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Abstract
One of the simplest associative memories is the Willshaw Network (Willshaw, Buneman & Longuet-Higgins,

1969). Like other associative networks however (e.g., Hopfield, 1982), it fails completely as a memory device as
soon as its capacity is exceeded. Three methods of synaptic change are analysed, decay, ageing and depression,
under which this catastrophic failure can be preempted and stability under continuous learning ensured. These
methods allow a Willshaw Network to function as a short-term memory, with effective storage of a well-defined
number of recent associations, accompanied by the progressive forgetting of older ones. Expressions for the short-
term capacity under each method are obtained in the sparse coding limit and validated via simulation.

Learning, retrieval and storage in the Willshaw Network
Consider a square Willshaw Network with two, fully-interconnected layers of N cells. Each cell j can be in one

of two activity states, aj, firing (aj=1) or quiescent (aj=0). Similarly, a synapse connecting cell j to cell i has two
states, Sij, potentiated (Sij=1) or unpotentiated (Sij=0). Synapses are potentiated upon conjoint pre- and
postsynaptic firing. Thus the network learns an association between a pattern of presynaptic activity and a pattern
of postsynaptic activity in a simple Hebbian manner. The network can retrieve a postsynaptic activity pattern
resembling that previously associated with a given presynaptic activity pattern by feedforward of activity.
Specifically, the activity of postsynaptic cell i is determined by thresholding the dendritic sum of impinging
presynaptic activity:

where Ti is the threshold of cell i. An error arises when the resulting activity of postsynaptic cell i differs from that
it possessed in the postsynaptic activity pattern of the previously learned association. If the error rate does not
exceed some criterion, that association is deemed stored.

Capacity of the standard Willshaw Network
Consider the learning of a series of associations between random activity patterns presented over pre- and

postsynaptic cells at discrete times t. Assume each pattern involves M of the N cells firing. If N is large and the
firing ratio, F=M/N, is small (the sparse coding limit), then the probability that a synapse is potentiated at time t, or
the loading of the network, p(t), is:

assuming the network is initially a tabula rasa (i.e., p(0)=0). If the storage criterion is an average of one spurious
postsynaptic firing, then, setting all thresholds T=M and making the “unit usage assumption” (Buckingham &
Willshaw, 1992), p is effectively constrained by . Willshaw et al. (1969) showed that maximum
information efficiency of the network (of ln2) then occurs when p=0.5 and M=ln2(N). Alternatively, using a
criterion of fewer than  spurious postsynaptic firings, the number of associations stored, or the capacity of
the network, c(t), is predicted by:

(where  is the number of combinations of k in N events). Taking a storage criterion of no more than one
spurious firing (L=2), the capacity can be approximated in the sparse coding limit by:
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To a good approximation, maximum (transient) capacity, C, then occurs when:

Simulation of a network with N=512, M=T=9 in such a finite error regime yields a maximum capacity of
approximately 1700 associations when p=0.44 after 1900 associations have been learned, in agreement with
theoretical approximations. However, as more associations are learned, the optimal loading is surpassed, and the
probability of spurious postsynaptic activity increases. After 2000 associations are learned, capacity falls off
precipitously, and after another 1000, virtually no associations are stored (Figure 1). To prevent such catastrophic
failure, p(t) must approach an asymptotic value, P, somewhat below one (i.e.,  as ).

Synaptic Decay
A simple way to meet the above constraint is to have synapses revert to a unpotentiated state in a random

manner, with probability r between each learning episode. This might correspond to some nonspecific decay of
synapses (Willshaw, 1971). The recurrence relation for p(t) and asymptotic loading is then:

Once asymptotic loading is achieved, consider a synapse potentiated by an association learned at time t0.
Solving the recurrence relation, the probability that at time t0+t this signal synapse is still potentiated, ps(t0+t), is:

since ps(t0)=1. The probability that other noise synapses, not specifically potentiated by the association learned at
time t0, are nevertheless potentiated at the later time, pn(t0+t), can be approximated by P, due to the sparse coding
assumption. In addition to spurious errors, synaptic decay also introduces potential omission errors, when
postsynaptic cells that should be firing remain quiescent because of subthreshold dendritic activity. With a common
postsynaptic threshold, the average survival time of the association is constrained by:

where q(p,T) is the probability of a suprathreshold, dendritic sum. The average survival time of random
associations approximates to the short-term capacity of the network. For example, letting T=M, this capacity is:
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Figure 1: Capacity of Standard Willshaw Net (N=512,M=9,T=9,L=2)

p t 1+( ) p t( ) 1 r−( ) 1 p t( )−( ) F2+= P
F2

r F2+
=

ps t0 t+( ) P 1
F2

P
−( )+

t

1 P−( ) 1
F2 1 P−( ) t

P
−≈=

M 1 q ps T,( )−( ) N M−( ) q pn T,( )+ L= q p T,( ) Ck
Mpk 1 p−( ) M k−

k T=

M

∑=

c
L NPM−( ) P

M2F2 1 P−( )
≈



Maximising this quantity with respect to P gives optimal loading and short-term capacity, S, when:

Taking a storage criterion of no more than one spurious or omission error (L=2), this means an optimal
P=0.452 and predicted short-term capacity of S=52.6. In agreement with theory, simulation with synaptic decay of
r=3.74x10-4 yields a mean short-term capacity, after initial transients have dissipated, of S=54.8 (0.2), where 0.2 is
the standard error (Figure 2). Greater short-term capacities are possible if T is reduced below M and r is increased.
With common thresholds across postsynaptic cells, a signal-to-noise analysis (Henson, 1993) shows capacities of
O[N2/M3] are possible, supported by simulations showing a maximum short-term capacity of S=149 (0.3) when
T=6 and P=0.161 (r=1.60x10-3).

Synaptic Ageing
The probability that a synapse returns to an unpotentiated state can be made a function of its age, a, the time

since that synapse last experienced conjoint pre- and postsynaptic firing. This might correspond to a transient form
of LTP (Morris & Willshaw, 1989). A family of ageing functions are characterised by the sigmoidal function:

where a0 is a “critical age” and d is the sharpness of the ageing function. This method can give greater short-term
capacities than random decay by sharpening the forgetting function (mean error against number of intervening
learning episodes; see Figure 3). With , short-term capacities of the same order as C can be recovered. In
the extreme case of ao=1900, d=1 (L=2, T=M) for example, simulations yield a short term capacity of S=1,700
associations, with a variance of approximately 100.

Synaptic Depression
The Hebbian learning rule can be generalised so that under conditions of presynaptic firing in the absence of

postsynaptic firing, a synapse is depressed to an unpotentiated state with probability y. This reflects homosynaptic
depression similar to the LTD proposed by Stanton and Sejnowski (1989). The asymptotic loading is:

and the expression for ps(t+t0) is as given for synaptic decay. However, with homosynaptic depression, pn(t) can no
longer be approximated by P, and has the recurrence relation:

since pn(t0)=P(1-y). This reduction in pn(t) leads to an increase in short-term capacity. Though optimal P for
random patterns in the sparse coding limit approaches that under synaptic decay, and the short-term capacity is of
the same order, simulations of the former network show a maximum short-term capacity of 168 (0.3) when T=6
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Figure 2: Capacity of Willshaw Net with Synaptic Decay (N=512,M=9,T=9,r=0.000374,L=2)
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and y=8.75x10-2 (P=0.170), a small but significant improvement over the short-term capacity with synaptic decay.
If thresholds are adaptable to signal and noise distributions for individual cells, a signal-to-noise analysis (Amit &
Fusi, 1993) shows that short-term capacities of O[N2/M2] are possible (i.e., approaching C). Of course, the
improvement of synaptic depression over decay becomes even more noticeable at greater firing ratios. In fact, for
larger values of F, optimal probabilities of potentiation and depression are best determined by considering changes
in continuous-valued synaptic strengths (Dayan & Willshaw, 1991). A further advantage of synaptic depression
arises when presynaptic activity patterns are correlated over time. Simulations with nine presynaptic cells 100
times more likely to fire than other presynaptic cells show a short-term capacity of 3.0 (0.2) under synaptic decay
(r=1.60x10-3, T=6, P=0.08), a short-term capacity of 0.9 (0.2) under synaptic ageing (ao=1900, d=1, T=9,
P=0.16) and a short-term capacity of 8.6 (0.8) under synaptic depression (y=8.75x10-2, T=6, P=0.17). Synaptic
ageing is particularly ineffective under correlated presynaptic patterns. A final difference between synaptic
depression and synaptic decay or ageing is that, whereas the former is tied to learning episodes, synaptic decay or
ageing could operate independently of learning rate, allowing a network to return to a tabula rasa after long periods
in the absence of learning. In other words, forgetting under synaptic depression is through interference, whereas
forgetting under the other two methods can be a combination of interference and real-time decay.

Discussion
The Willshaw Network captures important characteristics of associative memory. Moreover, its local Hebbian

learning rule, bounded, positive values for activity and synaptic efficacy, parallel update, and optimal information
efficiency under sparse coding (or sparse connectivity) are appealing from the neurophysiological perspective.
However, apparently unlike natural associative memories, it fails catastrophically in the face of continuous
learning. This failure can be prevented by introducing mechanisms by which a synapse can return to its
unpotentiated state, ensuring a network reaches a stable, asymptotic loading below one. Three such physiologically
plausible mechanisms of synaptic change have been analysed, optimised and simulated. All methods require
information about parameters such as the number of cells, N, and the firing ratio, F, for optimal performance. If
such information is precise, greatest short-term capacities (for sparse, random activity patterns) are possible under
synaptic ageing: With common postsynaptic thresholds, synaptic decay or depression produce capacities at least a
factor of M smaller. However, when the firing ratio increases from the sparse coding limit, or presynaptic activity
patterns are correlated over time, synaptic depression emerges as a more effective mechanism.
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Figure 3: Forgetting Functions of Willshaw Net under Synaptic Decay and Ageing (N=512,M=9,T=9,L=2)
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******************* end of paper (can be squeezed into 4 pages) ********

Notes:

1) Simulations for correlated patterns still pending.

3) I would be grateful if you could check the derivation of the equations - the optimisations of P are
expanded below:

a) Maximising P under standard operation with L=2 is easier taking a linear approximation for t as a function
of p, rather than a logarithmic one, ie for large N and small F:

Maximum c occurs when dc/dp=0, ie:

(for reasonably large M). With N=512, M=9, this means p=0.426, which gives best approximation for
capacity when logarithmic function used again for t:

giving c=1700, very close to practice.

b) Maximising P under synaptic decay with L=2:

when expression for ps and pn=P are substituted in. Then dc/dp=0 when:

With N=512, M=9, this means p=0.452 (from numerical soluation via binary chop), and a capacity estimation
of c=52.6.
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