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Bayes rule for models
A prior distribution over model space p(m) (or ‘hypothesis
space’) can be updated to a posterior distribution after
observing data y .

This is implemented using Bayes rule

p(m|y) = p(y |m)p(m)

p(y)

where p(y |m) is referred to as the evidence for model m and
the denominator is given by

p(y) =
∑
m′

p(y |m′)p(m′)
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Model Evidence

The evidence is the denominator from the first
(parameter) level of Bayesian inference

p(θ|y ,m) =
p(y |θ,m)p(θ|m)

p(y |m)

The model evidence is not, in general, straightforward to
compute since computing it involves integrating out the
dependence on model parameters

p(y |m) =

∫
p(y |θ,m)p(θ|m)dθ.

But for linear, Gaussian models there is an analytic
solution.
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Posterior Model Probability
Given equal priors, p(m = i) = p(m = j) the posterior
model probability is

p(m = i |y) =
p(y |m = i)

p(y |m = i) + p(y |m = j)

=
1

1 + p(y |m=j)
p(y |m=i)

Hence
p(m = i |y) = σ(log Bij)

where
Bij =

p(y |m = i)
p(y |m = j)

is the Bayes factor for model 1 versus model 2 and

σ(x) =
1

1 + exp(−x)

is the sigmoid function.
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Bayes factors
The posterior model probability is a sigmoidal function of
the log Bayes factor

p(m = i |y) = σ(log Bij)
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Bayes factors
The posterior model probability is a sigmoidal function of
the log Bayes factor

p(m = i |y) = σ(log Bij)

From Raftery (1995).
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Odds Ratios

If we don’t have uniform priors one can work with odds
ratios.

The prior and posterior odds ratios are defined as

π0
ij =

p(m = i)
p(m = j)

πij =
p(m = i |y)
p(m = j |y)

resepectively, and are related by the Bayes Factor

πij = Bij × π0
ij

eg. priors odds of 2 and Bayes factor of 10 leads
posterior odds of 20.

An odds ratio of 20 is 20-1 ON in bookmakers parlance.
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Spike rates may reflect log odds ratios
In an vibro-tactile discrimination task (Gold, Ann. Rev.
Neuro, 2007) monkey releases lever (KU) and presses
one of two buttons (PB)

Sequential Likelihood Ratio Test (SLRT)
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Spike rates may reflect log odds ratios

Cells in medial and ventral premotor cortices (but not S1)
reflect odds ratios

This cell is more active during presentation of 2nd
stimulus when f2 < f1.
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Linear Models
For Linear Models

y = Xw + e

where X is a design matrix and w are now regression
coefficients. The posterior distribution is analytic and
given by

S−1
w = X T C−1

y X + C−1
w

mw = Sw

(
X T C−1

y y + C−1
w µw

)
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Covariance matrices
The determinant of a covariance matrix, |C|, measures
the volume.



Model Comparison

Bayes rule for
models
Bayes factors

Spike rates

Linear Models
Model Evidence

Complexity

AIC and BIC

Example
fMRI example

Bayes versus
classical inference

Model evidence in
data space

Nonlinear
classifiers

References

Model Evidence

The log model evidence comprises sum squared
precision weighted prediction errors and Occam factors

L = −1
2

eT
y C−1

y ey −
1
2

log |Cy | −
Ny

2
log 2π

− 1
2

eT
wC−1

w ew −
1
2

log
|Cw |
|Sw |

where prediction errors are the difference between what
is expected and what is observed

ey = y − Xmw

ew = mw − µw

See Bishop (2006) for derivation.
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Accuracy and Complexity

The log evidence for model m can be split into an
accuracy and a complexity term

L(m) = Accuracy(m)− Complexity(m)

where

Accuracy(m) = −1
2

eT
y C−1

y ey −
1
2

log |Cy | −
Ny

2
log 2π

and

Complexity(m) =
1
2

eT
wC−1

w ew +
1
2

log
|Cw |
|Sw |

≈ KL(prior ||posterior)
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Small KL
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Medium KL
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Big KL
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Complexity

Model complexity will tend to increase with the number of
parameters Nw .

For the parameters we have

Complexity(m) =
1
2

eT
wC−1

w ew +
1
2

log
|Cw |
|Sw |

where
ew = mw − µw

But this will only be the case if these extra parameters
diverge from their prior values and have smaller posterior
(co)variance than prior (co)variance.
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Complexity

In the limit that the posterior equals the prior
(ew = 0,Cw = Sw ), the complexity term equals zero.

Complexity(m) =
1
2

eT
wC−1

w ew +
1
2

log
|Cw |
|Sw |

Because the determinant of a matrix corresponds to the
volume spanned by its eigenvectors, the last term gets
larger and the model evidence smaller as the posterior
volume, |Sw |, reduces in proportion to the prior volume,
|Cw |.

Models for which parameters have to specified precisely
(small posterior volume) are brittle. They are not good
models (complexity is high).
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Correlated Parameters

Other factors being equal, models with strong correlation
in the posterior are not good models.

For example, given a model with just two parameters the
determinant of the posterior covariance is given by

|Sw | = (1− r2)σ2
w1
σ2

w2

where r is the posterior correlation, σw1 and σw2 are the
posterior standard deviations of the two parameters.

For the case of two parameters having a similar effect on
model predictions the posterior correlation will be high,
therefore implying a large complexity penalty.
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Bayesian Information Criterion

A simple approximation to the log model evidence is given
by the Bayesian Information Criterion (Schwarz, 1978)

BIC = log p(y |ŵ ,m)− Nw

2
log Ny

where ŵ are the estimated parameters, Nw is the number
of parameters, and Ny is the number of data points.

There is a complexity penalty of 1
2 log Ny for each

parameter.
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An Information Criterion

An alternative approximation is Akaike’s Information
Criterion or ‘An Information Criterion’ (AIC) - Akaike
(1973)

AIC = log p(y |ŵ ,m)− Nw

There is a complexity penalty of 1 for each parameter.

AIC and BIC are attractive because they are so easy to
implement. They are also easily applied to nonlinear
models.
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Linear model of fMRI data
The following example compares AIC, BIC and Bayesian
evidence criteria. Full details are given in Penny (2011).
We use a linear model

y = Xw + e

with design matrix from Henson et al (2002).

See also SPM Manual. We considered ‘full’ models (with
12 regressors) and ‘nested’ models (with last 9 only).
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fMRI example
Likelihood

p(y |w) = N(y ;Xw ,Cy )

where Cy = σ2
e INy .

Parameters were drawn from the prior

p(w) = N(w ;µw ,Cw )

with µw = 0 and Cw = σ2
p Ip with set σp to correspond to the

magnitude of coefficients in a face responsive area.
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fMRI example

The parameter σe (observation noise SD) was set to give
a range of SNRs where

SNR =
std(g)
σe

and g = Xw is the signal. For each SNR we generated
100 data sets.

We first look at model comparison behaviours when the
true model is full. For each generated data set we fitted
both full and nested models and computed the log Bayes
factor. We then averaged this over runs.
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True Model: Full GLM
Log Bayes factor of full versus nested model versus the
signal to noise ratio, SNR, when true model is the full
GLM for Bayesian Log Evidence (black), AIC (blue) and
BIC (red).
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True Model: Nested GLM
Log Bayes factor of nested versus full model versus the
signal to noise ratio, SNR, when true model is the nested
GLM for Bayesian Log Evidence (black), AIC (blue) and
BIC (red).
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Evidence versus AIC, BIC

We have seen that Bayesian model evidence is more
accurate than AIC or BIC.

Similar results have been found for other types of models
I Nonlinear autoregressive models (Roberts and

Penny, 2002)
I Hidden Markov Models (Valente and Wellekens)
I Dynamic Causal Models (Penny, 2011)
I Graphical Models (Beal, 2003)
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Bayes versus classical inference

For nested model comparisons in linear models one can
use classical inference based on F-tests.

Bayesian inference has three advantages over classical
inference here

I The models do not have to be nested. The
regressors in each of the models can be completely
different.

I The ‘null model’ can be accepted if the Bayes factor
is sufficiently high. In classical inference you can
never accept the null.

I You can compare as many models as you like.
See Dienes (2011) for benefits over classical inference.



Model Comparison

Bayes rule for
models
Bayes factors

Spike rates

Linear Models
Model Evidence

Complexity

AIC and BIC

Example
fMRI example

Bayes versus
classical inference

Model evidence in
data space

Nonlinear
classifiers

References

Bayes versus classical two-sample t-tests

Wetzels et al. Persp. Psych. Science, 2011.
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Model evidence in data space

There is an alternative form of the model evidence which
is useful if the dimension of the data points d is less than
that of the regression coefficients p. This is not the case
for most regression models but is the case, for example,
for MEG source reconstruction.

Given the linear model y = Xw + e with prior mean and
covariance µw and Cw on the regression coefficients and
observation noise covariance Cy the mean and
covariance of the data are

md = Xµw

Cd = XCwX T + Cy
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Model evidence in data space

The log model evidence is then just the log of the
probability of the data under the Gaussian density with
the above mean and covariance

L = −d
2

log 2π − 1
2

log |Cd | −
1
2

eT
d C−1

d ed

and the prediction errors ed are

ed = y −md

The above expression requires inversion and
determinants of d × d matrices rather than p × p.
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Nonlinear classifiers
Nonlinear classification with Multi-Layer Perceptrons
(Penny and Roberts, 1998)
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Nonlinear classifiers

Nonlinear classification with Multi-Layer Perceptrons
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Nonlinear classifiers

Nonlinear classification with Multi-Layer Perceptrons
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Nonlinear classifiers

How many hidden units should we use in our MLP ?

For nonlinear models we can only approximate the model
evidence using eg. a Laplace approximation (Bishop,
2006).

We can also use Cross-Validation (CV) to do this. Does
CV agree with model evidence ?
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Cross validation versus model evidence

They are highly correlated.
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Nonlinear classifiers

Correlation between CV and evidence versus R, the
proportion of data points to model parameters.
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