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Nonlinear models

Nonlinear Regression

We consider the framework implemented in the SPM
function spm-nlisi-GN.m. It implements Bayesian
estimation of nonlinear models of the form

Will Penny

Nonlinear Regression

y=gw)+e

where g(w) is some nonlinear function of parameters w,
and e is zero mean additive Gaussian noise with
covariance Cy. The likelihood of the data is therefore

p(y|w, ) = N(y; g(w), Cy)

The error precision matrix is assumed to decompose linearly

C,' =) exp(\)Q;
i

where Q; are known precision basis functions and )\ are
hyperparameters eg Q = /, noise precision s = exp(\).
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We allow Gaussian priors over model parameters
p(w) = N(w; puw, Cw)

where the prior mean and covariance are assumed
known.

The hyperparameters are constrained by the prior
P(A) = N(A; pa, Cy)

This is not Empirical Bayes.
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VL Generative Model

p(y, w, ) = p(y|w, \)p(w)p(\)
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The above distributions allow one to write down an
expression for the joint log likelihood of the data, Energs
parameters and hyperparameters

L(w, A) = log[p(y|w, \)p(w)p()]

It splits into three terms

L(w,\) = logp(y|w,A)
+ log p(w)
+ logp(})
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The joint log likelihood is composed of sum squared

precision weighted prediction errors and entropy terms

Energies

1T 7~ 1 Ny
Liw,\) = ~58 C, e — 3 log |Cy| — > log 27
1 1 N
- feWC ew — 5 log |Cw| — —W log 27
1 1 N
- feAC en— = Iog |C\| — = Iogzw
where prediction errors are the difference between what
is expected and what is observed

e = y- g(mw)
ew = My — uw
ex = My —pux
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The Variational Laplace (VL) algorithm, implemented in Postrr
spm-nlsi-GN.m, assumes an approximate posterior
density of the following factorised form

a(w,Aly) = a(wly)a(\ly)
q(W|y) = N(W;mW,SW)
a(Aly) = N(Amy, S))

This is a fixed-form variational method.
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The approximate posteriors are estimated by minimising
the Kullback-Liebler (KL) divergence between the true
posterior and these approximate posteriors. This is
implemented by maximising the following (negative)
variational energies

lw = /L(W,A)q(k)dA

ho= [ Lowngwydw
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This maximisation is effected by first computing the
gradient and curvature of the variational energies at the

current parameter estimate, my,(old). For example, for
the parameters we have Graont Ascont

.. dly
Jw(i) = dTW(I)

. a2l
D)= G ama )

where i and j index the ith and jth parameters, j, is the
gradient vector and H,, is the curvature matrix. The
estimate for the posterior mean is then given by

mw(new) = my(old) + Amy,
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The change is given by

A My = — Hv_v1 jW Adaptive Step Size
which is equivalent to a Newton update (Press et al.
2007).

This implements a step in the direction of the gradient
with a step size given by the inverse curvature. Big steps
are taken in regions where the gradient changes slowly
(low curvature).
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y(t) = —60 + V5[1 —exp(—t/7)] + e(t)

Approach to Limit
Example

"% 10 20 30 40
ms
Va - 30, T = 8

Noise precision
s=exp(A) =1



Prior Landscape

A plot of log p(w) where w = [log 7, log V]
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pw = [3,1.6]7, Cy, = diag([1/16,1/16]);
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The true model parameters are unlikely apriori

Va:30,7':8
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Prior Noise Precision
Q = . Noise precision s = exp(A) with
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P(A) = N(A; 1, Cy)

P(s)
P(s)

0 1 2 0 1 2
S S
with ) = 0. We used Cy, = 1/16 (left)and C\, = 1/4
(right). True noise precision, s = 1.



Posterior Landscape

A plot of log[p(y|w)p(w)]
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Posterior

Metropolis-Hasting
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Path of 6 VL iterations (x marks start)
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Investigate further using matlab/Iif.
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This example is based on a differential equation
describing the evolution of a voltage variable, v, and a
recovery variable, r

— c[v—%v3+r+l]

1 Oscillator Example
r = —=[v—a+br]

c
This is used in statistics as an example of a difficult
optimisation algorithm with multiple local maxima
Ramsay et al. (2007).
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Fora=02,b=02,c=3and /=0

Oscillator Example

0 10 20 30 40



Oscillator Example e
A plot of log[p(y|w)p(w)] y
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Metropolis-Hasting
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Proposal density

Parameters w = [a, b]. Fix =0, ¢ = 3.



Oscillator Example

A plot of log[p(y|w)p(w)]
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Oscillator Example

Metropolis-Hasting
Proposal density
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Local maxima

log b
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Nonlinear Reg
Prio
Ene
Pos

Oscillator Example

Metropolis-Hasting
Proposal density
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There are a number of potential solutions

» Increase the dimension of the space (from a,b to
a,b,c).

» Fit data in the frequency domain rather than time
domain

» Fit other features of the data
» Use sampling methods

Oscillator Example
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MH creates as series of random points (w(1), w(2),...)
whose distribution converges to the target distribution of
interest. For us, this is the posterior density p(w|y). Each
sequence can be considered a random walk whose
stationary distribution is p(w|y).

Metropolis-Hasting

MH makes use of a proposal density g(w’; w) which is
dependent on the current state vector w. For symmetric q
(such as a Gaussian) samples from the posterior density
can be generated as follows.
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First, start at some point w(0) in parameter space. Then
generate a proposal w’ using the density g. This proposal
is then accepted according to the standard
Metropolis-Hastings procedure.

That is, with probability min(1, r) where

_ Ply|w)p(w)
p(y|w)p(w)

If the step is accepted we set w(n+1) = w'. Ifitis
rejected we set w(n+ 1) = w(n).
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We use a zero mean Gaussian proposal density with
covariance Cs. This covariance is initialised to

CS:UCW

where Cy, is the prior covariance and o = 1.

We then use a three stage procedure comprising (i)

scaling, (ii) tuning and (iii) sampling steps in which the

scaling and tuning stages are used to optimize the AR CTy
proposal covariance Cs.

The first two stages are regarded as a burn-in phase and
samples from this period are later discarded. At the end
of this Cs is fixed and sampling proper begins.
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The proposal covariance is given by
CS = UCW

In the scaling step o is adjusted as follows.

If the acceptance rate, as measured over the last

ns = 100 proposals, is less than 20 per cent then o is

halved. Proposal densit
If the acceptance rate is greater than 40 per cent o is

doubled.

Otherwise, o remains unchanged.



MH - Scaling
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Init: [-0.2, —0.2]. Then 1000 samples

log b

Metropolis-Hasting

Proposal density

-2 -1.5 -1
log a

-0.5 0
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The tuning step makes use of adaptive estimation of a
covariance matrix Cyne based on a Robbins-Monro
update.

At the beginning of the tuning stage we set Cyyne = Cs.
We then update according to

1
pt = =1+ — (Xt — )
ny
1
F[
t

Proposal density

ACune = (Xt — pe)(X¢ — Mt)T — Cune(t —1)]

where n; is the number of elapsed iterations in the tuning
period. At the end of tuning set Cs = Ciune-



MH - Tuning
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1000 samples
Prio
Ene
Pos r
Gradient Ascent
ptive Stef
Priof
Pos!
0
(3}
R}
Metropolis-Hasting
Proposal density

-0.5 0
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2000 samples
Prio
Ene
Pos r
Gradient Ascent
ptive Stef
Priof
Pos!
0
(3}
R}
Metropolis-Hasting
Proposal density
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Accept that a nonlinear dynamical system model has
such a rich repertoire of behaviour, that a model cannot
be specified by a dynamical equation alone. One must
also specify the range of allowable parameters.

Metropolis-Hasting

. 1
Vv = C[V — 5 V3 +r+ I] Proposal density

r = —1[v—a+br]
c
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| is input current.

v o= c[v—;v3+r+l]

ro= —1[v—a+ br]
c

For I = 0 the cell should not spike (need stable fixed point
at v =0).

Proposal density

For | above some threshold there should be an unstable
fixed point around which a limit cycle emerges (spiking).



Fitzhugh-Nagumo
This occurs if these 3 conditions are satisfied

»1-2<cac<
» 0<b<1
» b<c?

log b

log a
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Metropolis-Hasting

Proposal density
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