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 Appendix 1: Statistical Techniques
Logit or “Log-odds” Transform

If subject i of N makes ri errors in a sample of ni responses, giving a basic proportional

score of pi=ri/ni, then the log-odds score is defined as:

Equation 9-1

This logarithmic transform “stretches” proportional scores just above zero and just

below one, making some allowance for floor and ceiling effects. However, the transform is not

defined at these extremina exactly, i.e., when ri=0 or ri=ni.

Empirical Log-odds

To handle situations when ri=0 or ri=ni (ni>0), an empirical log-odds score can be

defined (Cox & Snell, 1989):

Equation 9-2

This caters for measured proportions of zero or one. However, it makes no allowance

for the fact that one proportional measurement may be based on a large number of

observations (when ni is large), and hence likely to be more accurate than one based on only a

small number of observations (when ni is small).

Weighted Log-odds

The empirical log-odds score defined above has an associated variance:

Equation 9-3
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Empirical log-odds scores can be weighted by the inverse of their variances:

Equation 9-4

to give a weighted mean across subjects:

Equation 9-5

where the summand is from subject i=1 to i=N.

Transforming back into the original coordinates, the estimated mean proportion over

subjects, p, has variance, V, given by:

Equation 9-6

Testing Related, Weighted, Log-odds

To test a difference in means of two, related log-odds, Li and L’i, let:

Equation 9-7

A combined weight, wi, can be determined from:

Equation 9-8

The weighted mean difference score is then:

Equation 9-9
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and the standard error of the difference scores is:

Equation 9-10

which enables testing of the standardised score:

Equation 9-11

To get a measure of the weighted mean difference in terms of proportions, q:

Equation 9-12

given a particular baseline proportion p.

Testing Unrelated, Weighted, Log-odds

To test the difference between log-odds of two, unrelated groups (with N subjects):

Equation 9-13

Testing 2x2 Contingency Tables

Given ri errors and (ni-ri) correct responses on one measure, and si errors and (ni-si)

correct responses on another, such that the 2x2 contingency table for each subjects is:
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Then, under the null hypothesis that the two measures are uncorrelated, the expected

number of cases where they are in agreement, E(x), is:

Equation 9-14

and the variance of x is:

Equation 9-15

which allows a combined test of significance of individual subjects’ two-by-two contingency

tables by a Z-score:

Equation 9-16

giving a measure of the association or correlation between the two measures. Note that this

assumes homogeneity across subjects, such that they all show a similar association in their

individual contingency tables.

Testing Conditional Error Probabilities

Given mj reports which have no errors on positions 1...j-1 and assuming rj errors are

made on position j, then:

Equation 9-17

Let the conditional probability of an error on position j be qj. The maximum likelihood

estimate of qj is:

Equation 9-18
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If there is no change in conditional probability of an error across positions j and j+1,

then the common maximum likelihood estimator is:

Equation 9-19

To test the hypothesis that qj=qj+1, the goodness of fit of the following model is tested:

Equation 9-20

The corresponding X2 statistic has (approximately) a Chi-squared distribution on one

degree of freedom under the null hypothesis. A combined χ2 across subjects can be obtained

by summing individual, signed Z scores, squaring and dividing by N.

Significance of Multiple Pairwise Comparisons

Given N pairwise, a priori comparisons with individual significance levels of α, the

appropriate familywise significance level, αF, according to a Bonferroni correction is:

Equation 9-21

This correction is very conservative. A more powerful approach is Holm’s method

(Howell, 1992), for which the Bonferroni correction is applied iteratively to each individual

comparison, testing the largest absolute difference against αF above, and testing ith next

largest difference (i=1..N-1) against αi, where:

Equation 9-22

The iteration continues until the ith comparison is nonsignificant, whence all

remaining comparisons are also deemed nonsignificant.
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Hotelling’s T-squared Test

Hotelling’s one-sample T2-test can be used to test p means of samples taken from n

subjects against hypothesised values (Mardia, Kent & Bibby, 1979). Let h be the vector of

hypothesised means, d be the vector of actual means, and S be the matrix of the sums of

squares of data values. Then the vector t of the differences of hypothesised and actual means:

Equation 9-23

gives the T2 statistic:

Equation 9-24

which can be tested by the F-ratio:

Equation 9-25

Note that T2 statistic, by taking into account the variances and covariances of the p

data samples, does not have to assume independence of the p means.
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