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Event-related Functional Magnetic Resonance Imaging (efMRI) refersto atedhnique
for deteding the brain’s resporse to hrief stimuli or “events’. More predsely, efMRI
allows detedion d the Blood Oxygenation Level Dependent (BOLD) haemodynamic
resporse to neural adivity, with aspatial resolution d millim etres and atempora
resolution d hundeds of milli seconds.

Introduction: Advantages of efMRI

The ae severa important advantages of efMRI over previous “blocked” techniques
that have been used in fMRI and Positron Emisson Tomography (PET). These
include:

1. The oppatunity to randamly intermix events of different types, asis gandard in
psychologicd and eledrophysiologicd studies. This means that the resporse to any
one event is nat systematicdly influenced by prior events, nar confounded by
differencesin the subjed’s cognitive state. Such “state dfeds’ are nat trivial: Johnson
et a. (1997, for example, showed that the event-related paentials (ERPs) to “old”
and “new” words in amemory test diff ered according to whether the old and rew
words were blocked or intermixed.

2. Events can be cdegorised past hoc onthe basis of the subjed’ s behaviour. Wagner
et a. (1998, for example, caegorised words during a simple semantic judgement task
acording to whether they were later remembered in a surprise memory test.

3. The occurrence of events can themselves be defined by the subjed. Kleinschmidt et
al (1999, for example, required subjeds to indicae sportaneous transitions in their
perception d an ambiguous visual stimulus (e.g. the vase-faces ill usion).

4. Some events cannat be blocked, such as the occurrenceof an “oddlal” stimulus
that deviates from surroundng context events (Clark et al, in press.



5. Even when stimuli are blocked, treding eat as adistinct event provides a
potentially more acarate model, particularly when the interstimulus interval is more
than afew seands (Price & a, 1999. Furthermore, it is possble for event (item)
effeds, block (state) effeds, and their interadions, to be modell ed separately.

The event-related BOLD response

The predse shape (temporal profile) of the BOLD resporse to lrief stimulation (the
“impulse resporse function™) depends on severa fadors, including bloodflow,
volume and axygenation state (Buxton et al, 1999. A canonicd form of this resporse
is hrown in Figure 1A (solid line). The BOLD signal reades a pesk 4-5s post-
stimulation, returns to baseline dter approximately 10s, andis foll owed by an
undershoat for another 10s or so (Boyntonet a, 1996. In some caes, an initia
undershod isaso olserved (Malonek & Grinvald, 1996.

Whil e there is considerable simil arity of the BOLD resporse acossperipheral aress,
such asvisual (Boyntonet al., 1996, auditory (Josephs et al, 1997 and sensorimotor
(Zarahnet a, 1997 cortex, thereis me degreeof variability acossindividuals
(Aguirre @ a, 1998 and aaossother brain regions (Schader et al, 1997%. This
variability concerns mainly the magnitude, latency and duation d the pedk resporse,
which show littl e cvariation aaossindividuals or regions (Miezin et a, in press.
This variability may relate to dfferencesin vasculature (Lee ¢ al, 19995.

A further question concerns the lineaity of the relationship between stimulation and
BOLD resporse. There is goodevidencefor nea-linea additivity of resporses to
successve, brief stimuli presented at ratesupto 1every 2 seoonds (Dale & Buckner,
1997, which is particularly important for modelli ng (seebelow). Nonetheless
norlineaiti es have been olserved as afunction d the magnitude and duration o
sustained stimulation (Vazquez & Noll, 1998 and at rapid rates of brief stimulation
(Friston et a, 19981). These norlineaities may refled saturation o the BOLD signal,
habituation d neural adivity, or acombination d fadors. Nonetheless in the case of
very rapid rates of brief stimulation, adominant source of nonineaity appeas
spedfic to the BOLD resporse, because bloodflow, as measured with PET, can
simultaneously show linea effeds (Fristonet al., 1998H).

Statistical Modelling: The GLM and SPM

Asauming alinea relationship between stimulation and BOLD resporse, the
continuows sgnal produced by a spedfic timeaurse of stimulation can be predicted
within the General Linea Model (GLM). More spedficdly, within Statistica
Parametric Mapping (SAVI99; http://www.fil .ion.wcl.acuk/spm/spm99.himl; Friston
et a., 1995, the predicted signal for repeded, lrief stimulationis modelled by
convdving atimeaurse of delta-functions for eat event with a set of basis functions
of peristimulus time. The use of multi ple basis functions all ows the model to capture a
range of diff erent resporse shapes (see d@owve). The resultant signals are then down-
sampled every TR (scan repetitiontime) to producethe covariates of the model
(“design matrix”). A least-mean-squares fit of this model to the fMRI timeseries data
produces parameter estimates for ead basis function, linea combinations of which
can betested against the residual error using t or F tests.




Severa choices of basis functions are posshble. The most general isawindowed
Fourier set of sine and cosine functions, with harmonic periods ranging from the
longest concevable BOLD resporse (e.g., 3%) up to the Nyquist sampling limit of
twicethe TR (Josephs et a., 1997 Figure 1C). A more cnstrained set consists of
gamma functions of different lags and widths (Boyntonet a., 1996 Dale & Buckner,
1997 Figure 1B), which are smoothly bounded functions of time. An even more
“informed” set consists of a canonicd resporse function (Figure 1A, itself a mixture
of two gamma functions), and its multivariate Taylor expansion (Fristonet al., 199&)
with resped to time (“temporal derivative”) and width (“dispersion cerivative”).

The alvantage of the Fourier set isits ability to cgpture any shape of resporse; a
potential disadvantage is the many degrees of freedom introduced into the model (and
entail ed in the correspondng F-tests). The alvantage of the canonca resporse set is
that t-tests on linea combinations of comporents can be interpreted in terms of
resporse magnitude, latency or duration (Friston et a., 199&; Hensonet a., 199%); a
disadvantage is that resporses that differ markedly from the canonicd form (such as
latencies beyondthe range of +1sthat can be captured by the temporal derivative for
example) may not be deteded (Henson et al, in pressb). Ancther isaue relates to
“Random Effeds” analyses, in which the aror term is confined to the variability of
parameter estimates aaoss sibjeds. Standard univariate tests can be used, for
example, onthe estimate for the canonicd resporse; multi variate tests however are
required for the multi ple estimates of more general basis sts, and such tests are
usually lesspowerful (Hensonet a, in pressa).

It isworth considering other methods of efMRI analysis. If the time between events
(or Stimulus Onset Asynchrony, SOA) islong relative to the duration d the BOLD
resporse, the overlap between responses can be ignored, and mean signal in ead
peristimulus £an can be submitted to conventional analyses of variance (Cohen et al.,
1997). Unfortunately, such long SOA designs are potentialy less ensitive (see
below). If the SOA is dhort, and the order of diff erent event-typesis counterbalanced
(so that overlap effeds are equated), analyses can be restricted to the mean signal in
those scans aqquired 4-6s after ead event (to all ow for the delayed pe&k of the
resporse; Saykin et a., 1999. Furthermore, if “null events’ (in which nostimulusis
presented) are introduced into a wurterbalanced design, “seledive averaging” can be
used to estimate the signal at ead peristimulus timepoint, despite short SOAs (Dale &
Buckner, 1997. These goproaches can be smulated within SPM by a separate
covariate that contains adeltafunctionfor ead scan at agiven peristimulustime (a
“finiteimpulse resporse” model). Thouwgh these goproadches might make fewer
asumptions abou the form of the BOLD responrse, they are however restricted to
designsin which stimuli are synchronised with the scanner and fully counterbalanced.
Such restrictions can be problematic when the events are ordered, o defined in time,
by the subjed’ s resporses (seelntroduction).

Ancther approach isto measure eab individual’s BOLD resporsein aregion knovn
to be adive during a simple sensorimotor task (Zarahn et a., 1997. This measured
resporse can then be convdved with the event onsets to predict the timeseries for that
individual in asecndtask of interest. Whil e this approad caters for individual
differences, it does not allow for regional differences within an individual (see dowe).



Y et another approach isto explicitly parameterise a response function by magnitude,
onset delay, width, etc, and perform nonlinear, numerical fitting (Kruggel & von
Cramon, 1999). This approach can resolve relative latency differences of aslittle as
100ms (Miezin et al., in press). The problem with this approach is the computational
expense of numerically fitting every voxel in an image.

Timing issues

Providing the scanner sampling does not miss the peak response (Price et al., 1999),
sampling rates close to typical TRs (2-4s) do not necessarily impair response detection
(i.e. model fits). However, it is possible to achieve a sampling rate higher than the TR
by jittering the stimuli with respect to the scanner (Josephs et al., 1997). Such
improved temporal sampling (e.g. 0.5-1s) is useful to identify the precise shape of the
BOLD response, including response latency for example (Miezin et a., in press)

One caveat with the SPM approach is that the same model is assumed for all voxels.
Thus the same signal is predicted for voxelsin the first slice acquired as for voxelsin
the last dlice acquired, even though these acquisitions can be several seconds apart
(with typical TRs). One solution isto interpolate the data in time. However, such
interpolation will alias frequencies above the Nyquist limit, which may be problematic
for TRs of more than afew seconds. Another solution is to use a Fourier set, or the
temporal derivatives of amore constrained set, that provide some robustness to
different acquisition times (Henson et al, 1999a).

Optimising Experimental Designs

The sensitivity of an experimental design isrelated to the bandpassed energy of the
predicted signal (fMRI datain SPM are usually highpass filtered to remove low-
frequency noise, and temporally smoothed to swamp high-frequency autocorrelation,
Friston et al., submitted). Assuming the noise is independent of experimental design, a
more sensitive design will have greater total energy (or "estimated measurable power",
Josephs & Henson, 1999). This quantity is also related to the covariance of (a contrast
of) the design matrix, with the efficiency of estimation being inversely related to the
covariance of parameter estimates (Friston et al, 1999).

In the case of a single event-type, any experimental design can be characterised by the
minima SOA, SOAm», and the probability, p, of an event occurring each SOAmn,
(Friston et a., 1999). In deterministic (or fixed SOA) designs, p=1. In stochastic
designs, O<p<1, producing arange of different SOAs. The value of p in stochastic
designs can be stationary (e.g. p=0.5), or itself modulated over time (i.e., p=f(t)). An
extreme example of a modulated design is a blocked design, where p=1 for the
duration of ablock, and p=0 otherwise.

The most efficient deterministic design for single event-type (versus baseline) obtains
when SOAn is close to the dominant period of the BOLD response (approximately
16s). For shorter SOAn, Stochastic designs are far more efficient (Dale, 1999). In
fact, the most efficient design of al is ablocked design with minima SOA» and a
modul ation frequency of approximately 16s (though blocked designs of course have
all the limitations outlined in the Introduction). The basic reason for these resultsis



that the overlap of BOLD resporses to events close in time increases the total signal
energy, and provided this energy can be moved from low to midd e frequencies (by
modu ating event probability), it can be distinguished from badkground nase.

With multi ple event-types, any experimenta design can be dharaderised by SOAmin
and a probabili stic stimulus transition matrix (Josephs & Henson, 1999. The
efficiency of the design then depends on the spedfic hypaothesis (contrast). With
randamised designsinvalving two event-types (Table 1A), the dficiency of the
differential effed is maximal for minimal SOA, (Figure 2). However, efficiency to
the ommon effed (versus baseline) isthen minimal (equivalent to a deterministic
design). When stimulus order is constrained (e.g., transitions between two perceptual
states), an alternating design may result (Table 1B), for which the optimal SOAn, for
adifferential effed is approximately 8s. When SOA, is constrained (e.g., the task
requires at least 8s between events), then a permuted stimulus ordering (Table 1C) can
be optimal for adifferential effed. Thisdesign is pseudarandamised (randamised to
first-order), which may be sufficient as far as the subjed is concerned. When the
design nealsto be sensitive to bah the differential and common effeds, “null events’
can beintroduced (Table 1D), when nostimulusis presented (equivalent to a spedfic
stochastic distribution d SOAS). The most efficient estimation d both dfferential and
common effedsin this case iswith minimal SOAw, (Figure 2).

Table 1: Posgble transition matrices for two event-types A and B.

Design | A | B | Example Sequence
A. Randamised A 0.5 0.5 ABBBAABABAAAAB....
(first-order) B 0.5 0.5
B. Alternating A 0 1 ABABABABABABAB....
(first-order) B 1 0
C. Permuted AA 0 1 ABBABAABBABABA....
(second-order) AB 0.5 0.5
BA 0.5 0.5
BB 1 0
D. With “Null events’ A 0.33 | 0.33 ABB--B-A---AABA--B....
B 0.33 | 0.33

Though minimal SOAs are generally advisable therefore, the @owve predictions are
based onalinea model. Whil e reli able resporses have been deteded with SOAM, as
short as 0.5s (Burock et al, 1998, the nonlinea saturation described above will reduce
the dficiency of designs with very short SOAs. Indeead the optimal, theoreticd SOA in
the presence of saturationis approximately 1s (Fristonet a., 1999.



Recent Examples

Examples from our laboratory that ill ustrate the advantages of efMRI listed in the
Introduction include:

1. Theintermixing d stimuli. In apriming study in which first and second
presentations of stimuli were randamly intermixed, Henson et a (2000 identified a
right fusiform region that showed a deaeased resporse to repetition d familiar
stimuli, but an increased resporse to repetition o unfamiliar stimuli. By modelling an
exporential moduation d the resporse by the parametric lag between first and second
presentations of ead stimulus, such repetiti on eff eds were shown to be transient.

2. The ategorisation d events by the subjed’s resporse. Henson et al (1999Hh
presented subjeds with intermixed dd and rew words in an episodic reagnition
memory test. For ead word, subjeds indicaed whether they i) consciously

recll eded the prior occurrence of aword (R judgements), ii) experienced a feding of
familiarity in the @senceof remlledion (K judgements), or iii) did na remember
prior occurrence of theword (N judgements; Tulving, 1985. Though words were
objedively old for bath corred R and corred K judgements, several regions showed
differential resporses as afunction d the subjedive experience acompanying those
words: Left prefrontal regions were more adive for R than K judgements, whereas
right prefrontal regions were more adive for K than R judgements.

3. The definition d events by the subjed’s resporse. Portas et a (in press asked
subjedsto pressakey when a 3D percept sportaneously emerged from a 2D
stereogram. This key pressalso produced atone. When compared with a cntrol event
(in which the same tone prompted a key press, which was matched for visual,
auditory and simple motor comporents, several regions, including bil ateral posterior
thalamus and acdpito-temporal regions, showed greaer resporses asociated with the
perceptual “pop-out” (in the dsenceof any visual change).

4. Oddbdl paradigms. Strange @ a (submitted) presented subjedswith lists of 16
neutral, semanticdly related words, plus threerandamly intermixed oddkall words.
One oddkell was presented in adifferent font (the perceptual oddtall), ore was
semanticdly unrelated (the semantic oddkell) and ore was emotionally aversive (the
emotional oddkall). All oddhall types adivated a ammon retwork of right prefrontal
and Ll ateral fusiform regions. However, amygdala adivation was identified for the
emotional oddtall only, and left inferior frontal adivation was identified for the
semantic oddtall only.

5. Item-State interactions. Chawla d a (1999 asked subjedsto view randam dats,
which transiently changed in colour or in radial motion, uncr two blocked
instructions to attend to either colour or motion. The resporse in V4 to the same
objedive mlour change was greaer during colour-attend than motion-attend docks.
Conversely, theresporsein V5 to the same objedive motion change was greder
during motion-attend than colour-attend docks. This demonstrates how state dfeds,
such as differential attention, can interad with the event-related resporse.
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Figure 1. Three types of basis functions: A) Canonical response function and its
temporal and dispersion derivatives; B) lagged Gamma functions (serially
orthogonalised); C) sine and cosine functions (Fourier set). PST=Peristimulus
Time.
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Figure 2. Efficiency (Estimated Measurable Power, EMP) as afunction of Stimulus
Onset Asynchrony (SOA) and stimulus ordering for transient events of two
types. CE=Common Effect; DE=Differential Effect. See text and Table 1 for
details.



