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Maximum Likelihood

Set parameter(s) w to maximise the likelihood, p(y |w).
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Maximum Likelihood

Set parameter(s) w to maximise the log-likelihood

L = log p(y |w)

The gradient dL/dw = 0 at the maximum.
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General Linear Model

The General Linear Model (GLM) is given by

y = Xw + e

where y are data, X is a design matrix, and e are zero
mean Gaussian errors with covariance V . The above
equation implicitly defines the likelihood function

p(y |w) = N(y ; Xw ,V )

where the Normal density is given by

N(x ;µ,V ) =
1

(2π)N/2|V |1/2 exp
(
−1

2
(x − µ)T V−1(x − µ)

)
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Maximum Likelihood

If we know V then we can estimate w by maximising the
likelihood or equivalently the log-likelihood

L = −N
2

log 2π − 1
2

log |V | − 1
2

(y − Xw)T V−1(y − Xw)

We can compute the gradient with help from the Matrix
Reference Manual or Wikipedia’s Matrix Calculus page:

dxT A
dx

= A,
dAx
dx

= AT

and
dxT Ax

dx
= Ax + AT x = 2Ax

if A is symmetric.
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Maximum Likelihood
If we know V then we can estimate w by maximising the
likelihood or equivalently the log-likelihood

L = −N
2

log 2π − 1
2

log |V | − 1
2

(y − Xw)T V−1(y − Xw)

We can compute the gradient with help from the Matrix
Reference Manual or Wikipedia’s Matrix Calculus page:

dL
dw

= X T V−1y − X T V−1Xw

and set it to zero. This leads to the ‘normal equations’
and the solution

ŵML = (X T V−1X )−1X T V−1y

This is often referred to as Weighted Least Squares
(WLS), ŵML = ŵWLS.
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fMRI analysis
For fMRI time series analysis we have a linear model at
each voxel i

yi = Xwi + ei

Vi = Cov(ei) is estimated first (see later) and then the
regression coefficients are computed using Maximum
Likelihood (ML) estimation.

ŵi = (X T V−1
i X )−1X T V−1

i yi

The fitted responses are then ŷi = Xŵi (SPM Manual)
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fMRI analysis
The uncertainty in the ML estimates is given by

S = (X T V−1
i X )−1

Contrast vectors c can then be used to test for specific
effects

µc = cT ŵi

The uncertainty in the effect is then

σ2
c = cT Sc

and a t-score is then given by t = µc/σc
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Least Squares

For isotropic error covariance V = λI, the normal
equations are

dL
dw

= λX T y − λX T Xw

This leads to the Ordinary Least Squares (OLS) solution
ŵML = ŵOLS,

ŵOLS = (X T X )−1X T y
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Bayesian GLM

A Bayesian GLM is defined as

y = Xw + e1

w = µw + e2

where the errors are zero mean Gaussian with
covariances Cov[e1] = Cy and Cov[e2] = Cw .

p(y |w) ∝ exp
(
−1

2(y − Xw)T C−1
y (y − Xw)

)
p(w) ∝ exp

(
−1

2(w − µw )T C−1
w (w − µw )

)
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Bayesian GLM

The posterior distribution is then

p(w |y) ∝ p(y |w)p(w)

Taking logs and keeping only those terms that depend on
w gives

log p(w |y) = −1
2

(y − Xw)T C−1
y (y − Xw)

− 1
2

(w − µw )T C−1
w (w − µw ) + ..

= −1
2

wT (X T C−1
y X + C−1

w )w

+ wT (X T C−1
y y + C−1

w µw ) + ..
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Bayesian GLM
If p(x) = N(x ; m,S) then

p(x) ∝ exp
(
−1

2
(x −m)T S−1(x −m)

)
Taking logs of the Gaussian density p(x) and keeping only
those terms that depend on x gives

log p(x) = −1
2

xT S−1x + xT S−1m + ..

For our posterior we have

log p(w |y) = −1
2

wT (X T C−1
y X + C−1

w )w

+ wT (X T C−1
y y + C−1

w µw ) + ..

Equating terms gives

p(w |y) = N(w ; mw ,Sw )

S−1
w = X T C−1

y X + C−1
w

mw = Sw (X T C−1
y y + C−1

w µw )
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GLM posterior

The posterior density is

p(w |y) = N(w ; mw ,Sw )

S−1
w = X T C−1

y X + C−1
w

mw = Sw (X T C−1
y y + C−1

w µw )

The posterior precision is the sum of the prior precision
and the data precision.

The posterior mean is a relative precision weighted
combination of the data mean and the prior mean.

If µw = 0 we have a shrinkage prior.
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Bayesian GLM with two parameters

The prior has mean µw = [0,0]T (cross) and precision
C−1

w = diag([1,1]).
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Bayesian GLM with two parameters

The likelihood has mean X T y = [3,2]T (circle) and precision
(X T C−1

y X )−1 = diag([10,1]).
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Bayesian GLM with two parameters

The posterior has mean m = [2.73,1]T (cross) and precision
S−1

w = diag([11,2]).
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Bayesian GLM with two parameters

In this example, the measurements are more informative about
w1 than w2. This is reflected in the posterior distribution.
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Shrinkage Prior

If µw = 0 we have a shrinkage prior.
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Tennis
From Wolpert and Ghahramani (2006)

p(w |y) = N(w ; mw ,Sw )

S−1
w = X T C−1

y X + C−1
w

mw = Sw (X T C−1
y y + C−1

w µw )
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fMRI example - contrast

Given a contrast, C, testing for effect s = CT w the
posterior distribution of the effect is

p(s|Y ) = N(s; ms,Cs)

where
ms = CT mw

and
Cs = CT SW C

For example CT = [1− 1] to look for difference between
two conditions.
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fMRI example - Effect Size

Define an effect size threshold, st

Define the following classifications

Positively Activated

pposact = p(s > st |y)

Negatively Activated

pnegact = p(s < −st |y)

Not Activated

pnotact = p(−st ≤ s ≤ st |y)
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fMRI example

Weakly positively activated voxel

pposact = 0.69, pnegact = 0.01, pnotact = 0.3
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fMRI example

Weakly negatively activated voxel

pposact = 0.00, pnegact = 0.84, pnotact = 0.16
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fMRI example

Weakly not activated voxel

pposact = 0.16, pnegact = 0.16, pnotact = 0.68
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fMRI example - Odds Ratios

Define Activated = positive or negative

pact = pposact + pnegact

Activated odds
Ract =

pact

1− pact

Deactivated odds

Rnotact =
pnotact

1− pnotact
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fMRI example - Finger Tapping

log Ract (Red) and log Rnotact (Green)

Finger tapping task by Joerg Magergurth et al. (ISMRM,
2013). Only plot voxels for which log R ≥ 10.
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Augmented Form

The posterior over w

S−1
w = X T C−1

y X + C−1
w

mw = Sw (X T C−1
y y + C−1

w µw )

can also be written in a more compact form.
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Augmented Form

This compact form is

S−1
w = X̄ T V−1X̄

mw = Sw (X̄ T V−1ȳ)

where

X̄ =

[
X
Ip

]
V =

[
Cy 0
0 Cw

]
ȳ =

[
y
µw

]

where we’ve augmented the data matrix with prior
expectations; ȳ is (d + p)× 1 and X̄ is (d + p)× p.
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Augmented Form

Estimation in a Bayesian GLM is therefore equivalent to
Maximum Likelihood estimation (ie. for IID covariances
this is the same as Weighted Least Squares) with
augmented data.

mw = (X̄ T V−1X̄ )−1X̄ T V−1ȳ

Prior beliefs can be thought of as extra data points.
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MAP Learning
The posterior density is given by Bayes rule

p(w |y) =
p(y |w)p(w)

p(y)

The Maximum A Posterior (MAP) estimate is given by

ŵ = arg max
w

p(w |y)

Because the maxima of log[x ] is the same as the
maximum of x we can also write

ŵ = arg max
w

L(y ,w)

where
L = log[p(y |w)p(w)]

is the joint log likelihood. For Linear Gaussian models
MAP parameters are equivalent to the posterior mean.
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MAP Learning and regularised least squares

With

p(y |w) = N(y ; Xw , λ−1
1 I)

p(w) = N(w ; 0, λ−1
2 Cw )

we have

L(y ,w) = log[p(y |w)p(w)]

= −λ1

2
(y − Xw)T (y − Xw)− λ2

2
wT C−1

w w

So we are trying to minimise

(y − Xw)T (y − Xw) +
λ2

λ1
wT C−1

w w

a data-dependent error term and a regularisation term
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MEG Source Reconstruction

MEG Source Reconstruction is achieved through
inversion of the linear model

y = Xw + e

(d × 1) = (d × p)(p × 1) + (d × 1)

for MEG data, y with d sensors and p potential sources,
w , lying perpendicular to the cortical surface. The lead
field matrix is specified by X . For our example we have
d = 274 and p = 8192.

The above equation is for a single time point.
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Generative Models

Likelihood
p(y |w) = N(y ; Xw ,Cy )

Prior
p(w) = N(w ; 0,Cw )

We let

Cy = λ1Q1

Cw = λ2Q2

For shrinkage priors Q2 = Ip, MAP estimation results in
the minimum norm method of source reconstruction. This
is implemented in SPM as the ‘IID’ option
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Smoothness Priors

For smoothness priors Q2 = KK T corresponding to the
operation of a Gaussian smoothing kernel, MAP
estimation results something similar to the Low
Resolution Tomography (LORETA) method.

This is implemented in SPM as the ‘COH’ option. Note,
these are not location priors.
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Posterior Density

From earlier we have

S−1
w = X T C−1

y X + C−1
w

mw = SwX T C−1
y y

However, Sw is p× p with p = 8192 so cannot be inverted
easily. But we can use the matrix inversion lemma, also
known as the Woodbury identity (Bishop, 2006)

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1

to ensure that only d × d matrices need inverting. See
‘Bayesian MEG’ notes on website.
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Simulation

Two sinusoidal sources were placed in bilateral auditory
cortex and produced this MEG data (Barnes, 2010),
comprising d = 274 time series (butterfly plot)
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LORETA
We fix λ1 = 1. Here we set λ2 = 0.01.

This shows the posterior mean activity for the 500 dipoles
with the greatest power (over peristimulus time)
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LORETA

We fix λ1 = 1. Here we set λ2 = 0.01.
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LORETA

We fix λ1 = 1. Here we set λ2 = 0.1.
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LORETA

We fix λ1 = 1. Here we set λ2 = 1.
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LORETA
We fix λ1 = 1. Here we set λ2 = 1.

Use Empirical Bayes to optimise λ2 or multiple
hyperparameters.
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