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Abstract

1 Introduction

Given d MEG sensors and data from N time points, the MEG source recon-
struction problem requires the inversion of the linear model

V = XW + Z

(d×N) = [d× p][p×N ] + [d×N ]

where V is data matrix in sensor space, X is the lead field describing how
neuronal currents from p cortical sources produce d sensor measurements, W is
source activity at p source locations and N time points, and Z is a matrix of
erros at d sensors and T time points.

1.1 Spatial Projector

To reduce the dimensionality of the problem one can project the data onto a
spatial projector matrix U of dimension [d̃ × d]. We can then premultiply the
above equation by U to give

Ỹ = LW + Z̃

(d̃×N) = [d̃× p][p×N ] + [d̃×N ]

where

Ỹ = UV

L = UX

Z̃ = UZ

For example, we may originally have d = 274 sensors but this can be reduced
to d̃ = 87 spatial modes. The reduced lead field is given by L.
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1.2 Temporal Projector

To further reduce the dimensionality of the problem one can project the data
onto a temporal projector matrix T of dimension [Ñ ×N ]. We can postmultiply
the previous equation by T to give

Y = LJ + E

(d̃× Ñ) = [d̃× p][p×N ] + [d̃× Ñ ]

where

J = WT

E = Z̃T

For example, we may originally have N = 161 time points but this can be
reduced to Ñ = 2 temporal modes.

1.3 Bayesian Inversion

We first define the source and sensor space covariance matrices

Cj = Cov(J)

Ce = Cov(E)

where Ce is d̃× d̃ and Cj is p× p.
The posterior distribution over sources is then given by

p(J |Y ) = N(J ;m,S)

S−1 = LTC−1
e L+ C−1

j

m = SLTC−1
e y

The dimension of S is p × p. This matrix is too large to invert so we can
re-arrange the equations using the matrix inversion lemma.

1.4 Matrix Inversion Lemma

Otherwise known as the Woodbury identity this is

(A+BCD)
−1

= A−1 −A−1B
(
C−1 +DA−1B

)−1
DA−1 (1)

Applying this to the posterior covariance gives

S = Cj − CjL
T (Ce + LCjL

T )−1LCj

where the matrix inversion is now over a d̃× d̃ matrix. If we define

V = (Ce + LCjL
T )−1 (2)

then we can write
S = Cj − CjL

TV LCj (3)

or
S = Cj(Ip − LTV LCj) (4)
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1.5 Data projector

To compute the posterior mean (which is also the MAP estimator) we have

m = My (5)

where
M = SLTC−1

e (6)

By substituting in the previous expression for S we get

M = Cj(Ip − LTV LCj)L
TC−1

e (7)

1.6 Posterior variance

The posterior variance of the kth source is given by the kth diagonal entry in
the posterior covariance matrix

σ2
k = Skk (8)

where
S = Cj − CjL

TV LCj (9)

If we let
Φ = LCj (10)

and denote the kth column of Φ as φk then we have

σ2
k = Cj(k, k)− φTk V φk (11)

This variance can be computed in a loop, k = 1..p, or perhaps more efficiently
using a sparse matrix implementation for the second term.
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