, Attenuated

Weights, Random Unlearning and Enforced Storage, entail forgetting of memories

over and above the normal interference found in arti�cial neural networks. More

speci�cally, the forgetting actually prevents catastrophic interference and allows

1The [Amit & Fusi 93] paper appeared subsequent to the work in section 5.3.1.
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palimpsest-like behaviour, where the associative memory maintains its ability to

(temporarily) store new patterns inde�nitely.

Implementation

Results from each scheme have been presented from simulations of Willshaw and

Hop�eld Nets with 512 units (and 512 � 512 connections). The basic results

of interest are the spans, their stability and the \sigmoidal" serial order curves,

that show priviliged storage of recent memories and gradual forgetting of older

memories.

Comparison

The cost of inde�nite learning is a reduction in capacity compared to the maxi-

mum under normal (restricted) learning. For schemes in the HN, this reduction is

generally about 50% (except with Random Unlearning, which is not so e�ective).

In the WN, the price is greater, with spans about a tenth as large (except with

Ageing Weights, in which extra information can avoid any reduction at all).

When the span is close to maximum capacity, serial order curves become very

sharp, approximating step functions. This would seem necessary if the possibility

of catastrophic failure is to be discounted. For small spans on the other hand,

curves are typically characterised by exponentially decelerated forgetting.

The di�erences between the optimum spans of palimpsest schemes are mainly

due to the di�erent neural network models to which they are tied. Once auto-

associative capacities are compared in information theoretic terms, di�erences are

diminished markedly. They only remerge when increasing noise is introduced into

retrieval cues, whence the iterative nature of the HN maintains capacities longer.

Generalisation

A necessary condition of palimpsest behaviour is an asymptotic (bounded) distri-

bution of weight values. It is not su�cient however. (Consider the WN, where

p = 1 is actually the asymptotic distribution that epitomises catastrophic failure.)
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The distribution must further be such that new learning can always take place,

i.e. learning must be able to change at least some weight values.

Asymptotic distribution can be achieved by balancing potentiation and de-

pression of weights2: in a manner speci�c to the current pattern being trained (in

Pattern Interaction methods) or in a non-speci�c manner (in Weight Decay meth-

ods). Alternatively, potentiation may be restricted, limiting the space of possible

weight values (in Bounded Weight methods). Further distinction between these

three categories of palimpsest scheme are highlighted in Section 7.1.

Analysis

Mathematical analysis helps the understanding of palimpsest behaviour and allows

prediction (and optimisation) of spans. It has been attempted, or referred to

in cited papers, for all palimpsest schemes except perhaps Random Unlearning

(due to time constraints). However, there are points where complexity of analysis

means that it must give way to numerical methods of prediction, e.g. with Random

Resetting and Generalised Learning.

The various analyses have been of three main quantities: probability of switches

being triggered for signal and noise, in the WN, and signal-to-noise ratio of local

�elds and variability of weights, in the HN. Furthermore, the general classi�cation

of neural networks in Chapter 2 introduced variables common to both the WN

and the HN. Though this has meant that some \conventional" variables in both

models have been replaced, its value has been to allow analytical comparison of

the WN and HN, and hence ease the process of generalisation across models. Few

authors have provided such a common framework, in which palimpsest ideas can

be expressed.

2Potentiation and depression, as used here, refer to increases or decreases in the

magnitude of weights.
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Perspectives

In addition to information capacity and e�ciency, the palimpsest schemes also

di�er from other perspectives. The main conclusions of Chapter 8 are:

Physiology The brain's methods of forgetting may well include limited ranges

of synaptic e�cacies and LTD, though there is no conclusive evidence for

synaptic decay over short time intervals. However, there is much yet to learn

about the physiology of the brain.

Psychology As psychological models, neural networks are only beginning to be

applied to scienti�c knowledge over 40 years old. However, they do o�er

much hope, since their style of computation is obviously more brain-like

than conventional computers: they have replaced the Von Neumann machine

as the general, paradigmatic analogy. Recent work on palimpsests then

represents the �rst few steps of applying them to more speci�c cognitive

components such as short-term memory - though again many more steps

are needed before these models reveal signi�cant scienti�c value by actually

making predictions for further psychological experimentation.

Application In a situation where the need is simply to store the last X items

of a continuous stream of inputs, the most e�cient way would still seem

to be conventional addressing methods (where the latest item replaces the

oldest through a in-built procedure). Much e�ciency must be sacri�ced for

content-addressibility and damage-resistance. Then, for hetero-association,

WN schemes such as Generalised Learning are most e�cient. On the other

hand, for auto-association, the only realistic choice is to use a HN and a

Bounded or Attenuated Weights scheme.
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9.2 Extensions

One major con�nement of this investigation has been to assume uncorrelated se-

quences of randomly-generated patterns (c.f. Section 5.3.2). Correlation can, as

mentioned in the introduction, have both spatial and temporal aspects. Both of

these merit much more attention than is given in the literature on associative

memories.3 Correlations will have major e�ects on span and serial order pro�les.

In fact, uncorrelated stimuli would seem to be rare in our environment - it may

be that the reason that do not notice so much forgetting of long-term memories is

that correlations preserve commonalities between memories; economy is achieved

through classi�cation (e.g. prototypical or \generic" memories).

Another possible extension would be to examine other neural network models,

for example, the feedforward nets with several layers as mentioned in Section 7.3.

Forgetting could also be studied in relation to continuous rather than discrete acti-

vations (themselves possibly decaying over time). Another popular area of interest

is in stochastic update rules, as in Boltzmann machines, and stochastic clipping of

weights, as has been mentioned in Section 6.2. At several points the possibility of

uncoupling learning and (active) forgetting procedures has been suggested. This

too may warrant investigation.

As stated at the outset, net performance under di�erent net sizes or di�erent

pattern codings has not been studied. Though mathematical expressions for span

have involved these variables, validation has only been with a �xed value for each.

Varying N and F can be easily achieved with the current Simulators, but it has

not been attempted in this project due to time constraints (particularly since the

analyses are typically based on assuming large values of N , and this involves much

computation). Particularly dramatic might be failure of the WN as the sparse

coding limit is broken. Also, a span-optimal information capacity and coding

might be derivable and testable for the WN. Another interesting possibility would

3Indeed, the papers that do observe this limitation, invariably quote it as an extension

as well !
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be to test further the e�ects of the large N assumptions, examining discrepancies

for small (N < 512) nets.

Finally, if the locality constraint is removed, investigation of the information

capacity of more complicated learning and forgetting methods in the HN might

be achieved (such as the Eigenstructure method). This might be appealing from

the application perspective, since these methods usually possess many additional,

desireable properties (such as control of the number of spurious attractors).

9.2.1 Summary

This report provides, in a uniform terminology, a comprehensive overview of cur-

rent research in short-term associative memories, together with substantial work

on some novel ideas not immediately apparent from the literature. Short-term

neural networks, since their birth and \palimpsest" christening in the physics

community, are now becoming of increasing interest to cognitive scientists as well.
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Appendix A

Glossary

A.1 General Conventions

� Lower-case, bold symbols represent vectors.

� Upper-case, bold symbols represent matrices. I is the identity matrix.

� Lower-case, Greek symbols always refer to numerical constants.

� Upper-case, Greek symbols � and  denote arbitrary functions.

� Subscripts refer to vector components.

� Superscripts individuate set members.

� ! denotes a value change from one timestep to the next.

� A net abbreviationX(Y ) meansX units and Y expected pattern components

with a binary value of 1.

� E[X] denotes the expected value of X.

� O[X] denotes the order of X.

� A numerical result x� y refers to a mean of x with standard deviation y (y

is NOT the standard error in this report).
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Variable Description

L Number of layers in a net

Nl Number of units in lth layer

R Number of patterns trained

a

(l)
i

Activation of ith unit in lth layer

a(l) Activation vector of lth layer

wij Weight of connection from unit j, to unit i

W Weight Matrix

v

(l)
i

ith pattern component for lth layer

v(l) Pattern vector for lth layer

n

(l)
i

ith noise component for lth layer

n(l) Noise vector for lth layer

�i The threshold for unit i

Fp The pattern coding for pattern p

Q(p) Probability of reliable retrieval of pattern p

W Window of patterns to be retrieved

f Update function for units

g Learning function for connections

H Hamming distance between 2 vectors

HO Output Hamming Distance

HL Output Hamming Limit for Reliable Retrieval

S Number of patterns stored (e.g. span)

� A mean

� A variance

� Signal/Noise ratio

I Information content/capacity

� Information e�ciency

Table A{1: General Variables

A.2 Variables

A summary of the variables used in this report is shown in Tables A{1 to A{3.
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WN Parameters Description

NI Number of units in Input Layer

NO Number of units in Output Layer

MI Number of 1 components in Input patterns

MO Number of 1 components in Output patterns

p Probability that a random switch is triggered

(the loading density)

pc Capacity-optimal loading density (=0:5)

ps Probability that a signal switch is triggered

pn Probability that a noise switch is triggered

Rc Number of patterns trained for p = pc

Rs The expected survival time for associations

P (�) Probability of weighted sum � �

A Age of a switch

Ao Critical age of a switch

D Sharpness of a sigmoid

r Probability of resetting any switch

w Probability of keinosynaptic resetting

x Probability of homosynaptic resetting

y Probability of heterosynaptic resetting

z Probability of triggering a switch

Table A{2: WN Variables

HN Parameters Description

s State of HN at any one time

ŝ A stable state of a HN

� Learning constant

m Measure of overlap

mo Overlap between stable state and pattern

mL Overlap Limit for Reliable Retrieval

h(s) Local �eld for units in state s

E(s) The energy of state s

� The standard capacity of a HN

K Noise, or variability, in weights

B Bound on weights

� Attenuation of weights

u Number of unlearning trials

e Number of learning trials before unlearning

� Unlearning parameter

Table A{3: HN Variables
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Appendix B

Signal-to-Noise Analysis and the

Willshaw Net Palimpsest

In Section 5.1.2, a general version of the Random Resetting palimpsest scheme in

the WN was introduced. However, mathematical expression and maximisation of

expected survival time, Rs, (and hence span) is di�cult to ascertain because of

the complex form of the reliable retrieval constraint when � < M (Eq 5.20). This

appendix considers some approximations which help such analysis.

B.1 Signal-to-Noise Ratios

Now the desire is to maximise Rs with respect to r; z; � . The �rst two of these

factors determine the shape and relative positions of two distributions of weighted

sums: for the signal and for the noise. For greatest Rs, the discriminability of

these distributions must be maximised (see Fig B{1). Once it is maximised, an

optimal � can be chosen.

Making the unit usage assumption, the distributions of weighted sums for an

output unit will follow a binomial distribution. The two distributions of interest

are the signal distribution, �(M; ps), when the output unit should be activated,

and the noise distribution, �(M; pn), when the unit should remain quiescent.

Discriminability is often measured in terms of a signal-to-noise ratio. If the dis-

tributions are Gaussian with means and variances of �s; �n and �s; �n respectively,
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Probability of Spurious Error

Probability of Omission Error

Threshold

sigma(n)

sigma(s)

mu(s)mu(n)

WEIGHTED SUM, WS

PROBABILITY OF WS

Schematic illustration of Signal-to-Noise Analysis

Figure B{1: The Signal-to-Noise Ratio

then the signal-to-noise ratio, �, is de�ned as:

� =
(�s � �n)

2

1
2
(�s + �n)

(B:1)

(Note how this measure is independent of any threshold used to distinguish non-

signals from signals.)

For large M , the Gaussian can be approximated by a Binomial distribution.

With binomial distributions, �s = Mps(R), �s = Mps(R)(1 � ps(R)), �n = Mpn

and �n =Mpn(1� pn). Letting k = (1� r � zF
2), the ratio becomes:

�(r; z; R) =
2Mrk

2R
z

(2F 2 + (r � zF
2)kR � rk

2R
z)

(B:2)

From this equation, it can be seen that the maximal � will arise when z ! 1.

(Obviously, for �nite r, � is also maximised as R! 0.)
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Taking z = 1, assuming R > 0 and r � 1, F 2 � 1, then kR ' (1�R(r+F 2)),

and � becomes:

�(R; r) =
2Mr(1� 2R(r + F

2))

R(r + F
2)2

(B.3)

As R gets large, � behaves like r

r+F 2 : then � tends to 0 as r ! 0, since the

distributions become superimposed - consequently r must remain small but �nite.

B.2 Span

When r is small and R is big, �(R; r) could in principle be maximised subject

to the constraint in Eq 5.20. Then the optimal S(= Rs) could be expressed in

terms of r (i.e. in order to obtain an estimation of S, knowledge of the threshold

is required).

However, in practice, the complex form of the constraint makes such a La-

grangian di�erentiation very di�cult. It is possible to make some small inroads

by considering some good choice of thresholds and approximations of Eq 5.20.

Thresholding

Generally, a good choice of � is given by the point of intersection of the signal

and noise distributions. This is optimal in the sense that, for one output unit, if

� increases or decreases beyond this point, the combined probability of an error,

omission or spurious, must increase. (It is far from perfect, because here there are

more units in danger of emitting spurious errors than omission errors.) It is given

by:

p
�

n
(1� pn)

M�� = ps(R)
� (1� ps(R))

M�� (B:4)

Solving for � gives:

�(R; r) ' Mlog(R(r + F
2))

log( F
2R

1�Rr)
(B:5)

Tractable Constraints

Slightly stronger, but more tractable, constraints than Eq 5.20 can be imposed

when the retrieval limit consists of X expected omission errors and Y expected
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spurious errors, where X, Y are integers and sum to HL, i.e. X + Y = HL. In

other words, the constraints are:

M

��1X
i=0

C
M

i
p
i

s
(1� ps)

M�i = X (B.6)

(N �M)
MX
i=�

C
M

i
p
i

n
(1� pn)

M�i = Y (B.7)

Since both sums are the tails of binomial distributions, the logarithm of the left-

hand sides can be replaced to a good approximation by the largest term of each:

log(M) + log(CM

��1p
��1
s

(1� ps)
M��+1) = log(X) (B.8)

log(N �M) + log(CM

�
p
�

n
(1� pn)

M�� ) = log(Y ) (B.9)

If M and � are large enough, it can be assumed that � � 1 ' � and Stirling's

approximation can be used for the combinations:

� log(
�

Mps

) + (M � �)log(
M � �

M(1� ps)
) = log(

M

X

) (B.10)

� log(
�

Mpn

) + (M � �)log(
M � �

M(1� pn)
) = log(

N �M

Y

) (B.11)

Then subtracting one from the other:

� log(
ps

pn

) + (M � �)log(
1� ps

1� pn

) = log(
(N �M)X

MY

) (B.12)

This gives an expression for � in terms of Rs; r:

� =
log( (N�M)X

MY
)

Mlog(
ps(1�p)
p(1�ps))

'
log(NX

MY
)

Mlog(1�Rsr
F 2Rs

)
(B.13)

From this equation, it can be seen that increasing r (and hence decreasing p)

means that � should decrease as well.

Eqs B.10 and B.11 in principle provide a simpler Langrangian constraint with

which to maximise � - since Eq B.11 is independent of Rs, it can be used to obtain

� = �(r), which in turn can be substituted into Eq B.10 to obtain a constraint

Rs =  (r). However, it is still not particularly attractive to tackle.

A further trick would be to equate expressions for the threshold in Eq B.5 and

Eq B.13. This gives Rs as a function of p:

Rs ' F

1

M2

p

F
2

(B.14)

and hence a more tractable constraint.

105



B.3 Performance

Although the Lagrangian di�erentiation has not been performed, empirical results

show optimal p = O[0:1] (from numerical analysis). Using Eq B.14, the predicted

Rs ' 500. This is over twice as large as simulated spans, but at least of the right

order of N .

This illustrates the poorness of simply assuming an E[HO] = 2 comprises

exactly one spurious error and one omission error, and of choosing a threshold from

distribution intersections, given there are many more chances of spurious errors

than omission errors. However, as is common with complex systems like neural

networks, this appendix highlights the point where analytical methods must be

replaced by numeric ones, as in Section 5.1.2.
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Appendix C

User Manual For Willshaw Net

Simulator

C.1 Getting Started

The Willshaw Net Simulator (WNS) is initiated by entering \wns" from a Unix

prompt. The user-interface is in a command-line format, where the user types one-

letter commands with a number of arguments, executed upon pressing Return.

(Alternatively, the WNS can be initiated together with a single Unix argument -

the name of a �le which contains a sequence of such stored commands to be read

in and executed.)

During a session with WNS, two ASCII \output" �les will be created, in the

directory from which WNS is initiated: wns.raw and wns.pats - the contents of

these will be described later. The user may also ouput further \graph" �les via

WNS commands, providing the �lename as an argument to the command. These

�les can be read and displayed graphically by Xgraph, which is called automatically

from within WNS.

WORD OF WARNING: In a long session, where many thousand patterns are

tested on the Willshaw Net (WN), the two Output �les may get very large (though

they can be \cleared" by a simple command).
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C.2 Introducting WNS via an Example Session

After initiating WNS, the User is faced with the -> prompt as below:

Willshaw Net Simulator Vn 2.2

Commands [c.d.f.n.o.q.r.t.!.?]

(Type `?' for help on commands)

->

There are 34 basic commands, grouped into 10 basic categories, which are

shown upon entering WNS. Each category is selected by a single lower-case letter.

The commands within a category are then selected by a second letter - taken to-

gether these letters are normally the �rst letters of the commands they abbreviate

- so, for example, the command to \Clear Weights" is cw.

The �rst thing to do is choose various \net parameters". These commands are

in the n category.

For example, to change the number of input units (NI) and the number of

output units (NO), and make a NIxNO net of 100x200, ie 20,000 switches, the

command is nn:

-> nn 100 200

100 by 200 Willshaw Net

->

Note that there must be at least one space between the two integer arguments

(though there need not be between the command letters).

When changing the size of the net like so (e.g. from the default 64x64), it

may be necessary to set a new pattern coding for the NI- and NO-dimensional

input and output pattern vectors. The pattern coding determined by choosing the

number of components of the vectors that are set to 1 rather than 0. This number

is usually labelled MI or MO for input or output patterns respectively - and the

necessary command is nm, with �rst argument MI and second argument MO:

-> nm 10 20

Pattern coding in=10, out=20. Threshold now 10.

->
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ChangingMI will also reset the threshold at the same time. (The threshold can

be changed independently by a separate command described in the next section.)

Note that if a command is not entered in the correct format, an error will be

reported, and the command will have to be retyped. The error reports are not very

sophisticated, but some examples are shown after pressing Return subsequent to

the following invalid inputs:

-> nm a 20

!! Invalid Arguments to command `nm'

-> nn 100 nm 15 15

!! Invalid Arguments to command `nn'

-> nm 10 2000

!! Impossible pattern coding: in=10 and out=2000

-> m 10 20

!! Unknown command character 'm'

!! Unknown command character '1'

!! Unknown command character '0'

!! Unknown command character '2'

!! Unknown command character '0'

->

The next step is to store a number of input/output pattern pairs to be asso-

ciated by the net. These can be generated randomly, and independently in the

(default) case of Hetero-association. For Auto-association, the input and output

patterns are identical. Alternatively patterns can be read in from a �le.

In the former case, the necessary command is np. Its arguments are the �rst

and last pattern pair (inclusive) to be generated - the patterns are thus indexed

by a \pattern number" in this range (which, in the 'C' spirit, starts at 0).

The user may also want to clear the weight matrix with the command cw (no

arguments) - although this is not strictly necessary at the start of this session.

Consequently, the User might enter (noting how more than one command can be

executed from a single command line):

-> np 0 100 cw

Random patterns 0 to 100 set

Weight Matrix cleared

->
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Thus 101 input and output patterns have been set; vectors of 100 and 200

components, each with a pattern coding of 0:1. Furthermore, the weight matrix

has been cleared (none of these patterns have yet been \learnt").

When setting new blocks of patterns, it is advisable to order them in a con-

tiguous manner. In other words, if pattern numbers 0 to 30 have already been set,

and a further block of 20 is desired, the new patterns should be numbered from

31 to 50. Then pattern numbers 0 to 50 inclusive will have been stored. The full

range of pattern numbers should always start at 0.

The current WNS settings can be obtained via the command !:

->!

#Current Willshaw Net Parameters:

#

#Units In = 100 Units Out = 200

#Coding In = 10 Coding Out = 20

#

#Patterns Set = 101 and Trained = 0

#Pvalue, Initial = 0.000 Current = 0.000

#

#Normal Training

#

#Hamming Limit = 2

#

#Output to wns.raw and screen - Display Option 1

#

#

#

#Commands [c.d.f.n.o.q.r.t.!.?]

->

All of these parameters are explained later.

The net is now ready to be trained and tested on some or all of the patterns set.

Training and testing can be performed separately, but there is a useful composite

command rs (\Run Span"). This command takes 5 arguments. The �rst two

are the �rst and last pattern numbers to be trained respectively. The third is

the size of the \window" for testing patterns - ie the number of patterns to be

tested, counting backwards from the last one trained. The fourth argument is the

\test-step" - ie the number of patterns to be trained before testing each pattern
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in the window. The �nal argument is the Noise factor to be added to each input

(cue) pattern during testing. This is explained below.

An example command could be:

-> rs 0 100 30 5 0

which results in screen output like this:

Train=4, Test=0, Ham=0, Noise=0, Pvalue=0.049

Train=4, Test=1, Ham=0, Noise=0, Pvalue=0.049

Train=4, Test=2, Ham=0, Noise=0, Pvalue=0.049

...

--> press Return to continue...

...

Train=99, Test=99, Ham=9, Noise=0, Pvalue=0.636

and �nishes with:

Patterns 0 to 100 trained:

last 30 tested every 5 patterns trained, with 0 Noise.

->

The output sent to the screen is paused, and can be resumed each time by

pressing Return; else pausing can be disabled by typing 'c'. Similar output, or

\raw" data, is also saved to the output �le wns.raw. Raw data is only ever produced

when a pattern is TESTED on the net. In the above example, the last 30 patterns

are tested every 5 new patterns trained - making a total of 600 lines of raw data.

In each output line, the �rst �eld represents the last pattern trained (which is

equal to the total number of patterns trained if the training starts from pattern

number 0). The second is the pattern number that has just been tested (giving rise

to that output line). The third is the Output Hamming Distance (OHD) between

the stored (correct) output pattern, and the output of the net, given the (noisy)

input pattern.
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Option Name Description

1 span The Number of Patterns Tested, within the window, with

an OHD less than the current Hamming Limit (the de-

fault is 2),

vs.

the Number of Patterns Trained.

2 avhd The Average OHD of Patterns Tested, within the win-

dow,

vs.

the Number of Patterns trained.

3 soc The Serial Order Curve: the Average OHD of a Pattern,

vs.

the Serial Order: Number of Subsequent Patterns

Trained (up to the size of the window).

4 p The Loading Density, Pvalue,

vs.

the Number of Patterns trained.

5 uu The Unit Usage: the Number of Triggered Switches in

an Output Line,

vs.

the Output Unit Number.

Table C{1: WNS Graph Options

The fourth output �eld is the noise level. This integer must lie between 0 and

NI . The value is the number of randomly-chosen input components that are 
ipped

to 1 or 0 with equal probability. A value of 0 means a perfect reproduction of the

input pattern over the input units; a value of NI means a net input essentially

uncorrelated with the input pattern.

The last �eld, Pvalue, lies between 0.0 and 1.0, and represents the \loading

density" of the weight matrix - ie the probability that any particular switch has

been turned on.

It is now possible to graph this raw data. There are 5 basic measures, or \graph

options", that WNS can calculate. These are described in Table C{1.

Plotting such graphs is done in two stages. First the command fg is used

to process the raw data and output a new \graph �le" containing the relevant

calculations. The command takes three arguments: the name of the raw data �le,

the graph option, and the name of the graph �le. The abbreviation r can be used
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to access the default raw data �le wns.raw. To produce a \span" graph �le, the

command is:

-> fg r 1 span1

Average span is 20.450 with variance 81.647

(with noise 0)

Raw data read from wns.raw and option 1 output to file 'span1'

->

This has created a graph �le span1 in the working directory, and also calculated

the average and variance of the span.

To display this �le graphically, the command is dg. This requires the graph

option and the graph �le name:

-> dg 1 span1

Average span is 20.450 with variance 81.647

Data read from span1 and being graphed...

->

This should produce an Xgraph window on the screen, showing the \span"

of the given WN (which, incidentally, is not so meaningful in this example, since

there is no forgetting or unlearning accompanying the training of patterns). The

X Window also contains options to save or print a Postscript version of the graph.

It is also useful to copy the default raw data �le to a new �le, in case the User

forgets to clear wns.raw at some point, or quits and reenters WNS (in which case

wns.raw will be reopened and its previous contents will be lost). This is achieved

with the command fr, giving a suitable �lename, eg:

-> fr out1

Raw data copied to file `out1'

->

This raw data can again be processed and plotted by the fg and dg commands:
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-> fg out1 3 soc1

Raw data read from `out1' and option 3 output to file `soc1'

-> dg 3 soc1

Data read from soc1 and being graphed...

->

Note again that such raw data �les can be very large, whereas the Graph �les

are considerably smaller. So, having saved several Graph �les from a session,

containing the \processed" data, it is often unnecessary to keep the raw data �le

as well (it can be cleared).

WNS can be exited by entering the command q.

This simple example session has covered the basic commands. It shows the

sequence of commands in a typical `run', although it does not show the selection

of various palimpsest schemes (for which purpose of comparison the WNS was

designed).

A summary of all the possible commands can be displayed via the help com-

mand ?. They are explained in more detail below.

C.3 The WNS commands

Each command is tagged by one or two command letters. A command can have

none, one or several arguments. Each argument must be separated by white

space, and can be an integer, 
oating point number, a character or string of

alphanumerical characters.

The commands are described below, in the format:

Command Letter(s) Arguments Command

Description

Clearing data:

cf (no arguments) Clear Files

Clear the default output �les wns.raw and wns.pats.
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cp (no arguments) Clear Patterns

Clear the Pattern Store - ie delete all previously set patterns.

cw (no arguments) Clear Weights

Clear the weight matrix - turning all switches on with probability P(initial)

(see command ni) and o� otherwise.

Displaying Data:

dg integer1 string1 Display Graph

Plot the graph option integer1 from the graph �le string1.

This command calls the Xgraph program to produce a pleasing plot of the

relevant data. It is spawned as a separate process, and control continues at

the WNS prompt (so several plots can be simultaneously displayed on the

screen).

The Xgraph window can be closed by clicking on the Close button. A

hardcopy can also be obtained by chosing the relevant options o�ered after

clicking on the Hardcopy button. Xgraph also has the facility to \expand"

an area of the graph, by holding down the mouse button and dragging out

an area of the original plot.

dh integer1 integer2 integer3 Display Hamming

This command prints the hamming distance between two stored input or

output patterns in pattern pairs integer2 and integer3. Integer1 is a 
ag to

index whether input or output patterns of are to be compared - a value of 0

codes for input patterns; a value of 1 codes for output patterns.

A value of -1 for either integer2 or integer3 codes for the current input or

output of the net, rather than a stored pattern. For example, if pattern pair

17 was the last pair tested, then the command:

dh 0 17 -1

would compare the stored input pattern number 17 with the input actually

used on the net (the hamming distance is only likely to be 0 if non-zero noise

was used in the testing).
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dp integer1 Display Pattern

Display Pattern Pair number integer1.

This command will print the input and output patterns to the �le wns.pats

and also the screen if the relevant display option is set (see below).

dw (no arguments) Display Weights

Display the current state of the Switch Matrix.

This command will print the weight matrix to the �le wns.pats and also the

screen if the relevant display option is set (see below). Note that for a large

net size, the printout may be di�cult to interpret, since the matrix rows will

be printed over several lines.

File i/o commands:

fc string1 File Commands

Read commands from �le string1.

Commands will continue to be read in and executed until the �rst new-line

character is encountered. Control is returned to the WNS prompt (unless

an error occurs or the q command is read).

Note: all �lenames have a maximum of 32 characters.

fg string1 integer1 string2 File Graph

Process Raw Data and create a Graph File.

This command reads raw data �le string1 and calculates information for

graph option integer1 (see Table C{1). This information, or \processed

data", is saved to �le string2.

The raw data �le may either be accessed from an output �le previously

created via the fs command, or the default wns.raw �le can be used. There

is an shorthand for the latter:- string1 can be abbreviated to r in this case.

fp string1 File Patterns

Read input/output pattern pairs from the �le string1.
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This command is used to enter pre-prepared input and output patterns into

the Pattern Store. They will be numbered from 0 onwards - any existing

patterns in the store will be over-written.

The format for pattern �les is as follows. The size of the patterns and the

pattern codings are �xed at the relevant Parameter Settings prior to use

of the fp command - ie each input pattern must have NI components, MI

`1's and NI-MI `0's, and each output pattern NO components, MO `1's and

NO-MO `0's (these values are checked as each pattern is read in).

Each pattern must consist of a unbroken sequence of `0' or `1' characters,

terminated by a new-line character. The pattern pair consists of the in-

put pattern followed by the output pattern, and is separated from the next

pattern pair by at least one new-line character.

The format is thus very rigid - the only white space being new-line characters:

exactly one separating an input from an output pattern in a pair, and at

least one separating the output pattern of one pair from the input pattern

of the next.

fr string1 File Raw

Copy Raw Data to a separate �le.

This command will create an new �le with name string1, which is a copy

of the current wns.raw data �le. This is useful in case wns.raw is cleared,

over-written or has super
uous data subsequently appended.

Setting Net Parameters:

na (no arguments) Net Auto-association

A toggle between using the net for Hetero-association of patterns and using

it for Auto-association of patterns.

Of course, for Auto-association cannot be toggled, if the user has not set

NI = NO and MI =MO with commands nn and nm.

nh integer1 Net Hamming

Set the Hamming Limit to be integer1.
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The hamming distance between two equi-dimensional, binary vectors is the

number of components by which they di�er. It is used as an index for

comparing net output vectors with the desired output patterns.

The hamming limit is an (exclusive) upper limit on this index, used when

calculating and plotting the span performance of a net. An OHD of integer1

or more does not count as adequate retrieval of an output pattern given the

input pattern.

The hamming limit must lie between 0 and NO. The default is 2.

ni 
oat1 Net Initial-loading

Set the initial probability of a switch being turned on, P(initial) to 
oat1.

The initial net loading, Pvalue, is of course equal to P(initial).

Clear the weight matrix as well (whenever the weight matrix is cleared,

switches are randomly set with this probability.)

For p(initial)=0.0, training procedes from a Tabula Rasa. This is the default

setting.

nm integer1 integer2 Net M-values

Set the pattern coding.

Integer1 is the number of input pattern components set to 1, MI , integer2

is the number of output pattern components set to 1, MO. Obviously, MI

must lie between 0 and NI , and MO between 0 and NO.

nn integer1 integer2 Net N-values

Set the Size of the net.

Integer1 is the number of input units, NI , integer2 is the number of output

Units, NO.

np integer1 integer2 Net Patterns

Create random input and output patterns pairs, numbered between integer1

and integer2, and store them in the Pattern Store.

The range is inclusive and contiguous.

If some patterns in the range are already set, they will be over-written.
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nt integer1 Net Threshold

Set the threshold for output units. This must lie between 0 and MI .

Output Options:

oo (no arguments) Output patterns

Display input and output patterns as well as raw data, after each test.

op (no arguments) Output Pausing

A toggle-command for pausing output echoed to the screen.

or (no arguments) Output Raw

Display only raw data after each test.

os (no arguments) Output Screen

A toggle-command for echoing output to the screen.

ow (no arguments) Output Weights

Display weights, input and output patterns and raw data, after each test.

Running a net simulation:

rl integer1 integer2 Run Last

Test the last integer1 patterns trained, with noise level integer2 - see com-

mand rr.

rr integer1 integer2 integer3 Run Run

Run (test) input and output pattern numbers in the range integer1 to inte-

ger2 inclusive, with noise level integer3.

The input pattern is imposed on the net's input units. If the Noise Level is

greater than zero, the input pattern will be distorted. Integer2 represents

the number of randomly-chosen input components that are 
ipped to 1 or

0 with equal probability. A value of NI means, in the average, a net input

uncorrelated with the input pattern.

The net output is then compared against the correct output for pattern pair

integer1. The resulting OHD is compared against the hamming distance

limit (see command nh above).
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The rr command always produces raw data output, which is saved to the

wns.raw �le and may be echoed to the screen as well. A typical test result

might be:

Train=3, Test=3, Ham=1, Noise=5, Pvalue=0.16

The �rst �eld shows the total number of pattern pairs trained on the net. The

second is the last pattern pair tested. The third is the hamming distance,

the fourth the noise level in the test and the �fth is the current Loading

Density of the net (the \Pvalue" parameter described under command ni).

If the relevant Display Option is set (see output commands), copies of the

stored pattern pairs and net input/output will also be output, to the �le

wns.pats: as can printouts of the weight matrix.

rs integer1 integer2 integer3 integer4 integer5 Run Span

The abbreviated train and test command - or \span" command.

Train patterns in the range integer1 to integer2 inclusive, testing the last inte-

ger3 patterns (integer3 is often called the \window") every integer4 patterns

trained, with noise level integer5. Integer4 is often called the \test-step".

See commands rt and rr.

rt integer1 integer2

Train input and output pattern numbers in the range integer1 to integer2

inclusive.

Setting the Training method (further details of the following palimpsest schemes

can be found in the Project Report):

ta integer1 
oat1 Training with Ageing weights

Integer1 is the Critical Age, Ao - or mid-point of the probability-age function.

This function is the probability of turning o� a switch against the age of a

switch. It is sigmoidal in shape, rising from a value of 0.0 to a value of 1.0.

Entering -1 tags the default value of a critical age based on capacity under

normal training, Rc.

Float1 is the Sharpness, D, of the sigmoidal function. Entering -1.0 tags the

default in�nite sharpness, which is a Heaviside step-function.
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tn (no arguments) Training Normal

This sets the standard (non-palimpsest) training scheme.

tr 
oat1 
oat2 Training with Random resetting

Float1 is the probability of turning o� a switch, r. A value of -1.0 indicates

use of the default parameter value based on a loading Pvalue of 0.5 and

default z value (below).

Float2 is the probability of turning on a switch, z. A value of -1.0 indicates

use of the default value of 1.0.

tu 
oat1 
oat2 
oat3 
oat4 Training with Unlearning (generalised learning)

Float1 to 
oat4 are the probabilities w,x,y,z respectively from Section 5.3.1

of the Project Report. Their default values, again set by entering -1.0 for an

argument, are given by the Covariance rule.

Other commands:

! (no arguments)

This command will display the current Net Parameter and Output Settings.

? (no arguments)

This command will give a some limited help information - such as a summary

of the commands and their arguments. It is no substitute for this User

Manual however.

q (no arguments)

This command quits the WNS.
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C.4 Technincal Manual

The current WNS is Version 2.2. The code is commented, mainly with implemen-

tational details, but assumes knowledge of the terminology adopted in the Project

Report.

The �les comprising the WNS are:

wns.c

wns.h

wui.c

random.c

These represent the core, header, user-interface and random number generating

�les respectively. The header and user-interface �les are \included" by wns.c.

Compilation is thus via :

gcc wns.c random.c -o wns -lm -O2

The WNS uses C libraries:

<string.h>

<sys/wait.h>

<stdlib.h>

<stdio.h>

<math.h>

and Xwindows software:

Xgraph
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Appendix D

User Manual For Hop�eld Net

Simulator

The Hop�eld Net Simulator is very similar to the Willshaw Net Simu-

lator. Consequently, only the di�erences will be highlighted here, and

the reader is urged to consult the WNS User Manual for full details.

The WNS and HNS have not been tied together under a common user-interface,

because there would be no gain in e�ciency or productivity. A common user-

interface might only become useful when there are more than two models imple-

mented, or if the user had control over the actual model classes rather than simply

the particular net parameters.

The main di�erences between the WN and HN are:

� The HN has only one layer, so the command nn takes only one argument.

� It can only ever function under autoassociation. Thus there is no na com-

mand, and each Pattern Number tags a single pattern (not an input/output

pair).

� Weights in the HN are not binary, but real-valued, and can be negative.

Consequently, there is no Pvalue variable.

� Updating is not parallel, but an iterative (asynchronous) process.

� All patterns in the HN have components randomly set to '1' with a given

probability (and '-1' otherwise). There is no command nm. Rather, when
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setting the patterns with the command np, a third argument must be pro-

vided, which is this probability (normally 0.5).

� There is an additional measure of similarity between patterns (vectors): the

Overlap index, or Cartesian inner product (see Project Report). This al-

lows two (possibly di�erent) reliable retrieval criteria - in terms of hamming

distance or in terms of overlap. These citeria are by the command nr.

� HN units have a �xed threshold of 0.

� The variable \eta" in the HN Learning Rule can be set by the command ne.

D.1 Getting Started

The Hop�eld Net Simulator (HNS) is initiated by entering \hns" from a Unix

prompt. The user-interface is in a command-line format, where the user types

one-letter commands with a number of arguments, executed upon pressing Return.

(Alternatively, the HNS can be initiated together with a single Unix argument -

the name of a �le which contains a sequence of stored commands to be read in

and executed.)

During a session with HNS, two ASCII \output" �les will be created, in the

directory from which HNS is initiated: hns.raw and hns.pats - the contents of

these will be described later. The user may also ouput further \graph" �les via

HNS commands, providing the �lename as an argument to the command. These

�les can be read and displayed graphically by Xgraph, which is called automatically

from within HNS.

WORD OF WARNING: In a long session, where many thousand patterns are

tested on the Hop�eld Net (HN), the two Output �les may get very large (though

they can be \cleared" by a simple command).
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D.2 Introducting HNS via an Example Session

See the relevant section in the Willshaw Net User Manual.

There are 36 basic commands, grouped into exactly the same 10 basic categories

as in the WNS.

The default HNS settings can be obtained via the command !:

Hopfield Net Simulator Vn 2.2

Commands [c.d.f.n.o.q.r.t.!.?]

(Type '?' for help on commands)

-> !

#Current Hopfield Net Parameters:

#

#Units = 100 Pattern Coding = 0.500

#

#Initial Weight Range = -0.000000 to 0.000000

#

#Patterns Set = 0 and Trained = 0

#Normal Training, Eta = 1.000000

#

#Overlap Limit = 0.970 Hamming Limit = 2

#

#Output to hns.raw and screen - Display Option 1

#

#

#

#Commands [c.d.f.n.o.q.r.t.!.?]

->

The raw data contains the additional overlap �eld:

...

Train=99, Test=97, Hamming=29, Overlap=0.4200, Noise=0

Train=99, Test=98, Hamming=33, Overlap=0.3400, Noise=0

Train=99, Test=99, Hamming=22, Overlap=0.5600, Noise=0

...

There are 6 basic measures, or \graph options", in the HNS, as compared to

the 5 in the WNS. They are described in Table D{1. Note that the calculation of

Pvalue is not possible, Unit Usage has been replaced by Incident Weights, and two

additional plots for Average Overlap and Serial Order Curve with Overlap (rather

than OHD) are provided.
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Option Name Description

1 span The Number of Patterns tested, within the window, that

can be reliably retrieved (depending on OHD or overlap

criterion set),

vs.

The Number of Patterns trained.

2 avhd The Average OHD of Patterns Tested, within the win-

dow,

vs.

The Number of Patterns trained.

3 avol The Average Output Overlap of Patterns Tested, within

the window,

vs.

The Number of Patterns trained.

4 sochd A Serial Order Curve: the average OHD of a Pattern,

vs.

the Serial Order: number of subsequent patterns trained

(up to the size of the window).

5 socol A Serial Order Curve: the average Output Overlap of a

Pattern,

vs.

the Serial Order.

6 wgts The Incident Weights: the average weight value incident

on a Unit,

vs.

The Unit Number.

Table D{1: HNS Graph Options
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D.3 The HNS commands

Each command is tagged by one or two command letters. A command can have

none, one or several arguments. Each argument must be separated by white

space, and can be an integer, 
oating point number, a character or string of

alphanumerical characters.

The commands are described below, in the format:

Command Letter(s) Arguments Command

Description

Clearing data:

cf (no arguments) Clear Files

Clear the default output �les hns.raw and hns.pats.

cp (no arguments) Clear Patterns

Clear the Pattern Store - ie delete all previously set patterns.

cw (no arguments) Clear Weights

Clear the weight matrix.

Displaying Data:

dg integer1 string1 Display Graph

Plot the graph option integer1 from the graph �le string1.

This command calls the Xgraph program to produce a pleasing plot of the

relevant data. It is spawned as a separate process, and control continues at

the HNS prompt (so several plots can be simultaneously displayed on the

screen).

The Xgraph window can be closed by clicking on the Close button. A

hardcopy can also be obtained by chosing the relevant options o�ered after
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clicking on the Hardcopy button. Xgraph also has the facility to \expand"

an area of the graph, by holding down the mouse button and dragging out

an area of the original plot.

dh integer1 integer2 Display Hamming

This command prints the hamming distance between two stored patterns

integer1 and integer2.

A value of -1 for either integer1 or integer2 codes for the current state of the

net, rather than a stored pattern. For example, if pattern 17 was the last

pair tested, then the command:

dh 17 -1

would compare the stored pattern number 17 with the net output.

do integer1 integer2 Display Overlap

This command prints the overlap between two stored patterns integer1 and

integer2.

dp integer1 Display Pattern

Display Pattern Pair number integer1.

This command will print the pattern integer1 to the �le hns.pats and also

the screen if the relevant display option is set (see below).

dw (no arguments) Display Weights

Display the current state of the Weight Matrix.

This command will print the weight matrix to the �le hns.pats and also the

screen if the relevant display option is set (see below). Note that for a large

net size, the printout may be di�cult to interpret, since the matrix rows will

be printed over several lines.

File i/o commands:

fc string1 File Commands

Read commands from �le string1.
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Commands will continue to be read in and executed until the �rst new-line

character is encountered. Control is returned to the HNS prompt (unless an

error occurs or the q command is read).

Note: all �lenames have a maximum of 32 characters.

fg string1 integer1 string2 File Graph

Process Raw Data and create a Graph File.

This command reads raw data �le string1 and calculates information for

graph option integer1 (see Table D{1). This information, or \processed

data", is saved to �le string2.

The raw data �le may either be accessed from an output �le previously

created via the fs command, or the default hns.raw �le can be used. There

is an shorthand for the latter:- string1 can be abbreviated to r in this case.

fp string1 File Patterns

Read patterns from the �le string1.

This command is used to enter pre-prepared patterns into the Pattern Store.

They will be numbered from 0 onwards - any existing patterns in the store

will be over-written.

The size of the patterns is �xed by the parameter setting from the last nn

command prior to use of the fp command - ie each pattern must have N

components of either '1' or '0' ('0' is the program's encoding of the spin value

'-1').

Each pattern is terminated by at least one new-line character. The format

is thus very rigid - the only white space being new-line characters.

fr string1 File Raw

Copy Raw Data to a separate �le.

This command will create an new �le with name string1, which is a copy

of the current hns.raw data �le. This is useful in case hns.raw is cleared,

over-written or has super
uous data subsequently appended.

Setting Net Parameters:
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ne 
oat1 Net Eta-value

Set the value of \eta" in the Learning Rule. Its value must lie between 0:0

and N .

nh integer1 Net Hamming

Set the Hamming Limit to be integer1. The hamming limit must lie between

0 and N .

nh 
oat1 Net Overlap

Set the Overlap Limit to be 
oat1. The overlap limit must lie between 0:0

and 1:0.

ni 
oat1 Net Initial weight range

Set the initial weights to lie randomly in the range �
oat1 to +
oat1.

Clear the weight matrix as well (whenever the weight matrix is cleared,

switches are randomly set with this probability.)

For 
oat1 = 0.0, training procedes from a Tabula Rasa. This is the default

setting.

nn integer1 Net N-value

Set the Size of the net.

Integer1 is the number of units in the net, N .

np integer1 integer2 
oat1 Net Patterns

Create random patterns, numbered between integer1 and integer2, and store

them in the Pattern Store, each with expected pattern coding 
oat1.

The range is inclusive and contiguous.

If some patterns in the range are already set, they will be over-written.

nr (no arguments) Net Retrieval criterion

Toggle between using the Hamming or Overlap Limits for span determina-

tion.

The default is to use the overlap metric.
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Output Options:

oo (no arguments) Output patterns

Display patterns, as well as raw data, after each test.

op (no arguments) Output Pausing

A toggle-command for pausing output echoed to the screen.

or (no arguments) Output Raw

Display only raw data after each test.

os (no arguments) Output Screen

A toggle-command for echoing output to the screen.

ow (no arguments) Output Weights

Display weights, patterns and raw data, after each test.

Running a net simulation:

rl integer1 integer2 Run Last

Test the last integer1 patterns trained, with noise level integer2 - see com-

mand rr.

rr integer1 integer2 integer3 Run Run

Run (test) input and output pattern numbers in the range integer1 to inte-

ger2 inclusive, with noise level integer3.

The cue pattern is imposed on the net's units. If the noise level is greater

than zero, the pattern will be distorted. Integer2 represents the number of

randomly-chosen components that are 
ipped to 1 or 0 with equal probabil-

ity. A value of N means, in the average, a net input uncorrelated with the

presented pattern.

The net output, or �nal stable state, is then compared against the pattern

integer1, through the hamming or overlap limit.

The rr command always produces raw data output, which is saved to the

hns.raw �le and may be echoed to the screen as well. A typical test result

might be:
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Train=99, Test=99, Hamming=22, Overlap=0.5600, Noise=0

The �rst �eld shows the total number of patterns trained on the net. The

second is the last pattern tested. The third is the hamming distance, the

fourth the overlap and the �fth is the Noise Level.

If the relevant Display Option is set (see output commands), copies of the

stored pattern and net output will also be dumped to the �le hns.pats: as

can printouts of the weight matrix.

rs integer1 integer2 integer3 integer4 integer5 Run Span

The abbreviated train and test command - or \span" command.

Train patterns in the range integer1 to integer2 inclusive, testing the last inte-

ger3 patterns (integer3 is often called the \window") every integer4 patterns

trained, with noise level integer5. Integer4 is often called the \test-step".

See commands rt and rr.

rt integer1 integer2

Train pattern numbers in the range integer1 to integer2 inclusive.

Setting the Training method (further details of the following palimpsest schemes

can be found in the Project Report):

ta 
oat1 Training with Attenuated weights

Float1 is the value for \lambda", or attenuation factor. Entering -1.0 tags

the default, optimal attenuation for current net size.

tb 
oat1 Training with Bounded weights

Float1 is the value for \B", or weight bound. Entering -1.0 tags the default,

optimal bound for current net size.

te (no arguments) Training with Enforced storage

This sets the Enforced Storage palimpsest scheme.

tn (no arguments) Training Normal

This sets the standard (non-palimpsest) training scheme.
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tr integer1 integer2 
oat1 Training with Random unlearning

Integer1 is the number of learning episodes per unlearning episode (default

is 1). Integer2 is the number of unlearning trials performed per unlearning

episode (default is 10). Float1 is the weight decrement for each unlearning

trial (default is 0.1).

Other commands:

! (no arguments)

This command will display the current Net Parameter and Output Settings.

? (no arguments)

This command will give a some limited help information - such as a summary

of the commands and their arguments. It is no substitute for this User

Manual however.

q (no arguments)

This command quits the HNS.
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D.4 Technical Manual

The current HNS is Version 2.2. The code is commented, mainly with implemen-

tational details, but assumes knowledge of the terminology adopted in the Project

Report.

The �les comprising the HNS are:

hns.c

hns.h

hui.c

random.c

These represent the core, header, user-interface and random number generating

�les respectively. The header and user-interface �les are \included" by hns.c.

Compilation is thus via :

gcc hns.c random.c -o hns -lm -O2

The HNS uses C libraries:

<string.h>

<sys/wait.h>

<stdlib.h>

<stdio.h>

<math.h>

and Xwindows software:

Xgraph
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Appendix E

Simulation runs in this project

The results quoted in this project need some quali�cation of the simulation pa-

rameters used to generate them.

\Runs" are conducted by initiating the Simulators with a pre-prepared com-

mand �le, usually in the \background" and with the Unix nohup command. This

is because simulations with N = 512 and P = 10; 000 training patterns, usually

take of the order of 5 hours on a Sun-4.

E.1 WNS

A typical �le for studying two cases of Random Resetting might be:

op os nn 512 512 nm 9 9 np 0 10000 ni 0.5 tr -1 -1 rt 0 499 rs 500

10000 500 100 0 fg r 1 512span_rr50 fg r 3 512soc_rr50 fg r 4

512p_rr50 cw cf ni 0.44 tr 0.000395 1 rs 0 10000 500 100 0 fg r 1

512span_rr44 fg r 3 512soc_rr44 fg r 4 512p_rr44 cf q

Note that there are no new line characters in the actual input �les. Note also that

this creates (temporarily) a wns.raw �le with 50; 000 lines of data, each line with

at least 15 characters, so considerable �le-space is needed.

Several points are worth noting:
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� The window size of 500 is ten times bigger than the expected span. (See

Fig 5{1 in the Project Report).

� The span will be averaged over 95 measurements.

� Weights and (raw) �les are cleared between \runs".

� Screen output has been turned o� and pausing removed (output that is

always sent to screen will be sent to the �le nohup.out instead, like average

span data for example).

� Graph �les are actually plotted after the run has �nished and nohup has

terminated, through interactive use of WNS and the dg command.

� The asymptotic switch distribution with Pvalue = 0:5 is set with the com-

mand ni, since the estimate of span does not want to be biased by any

transient e�ects (as when training from a Tabula Rasa for example).

� The �rst 500 patterns are \pre-trained" without testing, so that the testing

of the �rst window, when R = 501, is not over a random background of

switches. (Note to pre-train from Pvalue = 0:0 to Pvalue = 0:5, rather

than using ni, is also possible, but would take about �ve times as many

patterns.)

Note that the use of ni is not appropriate for the Ageing Weights scheme, since

each switch needs to acquire an associated age. Here, a relevant �le here would

be:

op os nn 512 512 nm 9 9 np 0 10000 ta 1900 -1 rt 0 1999 rs 2000

10000 2000 100 0 fg r 1 512span_aw50 fg r 3 512soc_aw50 fg r 4

512p_aw50 cf q

Then roughly the �rst 0:44 � 512 � 512 switches will have ages between 1 and

1900, so the �rst testing will be over 2000 pre-trained patterns.
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E.2 HNS

A typical �le for studying noisy cues (n = 10) in the optimal cases of Attenuated

and Bounded Weights might be:

op os nn 512 np 0 4000 0.5 nh 26 nr ne 0.00803 ta 0.984 rt 0 1000

rs 1001 4000 100 20 10 fg r 1 512span_aw_10 fg r 4 512soch_aw_10

fg r 5 512soco_aw_10 cw cf ne 0.00586 tb 0.0442 rt 0 1000 rs 1001

4000 100 20 10 fg r 1 512span_bw_10 fg r 4 512soch_bw_10 fg r 5

512soco_bw_10 cf q

Several points are worth noting:

� The window size does not need to be so big for HN palimpsest schemes

compared to WN schemes (an empirical �nding - survival times have less

spread).

� The span will be averaged over 150 measurements.

� Weights and (raw) �les are cleared between \runs".

� The two serial order curves are simply to provide two perspectives: with

hamming distance and with overlap.

� Pretraining (of a somewhat arbitrary 1; 001 patterns) is again employed to

remove transients e�ects of Tabula Rasa training.

137



E.3 Randomness

Finally, it may be noted that the user has no control over the random generation

of patterns (after N and M have been selected), e.g. the user cannot change

the random seeds without explicitly altering the �le random.c. This is because

changing the seeds without knowledge of the restrictions can produce undesireable

results.

However, there will typically be many calls to the random number generator

(e.g. 2N times for each pattern pair, N times for every noisy cue, up to N
2

times for each Random Resetting episode, etc. ). This means there will naturally

be considerable variability between di�erent runs, without necessarily having to

change the seeds, i.e. results can only be replicated exactly if an identical sequence

of commands is used.

The �le random.c was created by R.A.O'Keefe from an algorithm AS 183 from

the journal \Applied Statistics". It has been brie
y tested with the seeds provided.

For example, testing the hamming distance between 10000 patterns when N = 512

and M = 256 gives the expected normal distribution, as shown in Fig E{1. Note

the generation of random patterns with exactlyM of N components set is achieved

through Floyd's algorithm.
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Figure E{1: Distribution of Hamming Distances between Randomly Generated

Patterns
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