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Tennis

From Wolpert and Ghahramani (2006)

p(w) = N(w ;µw ,Cw )

p(y |w) = N(y ;Xw ,Cy )
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Tennis
From Wolpert and Ghahramani (2006)

p(w |y) = N(w ;mw ,Sw )

S−1
w = X T C−1

y X + C−1
w

mw = Sw (X T C−1
y y + C−1

w µw )
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Tennis

From Wolpert and Ghahramani (2006)

p(w) = N(w ;µw ,Cw )

p(y |w) = N(y ;Xw ,Cy )

How can we estimate Cw and Cy from data ?
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Covariances

Case I: Isotropic covariances

Cy = λ−1
y IN

Cw = λ−1
w Ip

and N data points and p parameters.

Case II: Linear covariances

Cy =
∑

i

λiQi

Cw =
∑

i ′
λi ′Qi ′

where Q are known covariance basis functions.
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Empirical Bayes
Hyperparameters, λ, can be estimated so as to maximise
their evidence, p(y |λ). This forms the basis of Empirical
Bayes.

This is given by

p(y |λ) =

∫
p(y ,w |λ)dw

=

∫
p(y |w , λ)p(w |λ)dw

We then have
L(λ) = log p(y |λ)

For linear models this can be derived as in Bishop (2006).
See also next lecture.

In this formulation λ are not treated as random variables.
There is no prior on them.
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Gradient Ascent
Updating hyperparameters via gradient ascent of
evidence.
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Linear Models
The evidence for λ is composed of sum squared
precision weighted prediction errors and Occam factors

L(λ) = −1
2

eT
y C−1

y ey −
1
2

log |Cy | −
N
2

log 2π

− 1
2

eT
wC−1

w ew −
1
2

log
|Cw |
|Sw |

where λ is a vector of hyperparameters that parameterise
the covariances Cw and Cy . The prediction errors are the
difference between what is expected and what is
observed

ey = y − Xmw

ew = mw − µw

Same as expression for model evidence in previous
lecture.
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Empirical Bayes

We iterate between finding the parameters w and
hyperparameters λ. For linear Gaussian models this
corresponds to computing the posterior over w

S−1
w = X T C−1

y X + C−1
w

mw = Sw (X T C−1
y y + C−1

w µw )

and then setting λ to maximise the model evidence.

λ̂ = arg max
λ

L(λ)

These two steps are then iterated and can be thought of
as E and M steps in an EM optimisation algorithm.
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Isotropic Covariances

For a Bayesian GLM

y = Xw + e1

w = µw + e2

with isotropic covariances

Cy = λ−1
y IN

Cw = λ−1
w Ip

and N data points and p parameters. The equations for
updating λ can be derived as shown in Chapter 10 of
Bishop (2005).
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Well-determined parameters

Define

γ =

p∑
j=1

αj

αj + λ̂w

where αj are eigenvalues of the data precision term
X T C−1

y X . If αj >> λ̂w for all j then γ = p. Parameters
have all been determined by the data. So γ is equivalent
to number of well-determined parameters.

Effectively,γ counts the number of parameters for which
the data precision dominates the prior precision.
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Well-determined parameters

Here p = 2 parameters. But γ ≈ 1.

Only one of the parameters, w1, is determined by the
data.
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M-Step
Then

1
λ̂w

=
eT

w ew

γ

1
λ̂y

=
eT

y ey

N − γ

where the prediction errors are

ey = y − Xmw

ew = mw − µw

This effectively partitions the degrees of freedom in the
data into those for estimating the prior and the likelihood.

This is like cross-validation but without explicit separation
of data.

Setting λ to maximise the marginal likelihood produces
unbiased estimates of variances whereas ML estimation
produces biased estimates.
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EM Algorithm

E-Step:

S−1
w = λ̂yX T X + λ̂w Ip

mw = Sw (λ̂yX T y + λ̂wµw )

M-Step:

ey = y − Xmw

ew = mw − µw

1
λ̂w

=
eT

wew

γ

1
λ̂y

=
eT

y ey

N − γ
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Shrinkage Priors

This numerical example caricatures the use of PEB for
estimating effect sizes from brain imaging data (Friston
and Penny, 2003).

The approach uses a global ‘shrinkage prior’ which
embodies a prior belief that across the brain

I the average effect is zero
I the variability of responses follows a Gaussian

distribution

That is
p(µi) = N(µi ;0, α−1)



Empirical Bayes

Will Penny

Linear Models

Empirical Bayes

Isotropic
Covariances
EM Algorithm

Shrinkage priors
EM algorithm

Linear
Covariances
Gradient Ascent

MEG Source
Reconstruction

Clustering

Sparse Coding
MAP Learning

Self-Inhibition

Receptive Fields

References

True effect sizes µi for i = 1..20 voxels generated from
the prior p(µi |α) = N(µi ;0, α−1) with α = 1.
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The black dots denote N = 10 data points at each voxel
generated from the likelihood p(yi |µi) = N(yi ;µi , β

−1
i ) with

βi drawn from a uniform distribution between 0.1 and 1.

Thus some voxels, eg. voxels 2, 15 and 18, have noisier
data than others.
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Effect sizes were then estimated from this data using
Maximum-Likelihood (ML) and PEB. ML estimates (blue)
are given by µML

i = 1
N
∑

n yin.
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True effect sizes (red) and ML estimates (blue)
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EM/PEB algorithm

Initialise γi = 1, α = 0.
I E-step:

µi =
γi

N

∑
n

yin

I M-step:

1
βi

=
1

N − γi

∑
n

(yin − µi)
2

γi =
Nβi

Nβi + α

1
α

=

∑
i µ

2
i∑

i γi

The E and M steps are then iterated.
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True effect sizes, µi (red circles) and estimated effect
sizes, µ̂i , (blue crosses) from PEB iteration number 1.
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True effect sizes, µi (red circles) and estimated effect
sizes, µ̂i , (blue crosses) from PEB iteration number 3.
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True effect sizes, µi (red circles) and estimated effect
sizes, µ̂i , (blue crosses) from PEB iteration number 5.
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True effect sizes, µi (red circles) and estimated effect
sizes, µ̂i , (blue crosses) from PEB iteration number 7.
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PEB versus ML

The corresponding estimates of α were 0, 0.82, 0.91 and
0.95, showing convergence to the true prior precision of
1.

The mean squared difference between the true and
estimated effects across voxels is 0.71 for ML and = 0.34
for PEB. That is, PEB estimates are twice as accurate on
average.

PEB is only better ‘on average’. It does better at most
voxels at the expense of being worse at a minority, for
example, voxel 2.

PEB can do better than ML because it uses more
information - that effects have a mean of zero across the
brain and follow a Gaussian variability profile.
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Weighting of data and prior
The quantity

γi =
Nβi

Nβi + α

is the ratio of the data precision to the posterior precision.

A value of 1 indicates that the estimated effect is
determined solely by the data, as in ML. A value of 0
indicates the estimate is determined solely by the prior.

For most voxels in our data set we have γi ≈ 0.9, but for
the noisy voxels 2, 15 and 18, we have γi ≈ 0.5. PEB thus
relies more on prior information where data is unreliable.

µi =
γi

N

∑
n

yin

Empirical Bayes also known as ’Stein Estimators’ (C.
Stein, 1956).



Empirical Bayes

Will Penny

Linear Models

Empirical Bayes

Isotropic
Covariances
EM Algorithm

Shrinkage priors
EM algorithm

Linear
Covariances
Gradient Ascent

MEG Source
Reconstruction

Clustering

Sparse Coding
MAP Learning

Self-Inhibition

Receptive Fields

References

Stein Estimators
EB more accurate than ML - the biggest result in postwar
statistics (Efron/Muralidharan, Large Scale Simultaneous
Inference, 2009).

Regression to the mean (Casella, American Statistician,
1985).
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Linear Covariances

For a Bayesian GLM

y = Xw + e1

w = µw + e2

with covariances

Cy =
∑

i

λiQi

Cw =
∑

i ′
λi ′Qi ′

where Q are known covariance basis functions. The
M-step is

λ̂ = arg max
λ

L(λ)
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Gradient Ascent

This maximisation is effected by first computing the
gradient and curvature of L(λ) at the current parameter
estimate, λold

jλ(i) =
dL(λ)
dλ(i)

Hλ(i , j) =
d2L(λ)

dλ(i)dλ(j)

where i and j index the i th and j th parameters, jλ is the
gradient vector and Hλ is the curvature matrix (Friston et
al. 2002). The new estimate is then given by

λnew = λold − H−1
λ jλ

This is known as a Newton method in the optimisation
literature (Press, 1988).
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Gradient Ascent
Updating hyperparameters via gradient ascent of
evidence.
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MEG Source Reconstruction
Implemented in SPM as the COH option. This is similar
to the LORETA method. Here we set λ2 = 0.01 (as prev
lecture).
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MEG Source Reconstruction

Here we set λ2 = 0.1 (as prev lecture).
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MEG Source Reconstruction

Here we set λ2 = 0.1 (as prev lecture).
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MEG Source Reconstruction

Here we set λ2 = 1 (as prev lecture).
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MEG Source Reconstruction

Hyperparameters set using Empirical Bayes.
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Clustering
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Clustering
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Clustering
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Clustering
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Clustering
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Clustering
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Clustering
Gaussian Mixture Modelling in Netlab software.

Demo demgmm1.m
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Sparse Coding
Learn a statistical model of natural image (patches)

y = Wx + e

Learn both W and x !
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Visual Coding

We can also write

y =

p∑
i=1

wixi + e

If there are d image patch elements then for p > d we
have an overcomplete basis. Usually p < d .

We wish to learn both wi and xi .



Empirical Bayes

Will Penny

Linear Models

Empirical Bayes

Isotropic
Covariances
EM Algorithm

Shrinkage priors
EM algorithm

Linear
Covariances
Gradient Ascent

MEG Source
Reconstruction

Clustering

Sparse Coding
MAP Learning

Self-Inhibition

Receptive Fields

References

Sparse Coding
Olshausen and Field (1996) propose a sparse coding model of
natural images. The likelihood is

p(y |W , x) = N(y ;Wx , λ−1
y I)

But importantly, they also define a prior over coefficients

p(x) =
∏

i

p(xi)

where p(xi) is a sparse prior. This can be any distribution
which is more peaked around zero than a Gaussian.

This means we expect most coefficients to be small, with a few
being particularly large.
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MAP Learning
Again, we need to learn both W and x . The posterior
density is given by Bayes rule

p(W , x |y) = p(y |W , x)p(x)
p(y)

The Maximum A Posterior (MAP) estimate is given by

WMAP = arg max
w

p(W , x |y)

Because the maxima of log x is the same as the
maximum of x we can also write

WMAP = arg max
W

L(W , x)

where
L = log[p(y |W , x)p(x)]

is the joint log likelihood.
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Learning

For the i th basis function

τw
dwi

dt
=

dL
dwi

This gives

τw
dwi

dt
= λy (y −Wx)xi

which is simply the Delta rule.



Empirical Bayes

Will Penny

Linear Models

Empirical Bayes

Isotropic
Covariances
EM Algorithm

Shrinkage priors
EM algorithm

Linear
Covariances
Gradient Ascent

MEG Source
Reconstruction

Clustering

Sparse Coding
MAP Learning

Self-Inhibition

Receptive Fields

References

Learning

For the ‘activations’, x , we have

τ
dx
dt

=
dL
dx

This gives

τ
dx
dt

= λyW T e −
∑

i

g(xi)

where
g(xi) =

d log p(xi)

dxi

is the derivative of the log of the prior. Olshausen and
Field have used a Cauchy density

p(x) =
1

π(1 + x2)
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Learning

This gives

τ
dxi

dt
= λywT

i e − g(xi)

The figures shows g(xi) = xi for Gaussian priors (blue)
and g(xi) = 2xi/(1 + x2

i ) for Cauchy priors (red)
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Self-Inhibition

In terms of the neural implementation we must add
self-inhibition to the activation units, which is linear for
Gaussian priors and nonlinear for Cauchy priors

τ
dxi

dt
= λywT

i e − g(xi)

For Gaussian priors the amount of inhibition is
proportional to the activation, whereas for Cauchy priors
large activations are not inhibited.
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Original Images

Ten images of natural scenes were low-pass filtered.
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Principal Component Analysis

Receptive fields from PCA (Gaussian priors).
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Receptive Fields from Sparse Coding

This produced receptive fields that are spatially localised,
oriented and range over different spatial scales, much like
the simple cells in V1.
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