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ABSTRACT 
 

Model comparison of design matrices for modelling HRFs on slices and regions – 

not just voxels eg. FIR versus Canonical Set. Model comparison of AR error models – 

slice specific, voxel specific, smoothly varying. Results are shown on simulated data and 

on data from an event-related fMRI experiment. 
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1. INTRODUCTION 
 
 

1.2 Notation 
 

A multivariate normal density over x is written as ( ; , )N x m Σ  where 

m denotes the mean and Σ  the covariance. A Gamma distribution over x is written 

( ); ,Ga x a b  where a and b define the density as shown in the appendix of (Penny et 

al., 2003h). We will denote matrices and vectors with bold upper case and bold lower 

case letters respectively, and all vectors are column vectors. Subscripts are used to 

name different vectors; thus xn and xk  refer to different vectors. The operator 

( )diag x turns a vector into a diagonal matrix, ( )kx  denotes the kth entry in a 

vector, ( , )j kX the scalar entry in the jth row and kth column, ⊗  is the Kronecker 

product and x  is used to denote the mean of x . 

2.THEORY 
 
We write an fMRI data set consisting of T time points at N voxels as the T-by-N 

matrix Y. In mass-univariate models this data is explained in terms of a T-by-K design 

matrix X, containing the values of K regressors at T time points, and a K-by-N matrix 

of regression coefficients W, containing K regression coefficients at each of N voxels. 

The model is written  

 = +Y XW E  (1) 

where E is a T-by-N error matrix. The vector nw , the nth column of W, therefore 

contains the K regression coefficients at the nth voxel and the vector T
kw , the kth row 

of W, contains an image (after appropriate reshaping) of the kth regression 
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coefficients. We also make use of the KN-by-1 vector wv which contains all the 

elements of W ordered by voxel. Similarly we define the NK-by-1 vector wr which 

also contains all elements of W but ordered by regressor. These can both be defined 

using the vec operator which stacks columns of a matrix into one long vector 

 

( )

( )
v

T
r

v r

vec

vec

=

=
=

w W
w W
w Hw  

(2)

 

where H is a KN-by-KN permutation matrix. It is useful to define these high-

dimensional vectors as the model can then be instantiated using sparse matrix 

operations. 

  

In this paper the errors are modeled as an autoregressive process. The overall 

GLM-AR model can be written  

 
n n n

n n n n

= +

= +

y Xw e

e E a z
 (3) 

  

   
 

where, at the nth voxel, na is a P-by-1 vector of regression coefficients, nz  is a vector 

of zero mean Gaussian random variables each having precision nλ and nE is a T-by-P 

matrix of lagged prediction errors for the nth voxel as defined in section 2 of (Penny 

et al., 2003g).  

 

2.1 Regression coefficient prior  
 
The prior over regression coefficients is given by 
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where we refer to S as an N-by-N spatial kernel matrix (to be defined later) and kα is a 

spatial precision variable for the kth regressor. This equation shows that the prior 

factorises over regressors. This means that different regression coefficients can have 

different smoothnesses. For the case of S being the Laplacian operator (see below) a 

sample from the prior is shown in Figure 3. The precision variables kα  are collected 

together in the K-by-1 vector α . The prior over α  is given by
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α α
=

=

=
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(5) 

2.2 Autoregressive coefficient prior 
 

In contrast to previous work (Penny et al., 2003f), which has used uninformative 

priors, in this paper we use a spatial prior given by 

 

 1

1 1
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where A is a matrix of AR coefficients, ap is an N-by-1 vector of AR coefficients (the 

nth entry being the pth regression coefficient at the nth voxel) and pβ  is the prior 

spatial precision of the pth regression coefficient. The prior over β  is given by 

 1

1 2
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2.3 Noise precision prior 
 

The observation noise precisions are defined as 

( ) ( )

( ) ( )
1

1 2; ,

N

n
n

n n

p p

p Ga u u

λ

λ λ
=

=

=

∏λ
  (8) 

The values u1 and u2 are set so as to make p(λn) an uninformative prior as described in 

(Penny et al., 2003e).  

 

2.3 Approximate Posteriors 
 

Regression coefficients 
 

The posterior over regression coefficients is assumed to factorize over voxels. 

That is 

( ) ( )
1

N

n
n

q q
=

=∏W w     (9) 

This is the key assumption of this paper and is central to the derivation of update rules 

for the posteriors. These derivations follow the general principles of the VB 

framework outlined in our previous work and will not be elaborated upon here.  

For our model this results in a posterior over regression coefficients at voxel n 

given by  

( )ˆˆ( ) ; ,n n n nq N=w w w Σ    (10) 

where 
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( )

( ) 1

T
nn n n n

n n n nn

λ

λ
−

= +

= +

w Σ b r

Σ A B
 (11) 

where the matrix nA  is related to the data precision at the nth voxel and the vector 

nb is related to the data at the nth voxel projected onto the design matrix. These 

quantities are identical to those defined in equations 63 and 64 in (Penny et al., 

2003d).  The matrix B is the NK-by-NK spatial precision matrix (with entries ordered 

by voxel – hence the permutation matrix H in the following equation) and is given by 

 [ ]( )T Tdiag= ⊗B H α S S H  (12) 

The quantity  rn   is given by 

 
1,

ˆ
N

n ni i
i i n= ≠

= − ∑r B w  (13) 

The subscripts in Bni denote those entries in B pertaining to voxels n and i. An 

intuitive description of this posterior is given in section 2.4.  

AR coefficients 
 

For the autoregressive coefficients we have 

 

( )
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1

1,
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m V d j
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 (14) 

 
where nC  and nd  are quantities related to AR prediction error and are defined in 

equation 50 in the appendix of (Penny et al., 2003c). The subscripts in Jni denote 

those entries in J pertaining to voxels n and i. 
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Spatial precisions 

  
The posteriors over the spatial precision variables for the regression coefficients are 

given by 

( ) ( )
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where kΣ  is a N-by-N diagonal matrix with nth entry ( , )n k kΣ .  

  

The posteriors over the spatial precision variables for the AR coefficients are given by 
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Observation Noise  
 

The posteriors over the noise precisions are identical to those defined in 

previous work (Penny et al., 2003b) 

1

2
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    (17) 
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where nG  is related to the GLM prediction error and is defined for a single voxel in 

equation 77 in the appendix of  (Penny et al., 2003a).  

2.4 Model Evidence 
 

The objective function for the algorithm is the lower bound on the logarithm 

of the model evidence which for our model is given by  

 ( )( ) ( ) ( ) ( ) ( )avF L KL KL KL KL KL= − + + + +W A α λ β  (18) 

where avL  is the average log-likelihood and the KL terms are the Kullback-Liebler 

divergences between the priors and approximate posteriors. These are computed using 

standard results for KL-divergences for Gamma and Normal distributions given in 

(Roberts and Penny, 2002). The average log-likelihood is given by 

 ( )( ) log( )
2 2

n
av n n n

n

TL c b Gλϕ= + −∑  (19) 

where ()ϕ  is the digamma function (Press et al., 1992). 
 
 

3. RESULTS 
 
 

4. DISCUSSION 
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Figure 1. The figure shows the probabilistic dependencies underlying our generative 

model for fMRI data. The quantities in square brackets are constants and those in 

circles are random variables. The spatial regularization coefficients α constrain the 

regression coefficients W, and the spatial regularization coefficients β constrain the 

AR coefficients A. The parameters λcontrol the observation noise precision at each 

voxel. The graph shows that the joint probability of parameters and data can be 

written 

1 2 1 2 1 2( , , , , , ) ( | , , ) ( | ) ( | ) ( | , ) ( | , ) ( | , )p p p p p u u p q q p r r=Y W A λ α β Y W A λ W α A β λ α β  

where the first term is the likelihood and the other terms are priors.  

 
Figure 2. Summary of VB-update equations 
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