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Introduction 
 
This document describes how Bayesian analysis of single subject fMRI  is implemented 

in SPM.  



Cross covariance formulae 
 
The formulae in the appendix of (Penny et al., 2003) for computing the quantities  

{ , , , , }gA b C d (equations 63, 64, 50 and 77 respectively) though correct (apart from a few 

missing transpose operators here and there ! ) are computationally inefficient. This is 

because of the sums over time. For the lengths of time series typical in fMRI (eg. 300-

400 scans) this creates a bottleneck when implementing the algorithm in MATLAB. The 

equations, which contain terms only up to second order (ie. quadratic), can however be 

re-arranged to isolate the sums over time so that they can be pre-computed. This 

effectively amounts to computing the following cross-covariances. This first set of terms 

depends on the design matrix only and therefore can be pre-computed for the whole 

volume  
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where the Cov() operator only involves terms from p+1 to T where p is the order of the 

AR model and T is the number of time points, X is the design matrix, and X  is the 

embedded design matrix. Underneath each equation is the dimension into which the 

result is re-shaped into (where necessary). The following terms depend on the design 

matrix and the data and therefore can be pre-computed for each slice 
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where y is the fMRI time series and d  is the embedded time series. The new update 

formulae can then be related to these quantities. For T=400, the new formulae are about 

200 times quicker. 

 



Approximation Posterior Covariance Matrices 
 

In the SPM implementation of this algorithm we do not store full covariance 

matrices for each voxel  as this would require too much disk space. Instead we we store 

the posterior standard deviations of parameter estimates  

 ˆ( )n nd diag= Σ  (1) 

(effectively images of error bars), AR coefficents, na , and noise standard deviation, 

1
nλ

. These are stored in the files SDbeta_000k.img,  AR_000p.img and 

SDerror.img. The  approximate posterior covariances are then formed using a Taylor 

series expansion as follows. For each slice, s, we first compute the averages 
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where nV is the posterior covariance of AR coefficients, and nnB is the spatial 

precision, and from these compute a slice-specific error covariance matrix, ˆ
sΣ . This is 

then normalised to produce a slice-specific error correlation matrix, sR . The error 

correlation matrix at voxel n is then approximated using 
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where Jacobian matrices are stored for each slice. In SPM the slice-specific 

information is held in SPM.PPM.slice(z).mean. Finally the approximate 

covariance at voxel n is formed using 



 ( ).*T
n n n nC d d R=  (4) 

This approximate covariance is used when inferences are made about contrasts of  

parameter estimates. Figure X plots the resulting approximate variance versus the  true 

variance for two contrasts from the face fMRI data sets. 
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Figure X.  Approximating the Posterior Covariance. Plots of approximate 

variance versus true variance for the face fMRI data and contrasts (a) main effect of faces 

and (b) main effect of fame. Crosses mark values at each of the voxels in slice z=10 and 

the straight line shows y=x. The second contrast, being a differential contrast, shows 

smaller error. 
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