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Information
Shannon (1948) asked how much information is received
when we observe a specific value of the variable x ?

If an unlikely event occurs then one would expect the
information to be greater. So information must be
inversely proportional to p(x), and monotonic.

Shannon also wanted a definition of information such that
if x and y are independent then the total information
would sum

h(xi , yj) = h(xi) + h(yj)

Given that we know that in this case

p(xi , yj) = p(xi)p(yj)

then we must have

h(xi) = log
1

p(xi)

This is the self-information or surprise.
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Entropy
The entropy of a random variable is the average surprise.
For discrete variables

H(x) =
∑

i

p(xi) log
1

p(xi)

The uniform distribution has maximum entropy.

A single peak has minimum entropy. We define

0 log 0 = 0

If we take logs to the base 2, entropy is measured in bits.
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Source Coding Theorem

Assigning code-words of length h(xi) to each symbol xi
results in the maximum rate of information transfer in a
noiseless channel. This is the Source Coding Theorem
(Shannon, 1948).

h(xi) = log
1

p(xi)

If channel is noisy, see Noisy Channel Coding Theorem
(Mackay, 2003)



Variational
Inference

Will Penny

Information Theory
Information

Entropy

Kullback-Liebler Divergence

Gaussians

Asymmetry

Multimodality

Variational Bayes
Model Evidence

Factorised Approximations

Approximate Posteriors

Applications
Penalised Model Fitting

Model comparison

Group Model Inference

Generic Approaches

Summary

References

Prefix Codes
No code-word is a prefix of another. Use number of bits
b(xi) = ceil(h(xi)). We have

h(xi) = log2
1

p(xi)

b(xi) = log2
1

q(xi)

Hence, each code-word has equivalent

q(xi) = 2−b(xi )

i p(xi) h(xi) b(xi) q(xi) CodeWord
1 0.016 5.97 6 0.016 101110
2 0.189 2.43 3 0.125 100
3 0.371 1.43 2 0.250 00
4 0.265 1.92 2 0.250 01
5 0.115 3.12 4 0.063 1010
6 0.035 4.83 5 0.031 10110
7 0.010 6.67 7 0.008 1011110
8 0.003 8.53 9 0.002 101111100
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Relative Entropy
Average length of code word

B(x) =
∑

i

p(xi)b(xi)

=
∑

i

p(xi) log
1

q(xi)
= 2.65bits

Entropy

H(x) =
∑

i

p(xi)h(xi)

=
∑

i

p(xi) log
1

p(xi)
= 2.20bits

Difference is relative entropy

KL(p||q) = B(x)− H(x)

=
∑

i

p(xi) log
p(xi)

q(xi)

= 0.45bits
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Continuous Variables

For continuous variables the (differential) entropy is

H(x) =
∫

p(x) log
1

p(x)
dx

Out of all distributions with mean m and standard
deviation σ the Gaussian distribution has the maximum
entropy. This is

H(x) =
1
2
(1 + log 2π) +

1
2

logσ2
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Relative Entropy

We can write the Kullback-Liebler (KL) divergence

KL[q||p] =
∫

q(x) log
q(x)
p(x)

dx

as a difference in entropies

KL(q||p) =
∫

q(x) log
1

p(x)
dx −

∫
q(x) log

1
q(x)

dx

This is the average surprise assuming information is
encoded under p(x) minus the average surprise under
q(x). Its the extra number of bits/nats required to transmit
messages.
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Univariate Gaussians

For Gaussians

p(x) = N(x ;µp, σ
2
p)

q(x) = N(x ;µq, σ
2
q)

we have

KL(q||p) =
(µq − µp)

2

2σ2
p

+
1
2

log

(
σ2

p

σ2
q

)
+

σ2
q

2σ2
p
− 1

2
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Multivariate Gaussians

For Gaussians

p(x) = N(x ;µp,Cp)

q(x) = N(x ;µq,Cq)

we have

KL(q||p) = 1
2

eT C−1
p e +

1
2

log
|Cp|
|Cq|

+
1
2

Tr
(

C−1
p Cq

)
− d

2

where d = dim(x) and

e = µq − µp
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Asymmetry

For densities q(x) and p(x) the Relative Entropy or
Kullback-Liebler (KL) divergence from q to p is

KL[q||p] =
∫

q(x) log
q(x)
p(x)

dx

The KL-divergence satisfies Gibbs’ inequality

KL[q||p] ≥ 0

with equality only if q = p.

In general KL[q||p] 6= KL[p||q], so KL is not a distance
measure.
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Different Variance - Asymmetry

KL[q||p] =
∫

q(x) log
q(x)
p(x)

dx

If σq 6= σp then KL(q||p) 6= KL(p||q)

Here KL(q||p) = 0.32 but KL(p||q) = 0.81.
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Same Variance - Symmetry
If σq = σp then KL(q||p) = KL(p||q) eg. distributions that
just have a different mean

Here KL(q||p) = KL(p||q) = 0.12.
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Approximating multimodal with unimodal
We approximate the density p (blue), which is a Gaussian
mixture, with a Gaussian density q (red).

Left Mode Right Mode Moment Matched
KL(q,p) 1.17 0.09 0.07
KL(p,q) 23.2 0.12 0.07

Minimising either KL produces the moment-matched solution.
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Approximate Bayesian Inference
True posterior p (blue), approximate posterior q (red).
Gaussian approx at mode is a Laplace approximation.

Left Mode Right Mode Moment Matched
KL(q,p) 1.17 0.09 0.07
KL(p,q) 23.2 0.12 0.07

Minimising either KL produces the moment-matched solution.
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Distant Modes
We approximate the density p (blue), which is a Gaussian
mixture, with a Gaussian density q (red).

Left Mode Right Mode Moment Matched
KL(q,p) 0.69 0.69 3.45
KL(p,q) 43.9 15.4 0.97

Minimising KL(q||p) produces mode-seeking. Minimising
KL(p||q) produces moment-matching.
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Multiple dimensions
In higher dimensional spaces, unless modes are very
close, minimising KL(p||q) produces moment-matching
(a) and minimising KL(q||p) produces mode-seeking (b
and c).

Minimising KL(q||p) therefore seems desirable, but how
do we do it if we don’t know p ?

Figure from Bishop, Pattern Recognition and Machine
Learning, 2006
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Joint Probability

p(Y , θ) = p(y |θ3, θ4)p(θ3|θ2, θ1)p(θ1)p(θ2)p(θ4)

Energy
E = − log p(Y , θ)
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Model Evidence
Given a probabilistic model of some data, the log of the
evidence can be written as

log p(Y ) =

∫
q(θ) log p(Y )dθ

=

∫
q(θ) log

p(Y , θ)
p(θ|Y )

dθ

=

∫
q(θ) log

[
p(Y , θ)q(θ)
q(θ)p(θ|Y )

]
dθ

=

∫
q(θ) log

[
p(Y , θ)

q(θ)

]
dθ

+

∫
q(θ) log

[
q(θ)

p(θ|Y )

]
dθ

where q(θ) is the approximate posterior. Hence

log p(Y ) = −F + KL(q(θ)||p(θ|Y ))
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Free Energy

We have
F = −

∫
q(θ) log

p(Y , θ)
q(θ)

dθ

which in statistical physics is known as the variational free
energy. We can write

F = −
∫

q(θ) log p(Y , θ)dθ −
∫

q(θ) log
1

q(θ)
dθ

This is an energy term, minus an entropy term, hence
‘free energy’.
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Variational Free Energy

Because KL is always positive,

due to the Gibbs inequality,−F

provides a lower bound on the

model evidence. Moreover,

because KL is zero when two

densities are the same,−F will

become equal to the model

evidence when q(θ) is equal to

the true posterior. For this

reason q(θ) can be viewed as

an approximate posterior.

log p(Y ) = −F + KL[q(θ)||p(θ|Y )]
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Factorised Approximations

To obtain a practical learning algorithm we must also
ensure that the integrals in F are tractable. One generic
procedure for attaining this goal is to assume that the
approximating density factorizes over groups of
parameters. In physics, this is known as the mean field
approximation. Thus, we consider:

q(θ) =
∏

i

q(θi)

where θi is the i th group of parameters. We can also write
this as

q(θ) = q(θi)q(θ\i)

where θ\i denotes all parameters not in the i th group.
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Approximate Posteriors

We define the variational energy for the i th partition as

I(θi) = −
∫

q(θ\i) log p(Y , θ)dθ\i

It is the Energy averaged over other ensembles. Then the
free energy is minimised when

q(θi) =
exp[I(θi)]

Z

where Z is the normalisation factor needed to make q(θi)
a valid probability distribution.

For proof see Bishop (2006) or SPM book. Think of above
two equations as an approximate version of Bayes rule.
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Factorised Approximations
For

q(z) = q(z1)q(z2)

minimising KL(q,p) where p is green and q is red
produces left plot, where minimising KL(p,q) produces
right plot.

Hence minimising free energy produces approximations
on left rather than right. That is, uncertainty is
underestimated. See Minka (2005) for other divergences.
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Example

Approximate posteriors

q(r|Y ) = Dir(r ;α)

q(m|Y ) =
N∏

i=1

K∏
k=1

g
mik
ik

Update q(m|Y ):

uik = exp

log p(yi |k) + ψ(αk )−
∑
k′
ψ(αk′ )


gik =

uik∑
k′ uik′

Update q(r |Y ):
αk = α

0
k +

∑
i

gik

Sufficient statistics of approximate posteriors are
coupled. Update and iterate - see later.
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Applications

Variational Inference has been applied to
I Hidden Markov Models (Mackay, Cambridge, 1997)
I Graphical Models (Jordan, Machine Learning, 1999)
I Logistic Regression (Jaakola and Jordan, Stats and

Computing, 2000)
I Gaussian Mixture Models, (Attias, UAI, 1999)
I Independent Component Analysis, (Attias, UAI,

1999)
I Dynamic Trees, (Storkey, UAI, 2000)
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Applications

I Relevance Vector Machines, (Bishop and Tipping,
2000)

I Linear Dynamical Systems (Ghahramani and Beal,
NIPS, 2001)

I Nonlinear Autoregressive Models (Roberts and
Penny, IEEE SP, 2002)

I Canonical Correlation Analysis (Wang, IEEE TNN,
2007)

I Dynamic Causal Models (Friston, Neuroimage, 2007)
I Nonlinear Dynamic Systems (Daunizeau, PRL, 2009)
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Penalised Model Fitting
We can write

F = −
∫

q(θ) log p(Y |θ)dθ +
∫

q(θ) log
q(θ)
p(θ)

dθ

Replace point estimate θ with an ensemble q(θ). Keep
parameters θ imprecise by penalizing distance from a
prior p(θ), as measured by KL-divergence.

See Hinton and van Camp, COLT, 1993
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Penalised Model Fitting

We can write

F = −
∫

q(θ) log p(Y |θ)dθ +
∫

q(θ) log
q(θ)
p(θ)

dθ

−F =

∫
q(θ) log p(Y |θ)dθ −

∫
q(θ) log

q(θ)
p(θ)

dθ

−F = Accuracy − Complexity



Variational
Inference

Will Penny

Information Theory
Information

Entropy

Kullback-Liebler Divergence

Gaussians

Asymmetry

Multimodality

Variational Bayes
Model Evidence

Factorised Approximations

Approximate Posteriors

Applications
Penalised Model Fitting

Model comparison

Group Model Inference

Generic Approaches

Summary

References

Model comparison

The negative free energy, being an approximation to the
model evidence, can also be used for model comparison.
See for example

I Graphical models (Beal, PhD Gatsby, 2003)
I Linear dynamical systems (Ghahramani and Beal,

NIPS, 2001)
I Nonlinear autoregressive models (Roberts and

Penny, IEEE SP, 2002)
I Hidden Markov Models (Valente and Wellekens,

ICSLP 2004)
I Dynamic Causal Models (Penny, Neuroimage, 2011)
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Group Model Inference
Log Bayes Factor in favour of model 2

log
p(yi |mi = 2)
p(yi |mi = 1)
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Group Model Inference
Model frequencies rk , model assignments mi , subject
data yi .

Approximate posterior

q(r ,m|Y ) = q(r |Y )q(m|Y )

Stephan, Neuroimage, 2009.
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Group Model Inference
Approximate posteriors

q(r|Y ) = Dir(r ;α)

q(m|Y ) =
N∏

i=1

K∏
k=1

g
mik
ik

Update q(m|Y ):

uik = exp

log p(yi |k) + ψ(αk )−
∑
k′
ψ(αk′ )


gik =

uik∑
k′ uik′

Update q(r |Y ):
αk = α

0
k +

∑
i

gik

Here log p(yi |k) is the entry in the log evidence table from
the i th subject (row) and k th model (column).
The quantity gik is the posterior probability that subject i
used the k th model.
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Group Model Inference
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Group Model Inference
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Group Model Inference
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Group Model Inference
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Group Model Inference
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Generic Approaches

VB for generic models
I Winn and Bishop, Variational Message Passing,

JLMR, 2005
I Wainwright and Jordan, A Variational Principle for

Graphical Models, 2005
I Friston et al. Dynamic Expectation Maximisation,

Neuroimage, 2008
For more see

I http://en.wikipedia.org/wiki/Variational-Bayesian-
methods

I http://www.variational-bayes.org/
I http://www.cs.berkeley.edu/jordan/variational.html
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Summary
Entropy:

H(θ) =

∫
q(θ) log

1
q(θ)

dθ

KL-Divergence:

KL[q||p] =
∫

q(θ) log
q(θ)
p(θ)

dθ

Energy:
E = − log p(Y , θ)

Free Energy is Energy minus Entropy:

F = −
∫

q(θ) log p(Y , θ)dθ −
∫

q(θ) log
1

q(θ)
dθ

Model Evidence is Negative Free Energy + KL:

log p(Y |m) = −F + KL(q(θ)||p(θ|Y ))

Negative Free Energy is Accuracy minus Complexity:

−F =

∫
q(θ) log p(Y |θ)dθ −

∫
q(θ) log

q(θ)
p(θ)

dθ
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