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Chapter 4: Meta-analyses of Errors

Empirical Constraints on Error Distributions

This chapter describes three meta-analyses of a number of recent, unpublished studies

on short-term serial recall conducted at the Applied Psychology Unit. These analyses were to

test the generality of the results of Experiments 1-3, and also to test more detailed predictions

of three specific models of serial recall, a chaining model (Murdock, 1995), a positional model

(Burgess & Hitch, 1992) and an ordinal model (Page & Norris, 1996b). Meta-analyses over

several different experiments were necessary because some types of errors are rare (e.g.,

repetitions and protrusions), hampering statistical tests within any one experiment. The results

are summarised in a set of empirical constraints on error distributions in serial recall.

Three Models of Serial Recall

In order to guide some aspects of the meta-analyses, three specific models of serial

recall were considered, each of which exemplified one of the general theories of serial order in

Chapter 1. The first was a closed-loop, compound chaining model, based on the Power Set

Model of Murdock (1995). Though Murdock did not specify the precise nature of the closed-

loop chaining (i.e., whether or not errors are fed back as cues), such a closed-loop model has

been analysed independently by Henson (1994). The second model was a positional model

based on the Articulatory Loop Model of Burgess and Hitch (1992). This model uses a context

signal to cue each position, such that cues for nearby positions overlap in symmetrical manner

(Chapter 1; decay processes in this model were ignored for simplicity). The third model was

an ordinal model based on the Primacy Model of Page and Norris (1996b). This assumes a

primacy gradient of activations, invariant across positions (decay was again ignored).

Competition Space

Though the above models differ in many respects, they can be compared using the

abstract notion of a competition space. Competition space indicates the strength with which

each item competes for each response during serial recall. The competition space for the first

three responses in serial recall of five items is shown in Figure 4-1. The filled bars represent
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the strength with which each item (from left to right) competes for the first, second and third

response (in each column). Assuming some random noise in these strengths, the height of each

bar relative to the others relates to the probability of recalling that item at that position (i.e., the

random noise can sometimes cause errors).

The broken bars represent items that have been recalled. Thus Figure 4-1 illustrates

competition space at the start of recall (leftmost column), after Item 2 has been recalled

erroneously in Position 1 (middle column), and after Item 3 has been recalled erroneously in

Position 2 (rightmost column). Once recalled, an item is suppressed. This suppression reduces

the probability of recalling it again, explaining why repetitions are rare (below). Suppression

also explains the interdependency between responses (Henson et al., 1996), such that the

probability of recalling an item depends on what has been recalled previously (i.e., items are

selected without replacement). All three models above assume a process of suppression

(implicitly in Murdock, 1995; explicitly in Burgess & Hitch, 1992, and Page & Norris, 1995).

In competition for the first response (leftmost column), it is assumed all three models

are equivalent.1 In other words, all models predict the first item as the most likely response,

the second item as the next most likely, etc. The first difference between the three models

arises when the first error occurs, where Item 2 is recalled in Position 1 (middle column). The

models differ in their predictions as to what should follow this error. The Power Set Model

predicts the most likely next response is Item 3, because it will be cued strongly by previous

recall of its associate, Item 2. The Articulatory Loop Model predicts that Item 1 and Item 3

will be equally likely to follow, because the cue for Position 2 overlaps equally with those for

Position 1 and Position 3 (e.g., Figure 1-2 in Chapter 1). The Primacy Model predicts that

Item 1 will be most likely to follow, because it remains the strongest competitor.

The prediction of the Primacy Model, that Item 1 will follow the error on Position 1,

was termed fill-in by Page and Norris (1996b). In more general terms, fill-in is a property such

that “when an item is missed out in recall, due to a transposition, it is liable to be recalled in

the next position” (Page & Norris, 1996b, p. 8). Fill-in is important in preventing a cascade of

further errors. This is evident by considering the situation where Item 2 is followed by a

1. An additional start-of-list context is assumed in order to cue the first item in the Power Set Model.
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Figure 4-1: Competition space within each model for the first three responses to a list 12345

recalled as 23..., illustrating absence of weak fill-in.

Articulatory Loop Model (Positional)

Primacy Model (Ordinal)

Power Set Model (Chaining)

..... 2.... 23...

..... 2.... 23...

..... 2.... 23...
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further error of Item 3 (rightmost column). The Power Set Model predicts the most likely next

response is Item 4, because it will be cued strongly by previous recall of its associates Item 2

and Item 3. In other words, the Power Set Model predicts a further slippage of items. The

Articulatory Loop Model also predicts Item 4 will follow, because the cue for Position 3

overlaps more with the cue for Position 4 than the cue for Position 1. Only the Primacy Model

predicts that the most likely next response remains Item 1, to “fill-in” the gap and prevent

further slippage. In other words, only the Primacy Model predicts that the probability of fill-in

increases with further errors; the other models predict that the probability of fill-in decreases,

such that the last item is unlikely to be recalled until the end, when all others have been

recalled and suppressed. Further consideration reveals that the lack of fill-in in the Power Set

and Articulatory Loop Models is why neither produce sufficient recency (Henson et al., 1996).

On the other hand, consider the situation in Figure 4-2, where the first two items have

been recalled correctly (leftmost column). The middle column then shows the competition

space after Item 5 is recalled erroneously in Position 3. The Power Set and Articulatory Loop

Models predict the next most likely response is the correct response, Item 4, whereas the

Primacy Model predicts fill-in of Item 3.

This example illustrates the distinction between strong fill-in and weak fill-in. The

Primacy Model shows strong fill-in, in that the earliest unrecalled item will always be the most

likely response following an error. The Power Set and Articulatory Loop Models do not

predict strong fill-in. The Articulatory Loop Model in particular predicts that the correct

response is always most likely following an error (providing the correct item has not already

been recalled and suppressed, as in Figure 4-1). Only in situations where the correct item has

already been recalled can (weak) fill-in can occur, as in the rightmost column of Figure 4-2. In

this case, Item 4 is recalled correctly in the fourth position, and all three models predict that

Item 3 will finally fill-in.

The distinction between strong and weak fill-in is important because a model can show

weak fill-in without showing strong fill-in. Though this is not true of the Articulatory Loop

Model, because of the symmetrical nature of its positional cue (a situation actually made

worse once decay is added, Henson et al., 1996), it is true of the new positional model
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Figure 4-2: Competition space within each model for the last three responses to a list 12345

recalled as 1254., illustrating absence of strong fill-in.

Articulatory Loop Model (Positional)

Primacy Model (Ordinal)

Power Set Model (Chaining)

12... 125.. 1254.

12... 125.. 1254.

12... 125.. 1254.
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developed in Chapter 5. This model assumes asymmetrical positional cues, biased towards

earlier items. The strength of fill-in was one of the questions asked in the meta-analysis below.

Meta-analysis 1

In total, 37 conditions from 14 different experiments were analysed, using a computer

program developed by the author. These experiments all employed immediate serial recall of

objectively ungrouped lists of phonologically dissimilar, nonrepeated items. The conditions

differed in list length (from five to nine items), nature of items (digits, letters or words),

presentation rates (between one and two items per second), presentation modality (visual,

vocalised, or auditory) and recall method (written or spoken). Further details of the conditions

are given in Appendix 2. A number of pairwise, binomial sign-tests were performed across the

conditions, accompanied by 95% confidence intervals (CI) for the median value.

Primacy Constraint

Primacy was evident in all error position curves in Experiments 1-3. Its prevalence was

tested further by comparing the frequency of errors on the first two positions across all 37

conditions. Errors on the first position were less frequent than on the second position in all

cases, N=37, p<.001, CI=(.11,.15), reinforcing the ubiquity of primacy in serial recall.

Recency Constraint

Recency was also evident in Experiments 1-3, though it was weaker than primacy, and

confined to the last one or two positions. Last-item recency was tested by comparing the

frequency of errors on the last two positions. The frequency on the last position was less than

on the penultimate position in only 20 conditions (and equal in 4 conditions), suggesting that

recency is not a reliable effect in serial recall, N=33, p=.15, CI=(-.02,.04).

However, of the 13 conditions with no last-item recency, 12 employed lists of words,

and 7 of these used five-syllable words. These conditions showed large increases in omissions

towards the end of recall (Experiment 2; below). When the 10 conditions with words of more

than one syllable were excluded from analysis, the presence of last-item recency was reliable,

arising in 19 conditions (and equal in 2 conditions), N=25, p<.01, CI=(.01,.10). This suggests

that recency is normally found, except when there are large numbers of omissions.
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Locality Constraint

The locality constraint, that items transpose small distances about their correct

positions, was introduced in Experiment 1. The generality of this constraint was tested by

comparing the frequency of one-and two-apart transpositions, weighted by the opportunity for

such transpositions.2 One-aparts were more frequent than two-aparts in all conditions, N=37,

p<.001, CI=(.03,.04), demonstrating the fundamental nature of the locality constraint.

Fill-in Constraint

It is possible for data (and models) to meet the locality constraint without meeting the

fill-in constraint (above). For example, a sequence 12345 recalled as 13452 contains three

one-apart transpositions, and one three-apart transposition. Though the ratio of these

transpositions would meet the locality constraint, this example violates the fill-in constraint

because Item 2 was not recalled immediately after it was replaced by Item 3.

To measure fill-in, analysis was confined to responses following the first error in a

report. To illustrate the nature of such responses, data from the ungrouped conditions of

Experiment 2 were collapsed across subjects (Table 4-1). Of the 207 responses following a

first error of Item i+1 on Position i (as in Figure 4-1), the majority were the fill-in errors of

Item i predicted by the Primacy Model, and only half as many were the associate errors of

Item i+2 predicted by the Power Set Model (top row of Table 4-1). In other words, when i=1,

an incorrect report of 12345 is more likely to be 21345 than 23145 (contrary to Figure 4-1).

Thus, there was evidence for fill-in. There were hardly any immediate repetitions of the

correct Item i+1, but this is attributable to the suppression of items already recalled.

2. Given transposition distances of i and j (i<j), this weighting means scaling the number of j-apart transpositions
by a factor (n-i)/(n-j), where n is the list length, reflecting the fewer opportunities for transpositions further apart.

First Error

Following Response

Fill-in
(Item i)

Correct
(Item i+1)

Associate
(Item i+2)

Other

Item i+1 .53 .01 .21 .25

Item j>i+1 .25 .48 .08 .19

Table 4-1: Proportion of responses following a first error on Position i in Experiment 2.
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To measure the strength of fill-in, analysis was confined to responses following a first

error of Item j on Position i, where Item j was an item other than Item i or Item i+1 (as in

Figure 4-2). Of the 336 such responses, the majority were the correct responses of Item i+1

predicted by the Articulatory Loop Model, and only half as many were the fill-in errors

predicted by the Primacy Model (bottom row of Table 4-1). In other words, when i=3,

incorrect report of 12345 is more likely to be 12543 than 12534 (as in Figure 4-2). Thus, there

was no evidence for strong fill-in.

To test the generality of this conclusion, similar calculations were performed in the

meta-analysis. With a first error of Item i+1, the proportion of following responses that were

fill-in errors was greater than the proportion that were associate errors in 35 conditions (equal

in 2 conditions), demonstrating highly reliable weak fill-in, N=35, p<.001, CI=(.20,.32). With

a first error of Item j, where j>i+1, the proportion of following responses that were correct

was greater than the proportion that were fill-in errors in 33 conditions (equal in 1 condition),

N=36, p<.001, CI=(.16,.22), demonstrating that strong fill-in is the exception rather than the

rule. Taken together, these analyses confirm that the fill-in is stronger than predicted by the

Articulatory Loop Model, but not as strong as predicted by the Primacy Model.

One caveat applies to the above analysis. Many of the lists are likely to be

spontaneously grouped (Chapter 3). The influence of grouping may confound the analysis,

perhaps reducing the strength of fill-in, given that interpositions tend to be followed by correct

responses (Experiment 2). The fact remains however that the interpositions themselves, or

indeed any type of positional error, cannot be explained by models with strong fill-in (below).

Omission Constraint

The omissions in Experiments 2 and 3 increased towards the end of recall. To test the

reliability of this finding, the frequency of omissions on the last two output positions was

compared. The frequency was greater on the last position than penultimate position in 32

conditions (equal in 3), confirming the reliability of the finding, N=34, p<.001, CI=(.04,.17).

The fact that omissions increase towards the end of recall might suggest that the last

item is omitted more often than any other. Indeed, this is what is predicted by the Primacy

Model (Page & Norris, 1996b). To illustrate this, the upper panel of Figure 4-3 shows the
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Figure 4-3: Omissions by input position (upper panel) and by output position (lower panel)

averaged across both conditions of Experiment 3.
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frequency of omissions against input position averaged over both conditions of Experiment 3.

The increase in omissions with output position (lower panel) was not paralleled by a similar

increase with input position: The last item was more often recalled somewhere than the

penultimate item. This pattern of results can be explained if the last item is sometimes recalled

too early, replacing the penultimate item, and followed by an omission. To test whether the

pattern was an exception rather than the rule, the meta-analysis compared the frequency of

omissions on the last input position with the frequency of omissions on the penultimate input

position. The frequency on the last position was greater than on the penultimate position in 17

conditions (and equal in 3 conditions), N=34, p=.57, CI=(-.02,.03). This unreliable difference

indicates that the increase in omission towards the end of recall does not always reflect failure

to recall the last item. As well as being troublesome for the Primacy Model, this pattern of

item errors contrasts with the flat distribution assumed by Lee and Estes (1977, 1981). This is

probably because they, like Healy (1974), did not consider lists of more than four items.

Repetition Constraint

Repetitions in Experiments 1-3 were rare. However, their distribution was highly

constrained: They were always widely separated in reports, with the majority being items

recalled at the start of recall that were recalled again towards the end of recall. In condition PN

of Experiment 1 for example, repetitions comprised approximately 2% of responses (11% of

errors) and the two occurrences were, on average, 3.34 positions apart in reports. The most

common repetition was of the first item, recalled correctly on Position 1 and again incorrectly

on Position 6 (hence the exception to the locality constraint for Position 6 of this condition in

Experiment 1). This pattern is shown in Figure 4-4 (the peak on the fourth input position

probably reflects the effect of the 3-3, subjective grouping in Experiment 1).

The significance of this distribution of repetitions can be illustrated by a simple

guessing model. According to this model, subjects who fail to recall an item correctly guess at

random from the set of list items. Simulations of such a simple model, fitted to overall error

rates in condition PN, produced repetitions that comprised 16% of responses (84% of errors),

far in excess of the data. Simulations also gave a mean distance between two occurrences of an

item of 2.21 positions, considerably smaller than in the data. Though a different frequency of
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Figure 4-4: Repetitions by input position (upper panel) and by output position (lower panel) for

PN condition of Experiment 1.
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repetitions would result if subjects’ guesses were biased towards neighbouring list items, as

required by the locality constraint, this would produce an even smaller mean distance between

the two occurrences of a repeated item. This example suggests that responses in serial recall

are normally chosen without replacement, supporting the idea of response suppression

described above. Nonetheless, the fact that repetitions do sometimes occur suggests that

response suppression is not perfect; it probably wears off over time (Chapter 5).

The hypothesis that most repetitions involve early list items was examined by testing

whether over 50% of repetitions were from the first two input positions. This was true of 24

conditions in the meta-analysis, confirming the hypothesis, N=37, p<.05, CI=(.01,.19). The

hypothesis that most repetitions occur towards the end of recall was examined by testing

whether over 50% of repetitions occurred on the last two output positions. This was true of 26

conditions (equal in 1 condition), confirming this hypothesis too, N=36, p<.01, CI=(.02,.17).

Protrusion Constraint

The protrusions measured in Experiment 3 were also rare. Nonetheless, they

represented a significant proportion of immediate intrusions; a proportion greater than

expected by chance. To test whether this was true more generally, the proportion of erroneous

items that occurred at the same position in the previous report, given that they occurred

somewhere in that report, was compared with that expected by chance (which is 1/n, where n

is the list length). This proportion was above chance in 35 conditions (and equal in 1

condition), demonstrating that output protrusions are a reliable finding, N=36, p<.001,

CI=(.06,.10). Moreover, this proportion was greater than the corresponding proportion for

input protrusions in 28 conditions (and equal in 3 conditions), N=34, p<.001, CI=(.01,.03)

supporting the suggestion in Experiment 3 that output protrusions are a better index of

positional information. Finally, the proportion of output protrusions followed by a correct

response was greater than the proportion followed by a further protrusion in 35 conditions,

N=37, p<.0001, CI=(.11,.20), supporting the conclusion of Experiment 3 that protrusions

normally arise singly, without intrusion of whole subsequences.

The theoretical importance of positional errors like protrusions can also be illustrated

in competition space. Figure 4-5 shows the competition space in recall of the second of five
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Figure 4-5: Competition space within each model for the second response to a list 12345 recalled

as 1...., illustrating competition from items in the previous trial.

Articulatory Loop Model (Positional)

Primacy Model (Ordinal)

Power Set Model (Chaining)

1....

1....

1....
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items (rightmost column), including competition from items in the previous trial (leftmost

column), assuming suppression for the previous trial has worn off. In the Power Set Model,

the cue for the second item bears no necessary resemblence to the cue for the second item of

the previous trial (unless the first item happened to be the same in both trials). Thus, if there is

to be an intrusion from the previous trial, there is no reason for it to be an protrusion of the

second item from that trial. (In Figure 4-5, the most likely intrusion is the first item of the

previous trial, assuming that the two lists share remote associations with the same start-of-list

context). A similar argument applies to ordinal models like the Primacy Model, because a

start-of-list cue (Page & Norris, 1996b) would mean that the most likely intrusion is always

the first item from the previous trial. Only the Articulatory Loop Model predicts that the most

likely intrusion is a protrusion, as in the data. This is because only a positional model assumes

separate cues for each position, and, assuming the same cues are reused on each trial, any

proactive interference will be of a positional kind. This illustrates the point made in Chapters 1

and 3, that positional errors necessitate a positional theory.

Meta-analysis 2

This meta-analysis examined 9 conditions from 9 different experiments with grouped

lists of phonologically dissimilar, nonrepeated items, to test the reliability of the results of

grouping in Experiment 2. Further details of the conditions are given in Appendix 2.

Interposition Constraint

The grouped condition of Experiment 2 showed a greater proportion of three-apart

interpositions than two-apart transpositions. To test the reliability of this finding, the frequency

of transpositions n positions apart (with groups of size n) was compared to the frequency of

transpositions n-1 positions apart, weighted by the opportunity for such transpositions

(Footnote 2). The proportion of interpositions was greater in all 9 conditions, N=9, p<.005,

CI=(.01,.02). This confirms that interpositions in grouped lists override the locality constraint.

The grouped condition of Experiment 2 also demonstrated that more interpositions

arose between the middle of groups than the start or end of groups. This finding was confirmed

by comparing the proportion of interpositions between the middle of groups with the
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proportion between the start and end of groups. The proportion on middle positions was

greater in all conditions, N=9, p<.005, CI=(.02,.07). Finally, it was also confirmed that the

proportion of interpositions followed by a correct response was greater than the proportion

followed by a further interposition in all conditions, N=9, p<.005, CI=(.28,.45), supporting

the conclusion that interpositions, like protrusions, arise singly.

Meta-analysis 3

This meta-analysis examined 10 conditions from 3 different experiments that

employed ungrouped lists in which phonologically similar and phonologically dissimilar

items alternated. This was to test the reliability of the findings of Experiment 1. Further details

of the conditions are given in Appendix 2.

Confusion Constraint

Experiment 1 demonstrated that phonologically confusable items tend to transpose

with one another, causing more errors for confusable items than nonconfusable items in lists

where they alternate. All 9 conditions in the meta-analysis also showed a higher frequency of

errors for confusable than nonconfusable items, N=10, p<.005, CI=(.12,.22). However,

Experiment 1 failed to find a consistent effect of confusable items on the recall of alternated

nonconfusable items. This failure prompted two conclusions: 1) there is no effect of

phonological similarity on cuing, and 2) there is no effect of errors on cuing (Chapter 2).

To test this finding, the frequency of errors on nonconfusable positions in alternating

curves was compared with that in nonconfusable curves. There was a higher frequency of

errors on nonconfusable positions in alternating curves in 8 of the 10 conditions, a result that

was almost reliable, N=10, p=.05, CI=(.02,.07). This suggests the first finding in

Experiment 1 may not generalise, particularly for lower-span subjects. One possible reason for

this is the general knock-on effects of errors (Experiment 1). To test this notion, the above

errors were conditionalised on correct recall of preceding items (Henson et al., 1996). In this

case, the conditional probability of errors on nonconfusable positions in alternating curves was

greater than in nonconfusable curves in only 4 conditions (and equal in 1 condition); a result

that was not reliable, N=9, p=.75, CI=(-.01,.01). This is consistent with the knock-on effects
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of an error (though also consistent with an effect of errors on cuing). More importantly, it is

inconsistent with an effect of similarity on cuing, ruling out most chaining models (Chapter 1).

Finally, Experiment 1 also reported that phonological confusions were weighted by the

distance between the two confusable items. This was confirmed by comparing weighted

proportions of two-apart and four-apart confusions (Footnote 2), with all 10 conditions

showing a greater proportion of the former, N=10, p<.005, CI=(.01,.08).

Summary of Empirical Constraints

The three meta-analyses revealed a rich set of empirical constraints on serial recall

from short-term memory. In summary, the nine constraints were:

1. The primacy constraint: Recall of the first item is better than the second.

2. The recency constraint: Recall of the last item is better than the penultimate item,

providing there are not too many omissions towards the end of recall.

3. The locality constraint: Items transpose small distances about their correct position.

4. The (weak) fill-in constraint: If an item is not recalled up to, or on, its correct

position, it is the most likely error, other than an omission, on the following position.

5. The omission constraint: Omissions increase towards the end of recall, but not

necessarily through failure to recall the last item anywhere.

6. The repetition constraint: Repetitions are literally few and far between, most often

representing items recalled near the start and the end of a report.

7. The protrusion constraint: An erroneous item is more likely to occur at the same

position as it appeared in the previous report than is expected by chance; intrusion of the

whole report is rare.

8. The interposition constraint: Interpositions between groups are more common than

expected by the locality constraint, most often between middle positions of groups, and

without transposition of whole groups.

9. The confusion constraint: Phonologically similarity causes confusion in retrieval of

items, but not in cuing of subsequent items (though the additional errors caused by confusions

may have a small effect on retrieval of subsequent items).
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Comparison of Models

Without going into the full details of the three models considered above, it is worth

noting how many of the empirical constraints are met by each model.

The Power Set Model meets the primacy and locality constraints. However, it has no

specified mechanism to produce omissions or repetitions. It also fails to produce sufficient

recency (Murdock, 1995), probably because it does not have enough fill-in (above), and it

cannot meet the confusion constraint (Henson et al., 1996). Most importantly, being a chaining

model, it offers no account of the positional errors required by the protrusion and interposition

constraints. These failures remain true of other variations of serial order in TODAM, such as

the nesting or chunking model (Murdock, 1983, 1993, 1995).

The Articulatory Loop Model meets the primacy, locality, omission and recency

constraints, though its recency is often insufficient (Burgess & Hitch, 1992). However, it does

not meet the fill-in, repetition or confusion constraints (Henson et al., 1996). Being a

positional model, it has the potential to meet the protrusion and interposition constraints, as

demonstrated by more recent developments of the model (Burgess & Hitch, 1996a). Further

revisions of the model also address the fill-in and confusion constraints (Burgess & Hitch,

1996b), though not necessarily at a quantitative level (Chapter 5).

 The Primacy Model meets the primacy, recency and locality constraints (Page &

Norris, 1996b), though its fill-in property is too strong (above). It also meets the omission,

repetition and confusion constraints (Henson et al., 1996), though not completely satisfactorily

in the case of the omission constraint (Chapter 5). Being an ordinal model however, it cannot

meet the protrusion and interposition constraints.

Chapter Summary

This chapter described three meta-analyses of a number of experiments on serial recall

from short-term memory. These analyses were driven by consideration of three specific

models of serial recall, which make different predictions about the exact distribution of errors.

They also served to confirm the generality of results in Experiments 1-3. The results of the

meta-analyses were summarised in nine empirical constraints and none of the three models is

able to meet all these constraints. In the next chapter, a new model is developed that can.


