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Bayes rule
Given marginal
probabilities p(A),
p(B), and the joint
probability p(A,B), we
can write the
conditional
probabilities

p(B|A) =
p(A,B)

p(A)

p(A|B) =
p(A,B)

p(B)

This is known as the product rule. Eliminating p(A,B)
gives Bayes rule

p(B|A) = p(A|B)p(B)

p(A)
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Bayes rule

The terms in Bayes rule

p(B|A) = p(A|B)p(B)

p(A)

are referred to as the prior, p(B), the likelihood, p(A|B),
and the posterior, p(B|A).

The probability p(A) is a normalisation term and can be
found by marginalisation. For example,

p(A = 1) =
∑

B

p(A = 1,B)

= p(A = 1,B = 0) + p(A = 1,B = 1)
= p(A = 1|B = 0)p(B = 0) + p(A = 1|B = 1)p(B = 1)

This is known as the sum rule.
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Bayes rule

We can also write Bayes rule as

p(B|A) = p(A|B)p(B)∑
B′ p(A|B′)p(B′)

This makes use of the sum and product rules.

Bayes rule is the extension of Boolean logic to uncertain
events.
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Medical Decision Making

Johnson et al (2001) consider Bayesian inference in for
Magnetic Resonance Angiography (MRA). An Aneurysm
is a localized, blood-filled balloon-like bulge in the wall of
a blood vessel.

They commonly occur in arteries at the base of the brain.
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Sensitivity and Specificity

Given patient 1’s symptoms, the prior probability of A
(prior to MRA) is believed to be 90%.

For As bigger than 6mm MRA has a sensitivity and
specificity of 95% and 92%.

What then is the probability of A given a negative test
result, T ?
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Medical Decision Making
The clinician believes the probability of aneurysm prior to
the MRA test to be

p(A = 1) = 0.9

MRA test sensitivity and specificity are

p(T = 1|A = 1) = 0.95
p(T = 0|A = 0) = 0.92

The false negative rate is therefore

p(T = 0|A = 1) = 1− p(T = 1|A = 1) = 0.08

The probability of A given a negative test can be found
from Bayes rule

p(A = 1|T = 0) =
p(T = 0|A = 1)p(A = 1)

p(T = 0|A = 1)p(A = 1) + p(T = 0|A = 0)p(A = 0)

This is the proportion of false negatives to false negatives
plus true negatives.



Introduction to
Bayesian Inference

Will Penny

Bayes rule

Medical Decision
Making
Sensitivity

Joint Probability

Odds Ratios

Generative Models
Joint Probability

Marginalisation

Multiple Causes

Explaining Away

References

Joint Probability

A prior of 0.9 means that of 1000 people that present to
the clinician with the same symptoms he believes that
900 of them will have an aneurysm.

T = 0 T = 1
A = 0 92 8 100
A = 1 45 855 900

137 863

The clinician’s belief that a patient has an aneurysm after
a negative test is 45/137=0.3285.

The inner table above is the joint probability p(A,T ) (if we
divide by 1000).
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Medical Decision Making
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Medical Decision Making

A negative MRA cannot therefore be used to exclude a
diagnosis of A in this case.
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Odds Ratios

If p is the probability of an event then the odds R of that
event are

R =
p

1− p

R is also referred to as an Odds Ratio.

Conversely,

p =
R

R + 1
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Odds Ratios

Bayes rule can be usefully expressed in the form of odds
ratios. Considering first a positive test result, the posterior
odds that the subject has an aneurysm are given by

p(A = 1|T = 1)
p(A = 0|T = 1)

=
p(T = 1|A = 1)
p(T = 1|A = 0)

p(A = 1)
p(A = 0)

where the prior odds are

p(A = 1)
p(A = 0)

= 9

and the likelihood ratio is

p(T = 1|A = 1)
p(T = 1|A = 0)

=
sens

1− spec
= 11.88

The posterior odds is therefore 11.88× 9 = 106.88.
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Odds Ratios

For a negative test result we have

p(A = 1|T = 0)
p(A = 0|T = 0)

=
p(T = 0|A = 1)
p(T = 0|A = 0)

p(A = 1)
p(A = 0)

Here the likelihood ratio is (1− sens)/spec = 0.054, so
the posterior odds are 0.054× 9 = 0.49.

The posterior probability of an aneurysm given positive
and negative test results are given by p = R/(R + 1)
which are 0.9907 and 0.3285. These are, of course, the
same as before.
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Multiple Causes and Observations

Multiple potential causes (eg. x1, x2) and observations
(x3, x4 eg. headache, oculomotor palsy, double vision,
drooping eye lids, blood in CSF)
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Generative Models
For a probabilistic generative model

The joint probability of all variables, x , can be written
down as

p(x) =
5∏

i=1

p(xi |pa[xi ])

where pa[xi ] are the parents of xi . If there are no cycles
we have a Direct Acyclic Graph (DAG), also known as a
Bayesian network (Jensen, 2000; Pearl, 1988).
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Joint Probability

A DAG specifies the joint probability of all variables.

p(x1, x2, x3, x4, x5) = p(x1)p(x2)p(x3|x1)p(x4|x1, x2)p(x5|x4)

See Chapter 8 in Bishop (2006) for more examples. All
other variables can be gotten from the joint probability via
marginalisation.
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Marginalisation

p(x1) =

∫
p(x1, x2)dx2
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Marginalisation

p(x1, x2) =

∫ ∫ ∫
p(x1, x2, x3, x4, x5)dx3dx4dx5

p(x4) =

∫ ∫ ∫ ∫
p(x1, x2, x3, x4, x5)dx1dx2dx3dx5

1 =

∫ ∫ ∫ ∫ ∫
p(x1, x2, x3, x4, x5)dx1dx2dx3dx4dx5

p(x1) =
∑
x2

p(x1, x2)

p(x2 = 3, x3 = 4) =
∑
x1

p(x1, x2 = 3, x3 = 4)



Introduction to
Bayesian Inference

Will Penny

Bayes rule

Medical Decision
Making
Sensitivity

Joint Probability

Odds Ratios

Generative Models
Joint Probability

Marginalisation

Multiple Causes

Explaining Away

References

Generative Models
If x5 is observed and we want to know x3 then

p(x3|x5) =
p(x3, x5)

p(x5)

Necessary probabilities obtained via marginalisation.
This can be implemented efficiently using local
computations via ’belief propagation’.
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Did I Leave The Sprinkler On ?

A single observation with multiple potential causes (not
mutually exclusive). Both rain, r , and the sprinkler, s, can
cause my lawn to be wet, w .

p(w , r , s) = p(r)p(s)p(w |r , s)
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Did I Leave The Sprinkler On ?
The probability that the sprinkler was on given i’ve seen
the lawn is wet is given by Bayes rule

p(s = 1|w = 1) =
p(w = 1|s = 1)p(s = 1)

p(w = 1)

=
p(w = 1, s = 1)

p(w = 1, s = 1) + p(w = 1, s = 0)

where the joint probabilities are obtained from
marginalisation

p(w = 1, s = 1) =
1∑

r=0

p(w = 1, r , s = 1)

p(w = 1, s = 0) =
1∑

r=0

p(w = 1, r , s = 0)

and from the generative model we have

p(w , r , s) = p(r)p(s)p(w |r , s)
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Look next door

Rain r will make my lawn wet w1 and nextdoors w2
whereas the sprinkler s only affects mine.

p(w1,w2, r , s) = p(r)p(s)p(w1|r , s)p(w2|r)
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After looking next door

Use Bayes rule again

p(s = 1|w1 = 1, w2 = 1) =
p(w1 = 1, w2 = 1, s = 1)

p(w1 = 1, w2 = 1, s = 1) + p(w1 = 1, w2 = 1, s = 0)

with joint probabilities from marginalisation

p(w1 = 1,w2 = 1, s = 1) =
1∑

r=0

p(w1 = 1,w2 = 1, r , s = 1)

p(w1 = 1,w2 = 1, s = 0) =
1∑

r=0

p(w1 = 1,w2 = 1, r , s = 0)
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Numerical Example

Bayesian models force us to
be explicit about exactly what
it is we believe.

p(r = 1) = 0.01
p(s = 1) = 0.02

p(w = 1|r = 0, s = 0) = 0.001
p(w = 1|r = 0, s = 1) = 0.97
p(w = 1|r = 1, s = 0) = 0.90
p(w = 1|r = 1, s = 1) = 0.99

These numbers give

p(s = 1|w = 1) = 0.67
p(r = 1|w = 1) = 0.31
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Explaining Away

Numbers same as before. In addition

p(w2 = 1|r = 1) = 0.90

Now we have

p(s = 1|w1 = 1,w2 = 1) = 0.21
p(r = 1|w1 = 1,w2 = 1) = 0.80

The fact that my grass is wet has been explained away by
the rain (and the observation of my neighbours wet lawn).
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The CHILD network
Proabilistic graphical model for newborn babies with
congenital heart disease.

Decision making aid piloted at Great Ormond Street
hospital (Spiegelhalter et al. 1993).
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