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Abstract

1 Introduction

Given d MEG sensors and data from N time points, the MEG source recon-
struction problem requires the inversion of the linear model

V = XW+Z
(dx N) = [dxp][px N|]+[dx N]

where V is data matrix in sensor space, X is the lead field describing how
neuronal currents from p cortical sources produce d sensor measurements, W is
source activity at p source locations and N time points, and Z is a matrix of
erros at d sensors and 7' time points.

1.1 Spatial Projector

To reduce the dimensionality of the problem one can project the data onto a
spatial projector matrix U of dimension [d x d]. We can then premultiply the
above equation by U to give

Y = LW+Z
(dx N) = [dxp][pxN]+[dx N]
where
Y = UV
L = UX
Z = UZ

For example, we may originally have d = 274 sensors but this can be reduced
to d = 87 spatial modes. The reduced lead field is given by L.



1.2 Temporal Projector

To further reduce the dimensionality of the problem one can project the data
onto a temporal projector matrix T’ of dimension [N x N]. We can postmultiply
the previous equation by T to give

Y = LJ+E
(dx N) = [dxpl[pxN]+[dx N]
where
J = WT
E = ZT

For example, we may originally have N = 161 time points but this can be
reduced to N = 2 temporal modes.

1.3 Bayesian Inversion

We first define the source and sensor space covariance matrices
C; = Cov(J)
C. = Cov(E)

where C., is d x d and Cjispxp.
The posterior distribution over sources is then given by

p(J[Y) = N(J;m,S)
st = r'c'L+c;t
m = SLTC 'y

The dimension of S is p X p. This matrix is too large to invert so we can
re-arrange the equations using the matrix inversion lemma.

1.4 Matrix Inversion Lemma
Otherwise known as the Woodbury identity this is
(A+BCD) ' =A™~ A'B(C™'+ DA'B) ' DA™ (1)
Applying this to the posterior covariance gives
S =Cj—C;L"(Cc + LC; L)' LC;

where the matrix inversion is now over a d x d matrix. If we define

V= (C.+LC;L")! (2)
then we can write

S=C;-C;L"VLC, (3)
or

S=C;(I, - L"VLC)) (4)



1.5 Data projector
To compute the posterior mean (which is also the MAP estimator) we have
m = My ()

where
M=SL"C! (6)

By substituting in the previous expression for S we get

M =C;(I, - L"VLC)) LT C* (7)

1.6 Posterior variance

The posterior variance of the kth source is given by the kth diagonal entry in
the posterior covariance matrix

o2 = Sk (8)
where
S=0C;—C;L"VLC, (9)
If we let
® = LC; (10)

and denote the kth column of ® as ¢, then we have
2 _ T
o, = Cj(k, k) — ¢, Vor (11)

This variance can be computed in a loop, k = 1..p, or perhaps more efficiently
using a sparse matrix implementation for the second term.



