Nonlinear models

Will Penny

Bayesian Inference Course, WTCN, UCL, March 2013

Nonlinear models

Will Penny

Nonlinear

Nonlinear Regression

Priors

Energies

Posterior

Gradient A

Adaptive Step S

Approach to Limit

Example

Priors

Poster

Oscillator Example

Sampling

Metropolis-Hasting

oforonces

Approach to Limit Example

Posterior

Oscillator Example

Metropolis-Hasting

Proposal density

References

We consider the framework implemented in the SPM function *spm-nlsi-GN.m.* It implements Bayesian estimation of nonlinear models of the form

$$y = g(w) + e$$

where g(w) is some nonlinear function of parameters w, and e is zero mean additive Gaussian noise with covariance C_y . The likelihood of the data is therefore

$$p(y|w,\lambda) = \mathsf{N}(y;g(w),C_y)$$

The error *precision* matrix is assumed to decompose linearly

$$C_y^{-1} = \sum_i \exp(\lambda_i) Q_i$$

where Q_i are known precision basis functions and λ are hyperparameters eg Q = I, noise precision $s = \exp(\lambda)$.

We allow Gaussian priors over model parameters

$$p(w) = N(w; \mu_w, C_w)$$

where the prior mean and covariance are assumed known.

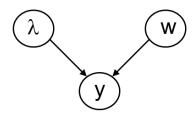
The hyperparameters are constrained by the prior

$$p(\lambda) = N(\lambda; \mu_{\lambda}, C_{\lambda})$$

This is not Empirical Bayes.

Generative Model

VL Generative Model



$$p(y, w, \lambda) = p(y|w, \lambda)p(w)p(\lambda)$$

Nonlinear models

Will Penny

Priors

Metropolis-Hasting

Energies

$L(w, \lambda) = \log[p(y|w, \lambda)p(w)p(\lambda)]$

The above distributions allow one to write down an expression for the joint log likelihood of the data,

It splits into three terms

parameters and hyperparameters

$$L(w, \lambda) = \log p(y|w, \lambda) + \log p(w) + \log p(\lambda)$$

The joint log likelihood is composed of sum squared precision weighted prediction errors and entropy terms

$$L(w,\lambda) = -\frac{1}{2}e_{y}^{T}C_{y}^{-1}e_{y} - \frac{1}{2}\log|C_{y}| - \frac{N_{y}}{2}\log 2\pi$$

$$- \frac{1}{2}e_{w}^{T}C_{w}^{-1}e_{w} - \frac{1}{2}\log|C_{w}| - \frac{N_{w}}{2}\log 2\pi$$

$$- \frac{1}{2}e_{\lambda}^{T}C_{\lambda}^{-1}e_{\lambda} - \frac{1}{2}\log|C_{\lambda}| - \frac{N_{\lambda}}{2}\log 2\pi$$

where prediction errors are the difference between what is expected and what is observed

$$e_y = y - g(m_w)$$

 $e_w = m_w - \mu_w$
 $e_\lambda = m_\lambda - \mu_\lambda$

Posterior

Gradient Asc

Adaptive Step Siz

pproach to Limit xample

Priors Posterior

- - - - -

Osomator Example

Sampling Metropolis-Has

Metropolis-Hastin Proposal density

References

This is a fixed-form variational method.

density of the following factorised form

The Variational Laplace (VL) algorithm, implemented in

 $q(w, \lambda|y) = q(w|y)q(\lambda|y)$ $q(w|y) = N(w; m_w, S_w)$ $q(\lambda|y) = N(\lambda; m_\lambda, S_\lambda)$

spm-nlsi-GN.m, assumes an approximate posterior

4日 → 4団 → 4 三 → 4 三 → 9 Q (*)

Priors

Posterior

Gradient Ascer

Approach to Limit

Example Priors

Posterior

Oscillator Example

Sampling

Proposal density

References

The approximate posteriors are estimated by minimising the Kullback-Liebler (KL) divergence between the true posterior and these approximate posteriors. This is implemented by maximising the following (negative) variational energies

$$I_w = \int L(w,\lambda)q(\lambda)d\lambda$$

 $I_\lambda = \int L(w,\lambda)q(w)dw$

Gradient Ascent

This maximisation is effected by first computing the gradient and curvature of the variational energies at the current parameter estimate, $m_w(old)$. For example, for the parameters we have

$$j_w(i) = \frac{dI_w}{dm_w(i)}$$

$$H_w(i,j) = \frac{d^2I_w}{dm_w(i)dm_w(j)}$$

where i and j index the ith and jth parameters, j_w is the gradient vector and H_w is the curvature matrix. The estimate for the posterior mean is then given by

$$m_w(\textit{new}) = m_w(\textit{old}) + \Delta m_w$$

Energies

Posterior

Adaptive Step Size

Adaptive Step Size

Approach to Limit Example

Priors

Posterior

Oscillator Example

Sampling Matropolio H

Proposal density

References

The change is given by

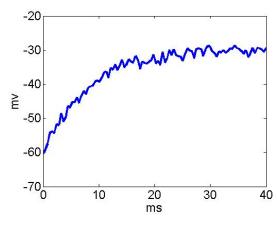
$\Delta m_w = -H_w^{-1} j_w$

which is equivalent to a Newton update (Press et al. 2007).

This implements a step in the direction of the gradient with a step size given by the inverse curvature. Big steps are taken in regions where the gradient changes slowly (low curvature).

Approach to Limit Example

$$y(t) = -60 + V_a[1 - \exp(-t/\tau)] + e(t)$$



$$V_a = 30, \tau = 8$$

Noise precision

$$s = \exp(\lambda) = 1$$

Nonlinear models

Will Penny

Nonlinea

Pogrossion

Nonlinear Regressi

Energies

Posterior

Gradient Ascent daptive Step Size

Approach to Limit Example

Posterio

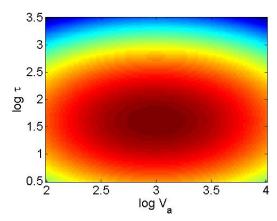
Oscillator Example

Sampling

Proposal densit

Prior Landscape

A plot of $\log p(w)$ where $w = [\log \tau, \log V_a]$



$$\mu_{\mathbf{w}} = [3, 1.6]^T, C_{\mathbf{w}} = diag([1/16, 1/16]);$$

Nonlinear models

Will Penny

Nonlinear

egression onlinear Regression

iniinear Hegressi Iors

nergies

Posterior

uaptive Step Size

approach to Limit Example

Priors

Posterior

Oscillator Example

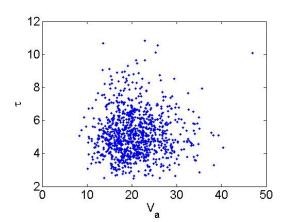
Sampling

Metropolis-Hastin Proposal density

Priors

The true model parameters are unlikely apriori

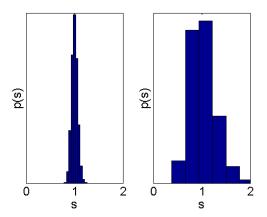
$$V_a = 30, \tau = 8$$



Prior Noise Precision

Q = I. Noise precision $s = \exp(\lambda)$ with

$$p(\lambda) = N(\lambda; \mu_{\lambda}, C_{\lambda})$$



with $\mu_{\lambda} = 0$. We used $C_{\lambda} = 1/16$ (left) and $C_{\lambda} = 1/4$ (right). True noise precision, s = 1.

Nonlinear models

Will Penny

Nonlinear

legression

riors

Posterior

Gradient Ascent

Approach to Limit

Example

Posterior

Oscillator Eva

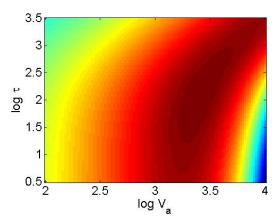
Complian

Metropolis-Hastin

Proposal density

Posterior Landscape

A plot of log[p(y|w)p(w)]



Nonlinear models

Will Penny

Nonlinear

Regression

Nonlinear Regression

riors

Energies Posterior

Gradient Ascent

Adaptive Step Size

pproach to Limit xample

Posterior

Posterior

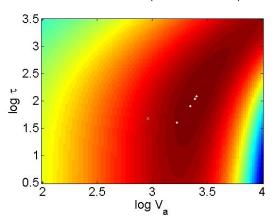
Oscillator Example

0 - --- 1:-- --

Metropolis-Hastin Proposal density

VL optimisation

Path of 6 VL iterations (x marks start)



Investigate further using matlab/lif.

Nonlinear models

Will Penny

Nonlinear

Nonlinear Regression

ors

Energies Posterior

Gradient A

Adaptive Step Siz

pproach to Limit

Priors

Posterior

Oscillator Example

Sampl

Proposal density

Priors

Energies

Gradient Ascent

paptive Step Size

oproach to Limit kample

riors Posterior

Oscillator Example

Sampling

Metropolis-Hastin Proposal density

References

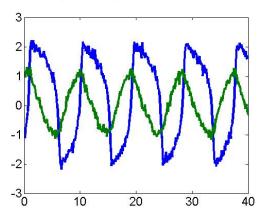
This example is based on a differential equation describing the evolution of a voltage variable, v, and a recovery variable, r

$$\dot{v} = c[v - \frac{1}{3}v^3 + r + I]$$

$$\dot{r} = -\frac{1}{c}[v - a + br]$$

This is used in statistics as an example of a difficult optimisation algorithm with multiple local maxima Ramsay et al. (2007).

For
$$a = 0.2$$
, $b = 0.2$, $c = 3$ and $l = 0$



Nonlinear models

Will Penny

Nonlinear

Needings December

Priors

Energies

Gradient Ascent

daptive Step Size

Approach to Limit Example

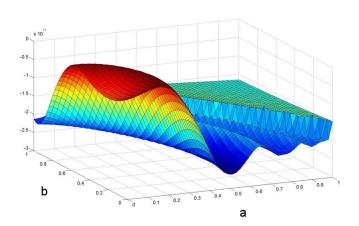
Posteri

Oscillator Example

Sampling

Metropolis-Has

A plot of log[p(y|w)p(w)]



Nonlinear models

Will Penny

Nonlinear

Nonlinear Regressio

Norillitedi ne

Energies

Posterior

Gradient Ascent

Adaptive Step Size

oproach to Limit kample

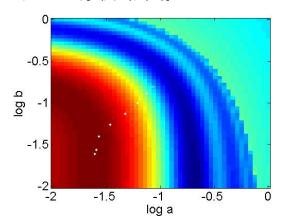
Posteri

Oscillator Example

Samp

Metropolis-Hasti Proposal density

A plot of log[p(y|w)p(w)]



Global maxima

Nonlinear models

Will Penny

Nonlinear

Regression

Nonlinear Re

Priors

Poetorior

radient Ascent

daptive Step Size

oproach to Limit kample

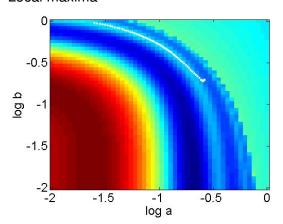
riors

Oscillator Example

Samplin

Metropolis-Hasti Proposal density

Local maxima



Nonlinear models

Will Penny

Nonlinear

Nanlinear Begrange

Priors

Energies

Posterior

Adantive Sten Siz

an va a ala ta Lina

cample

sterior

Oscillator Example

Samp

Metropolis-Hasti Proposal density

Potential solutions

Nonlinear models Will Penny

Oscillator Example

There are a number of potential solutions

- Increase the dimension of the space (from a,b to a,b,c).
- Fit data in the frequency domain rather than time domain
- Fit other features of the data
- Use sampling methods

stationary distribution is p(w|y).

Metropolis-Hasting

MH makes use of a proposal density q(w'; w) which is dependent on the current state vector w. For symmetric q (such as a Gaussian) samples from the posterior density can be generated as follows.

MH creates as series of random points (w(1), w(2), ...)whose distribution converges to the target distribution of interest. For us, this is the posterior density p(w|y). Each

sequence can be considered a random walk whose

Metropolis-Hasting

First, start at some point w(0) in parameter space. Then generate a proposal w' using the density q. This proposal is then accepted according to the standard Metropolis-Hastings procedure.

That is, with probability min(1, r) where

$$r = \frac{p(y|w')p(w')}{p(y|w)p(w)}$$

If the step is accepted we set w(n+1) = w'. If it is rejected we set w(n+1) = w(n).

We use a zero mean Gaussian proposal density with covariance C_s . This covariance is initialised to

$$C_s = \sigma C_w$$

where C_w is the prior covariance and $\sigma = 1$.

We then use a three stage procedure comprising (i) scaling, (ii) tuning and (iii) sampling steps in which the scaling and tuning stages are used to optimize the proposal covariance C_s .

The first two stages are regarded as a burn-in phase and samples from this period are later discarded. At the end of this C_s is fixed and sampling proper begins.

The proposal covariance is given by

 $C_{s} = \sigma C_{w}$

In the scaling step σ is adjusted as follows.

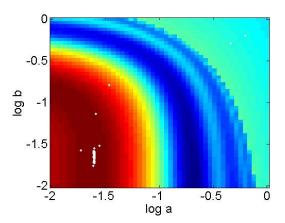
If the acceptance rate, as measured over the last $n_s = 100$ proposals, is less than 20 per cent then σ is halved

If the acceptance rate is greater than 40 per cent σ is doubled.

Otherwise, σ remains unchanged.

MH - Scaling

Init: [-0.2, -0.2]. Then 1000 samples



Nonlinear models

Will Penny

Nonlinear

Nedisco Description

Priors

Energies

Gradient Accon

Adaptive Step Size

pproach to Limit

Priors

Posterior

Oscillator Example

Sampling

Metropolis-Hastin Proposal density

. .

The tuning step makes use of adaptive estimation of a covariance matrix C_{tune} based on a Robbins-Monro update.

At the beginning of the tuning stage we set $C_{tune} = C_s$. We then update according to

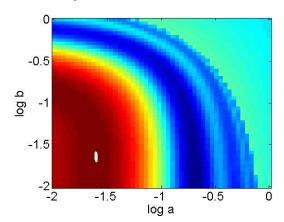
$$\mu_t = \mu_{t-1} + \frac{1}{n_t}(x_t - \mu_t)$$

$$\Delta C_{tune} = \frac{1}{n_t}[(x_t - \mu_t)(x_t - \mu_t)^T - C_{tune}(t-1)]$$

where n_t is the number of elapsed iterations in the tuning period. At the end of tuning set $C_s = C_{tune}$.

MH - Tuning

1000 samples



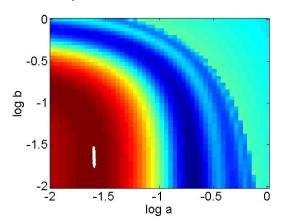
Nonlinear models

Will Penny

Proposal density

MH - Sampling

2000 samples



Nonlinear models

Will Penny

Nonlinear

Nonlinear Regression

Priors

Energies

Posterior

Adaptive Step Size

pproach to Limit

cample riors

Posterior

Oscillator Example

Sampling

Proposal density

Potential solutions

Accept that a nonlinear dynamical system model has such a rich repertoire of behaviour, that a model cannot be specified by a dynamical equation alone. One must also specify the range of allowable parameters.

$$\dot{v} = c[v - \frac{1}{3}v^3 + r + I]$$

$$\dot{r} = -\frac{1}{c}[v - a + br]$$

I is input current.

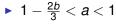
$$\dot{v} = c[v - \frac{1}{3}v^3 + r + I]$$

$$\dot{r} = -\frac{1}{c}[v - a + br]$$

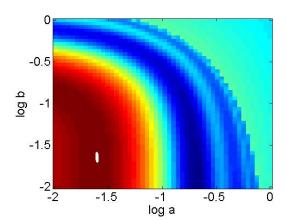
For I=0 the cell should not spike (need stable fixed point at v = 0).

For I above some threshold there should be an unstable fixed point around which a limit cycle emerges (spiking).

This occurs if these 3 conditions are satisfied



▶
$$b < c^2$$



References

R. Fitzhugh (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal. 1:445-466.

K. Friston et al. (2007) Variational Free Energy and the Laplace Approximation. Neuroimage 34(1), 220-234.

A. Gelman et al. (1995) Bayesian data analysis. Chapman and Hall.

W. Press et al. (2007) Numerical recipes in C: the art of scientific computing. 3rd Edition, Cambridge University Press.

Ramsay et al. (2007) Parameter estimation for differential equations: a generalized smoothing approach. J. Roy. Stat. Soc. B, 69(5),741-796.

B. Ermentrout and D. Terman, Mathematical Foundations of Neuroscience. Springer, 2010.

